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Astrophysical Cosmology 4 2004/2005

Solution set 4

(1) The flux density of an object at redshift z, observed at frequency ν0, is

fν(ν0) =
Lν([1 + z]ν0)

(1 + z) [R0Sk(r)]2
.

Consider a source that emits a thermal spectrum of temperature T . If observations are
made at low frequencies (hν0 ¿ kT ), show that the flux density increases with redshift
for z >∼ 1, until a critical redshift is reached. Give an order-of-magnitude estimate for
this redshift in terms of ν0 and T .

Solution: For a thermal source, the flux is proportional to that of a black-body, ie

Lν =
2hν3/c2

ehν/kT − 1
.

For low frequencies (hν ¿ kT ) this is the Rayleigh-Jeans part of the spectrum.
Expanding to leading order we find Lν ∝ ν2, up to the turnover in the spectrum
at hν ∼ kT . Hence in the RJ regime Lν(ν0(1 + z)) ∝ (1 + z)2. In the denominator we
also have [R0Sk(r)]2. But as z → ∞, Sk(r) → constant, since we come up against the
horizon distance (recall that this is because we are looking back in time until we hit the
initial singularity). Hence we find

fν(ν0) ∝ (1 + z)

for z À 1. At low redshift we recover the Euclidean result that fν(ν0) ∝ 1/z2 for z ¿ 1.
Hence the flux density initially falls with distance, then starts to increase again, as we
the spectrum in redshifted into the observed frequency range. This carries on until the
spectrum is redshifted past the cut-off at hν0(1+z) ∼ kT . Hence the flux drops rapidly
for thermal objects at a critical redshift of 1 + zc ∼ kT/hν0. This result is used for the
detection of sub-millimeter galaxy sources, which have a thermal spectrum. These can
be as easily detected at redshift z ≈ 10 as at z = 1, because of this effect.

(2) The ‘deceleration parameter’ is defined as a dimensionless form of the second time
derivative of the scale factor: q ≡ −R̈R/Ṙ2. Use the acceleration form of Friedmann’s



equation to obtain an expression for the current value of q, for a universe containing
a mixture of vacuum energy and nonrelativistic matter. Show that the expansion
decelerates only if Ωm > 2Ωv. Explain qualitatively why objects at a given redshift
appear brighter in a decelerating universe and fainter in an accelerating universe.

Solution: Friedmann’s equation says

Ṙ2 =
8πGρR2

3
− kc2.

while the acceleration equation says

R̈ = −4πGR

3
(ρ + 3P/c2).

Given we can write the Hubble parameter as H = Ṙ/R the deceleration parameter is
given by

q ≡ − R̈R

Ṙ2
=

4πG

3H2
(ρ + 3P/c2).

For matter ρ = ρm and P = 0, while for vacuum energy ρ = ρv and Pv = −ρvc2. Hence

q =
4πG

3H2
(ρm − 2ρv)

This can be re-written in terms of the density parameters as

q = Ωm/2− Ωv.

The redshift we see depends on the recession velocity of the object. For large q, velocities
we larger in the past, giving a higher redshift for a given distance. Hence for a given
redshift the distance will be lower, and the object will be brighter.

(3) The equation for a radial null geodesic in the Robertson-Walker metric is dr =
c dt/R(t), which can be cast in the observational form

R0 dr =
c

H0

[
(1− Ωm − Ωv)(1 + z)2 + Ωv + Ωm(1 + z)3

]−1/2
dz,

for z <∼ 1000. Expand this relation as a series in z to obtain an approximation for the
luminosity distance DL(z) = (1 + z)R0Sk(r) that is valid to second order in z. Show
that the second-order correction depends only on the combination Ωm/2 − Ωv. Hence
explain the sense of the near-degeneracy between Ωv and Ωm as determined from the
supernova Hubble diagram.

Solution: The proper comoving distance is given by

R0r =
∫ z

0

cdz

H(z)
,



where H(z)2 = H2
0 [(1−Ωm −Ωv)(1 + z)2 + Ωv + Ωm(1 + z)3]. The luminosity distance

is DL(z) = (1 + z)R0Sk(r). For small r, Sk(r) ≈ r− kr3/6 so equals r to second order.
We are asked to calculate DL(z) to second order in z, which requires second order in
r(z). But this only requires us to find 1/H(z) in the integrand to first order. Expanding
we find

H(z) ≈ H0[1 + (2 + Ωm − 2Ωv)z/2 + O(z2)],

so that
R0r ≈ c

H0
(z − (2 + Ωm − 2Ωv)z2/4).

Hence the luminosity distance is

DL(z) ≈ (1 + z)
c

H0
(z − (2 + Ωm − 2Ωv)z2/4) ≈ c

H0
(z + (2 + Ωm − 2Ωv)z2/4),

where our final expression is correct to second order in redshift, and depends on the
combination Ωm/2 − Ωv. As the supernova Hubble diagram uses the supernova as
standard candles, they are really measuring DL(z) versus z. At low z this gives
the relation DL(z) = cz/H0 (z ¿ 1), while at higher redshift we deviate from this
relation. Hence a fit to the observed supernova data is really a fit to the function
f = 2 + Ωm − 2Ωv, which gives us a set of parallel lines on the Ωm-Ωv plane. Hence
locus of acceptable values in the Ωm-Ωv plane from supernova is degenerate along one
of these lines. In practice this degeneracy is not complete, as higher-order terms contain
different combinations of Ωm and Ωv.

(4) An object is observed at redshift z in a matter-dominated universe with density
parameter Ω. Calculate the observed rate of change of redshift for the object (hint:
remember 1 + z = R0/Remit, where both R0 and Remit change with time, and that
time intervals in high-redshift objects are observed to be time-dilated). What fractional
precision in observed frequency would be needed to detect cosmological deceleration in
a decade?

Solution: For this we need to note that both R0 and Remit will depend on time, and
that we are measuring time in the observers rest frame, tobs. Hence

żobs =
dz

dtobs
=

dRobs/dtobs

Remit
− Robs

R2
emit

dRemit

dtobs
.

We can relate the observers time to the emitters time by dtemit = dtobs/(1 + z), and
using Remit = Robs/(1 + z) we find

żobs = (1 + z)H0 −Hemit(z)

where H0 = Ṙobs/Robs, and Hemit = Ṙemit/Remit. For a matter-dominated universe
H(z) = H0(1 + z)

√
1 + Ωz, from the Friedmann equation. Hence we find that

żobs = −H0(1 + z)(
√

1 + Ωz − 1).

This is the observed rate of change of redshift over time for an object at redshift z. The
fractional error in accuracy of the measured redshift required to detect this change in a
time of δt = 10 years is

δzobs

(1 + z)
= −H0(

√
1 + Ωz − 1)δt.

For z = Ω = 1 this is a fractional error in redshift of −109.4. Hence it is far beyond
current accuracies to measure the change in redshift.


