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Astrophysical Cosmology 4 2004/2005

Solution set 3

(1) The equation for a radial null geodesic in the Robertson-Walker metric is dr =
c dt/R(t). Using the relation between redshift and scale factor, 1 + z ∝ 1/R(t), plus
Friedmann’s equation, deduce the differential relation between comoving distance and
redshift:

R0 dr =
c

H0

[
(1− Ω)(1 + z)2 + Ωv + Ωm(1 + z)3 + Ωr(1 + z)4

]−1/2
dz.

Solution: Differentiating 1+z = R0/R(t) wrt time we find dz/dt = −R0/R2dR/dt =
−(1 + z)H(z). Hence

dt = dz
(1+z)H(z)

which we shall use below. Substituting into dr = c dt/R(t) we find

R0dr = cdz
H(z) .

We can find H(z) from the Friedmann equation;

H2 = 8πGρ
3 − kc2

R2 ,

by substituting kc2/R2
0 for (H2

0 − 8πGρ0/3)(1 + z)2 and put ρ(z) = ρm
0 (1 + z)3 + ρv

0 +
ρr
0(1 + z)4. Recall that Ω = 8πGρ0/(3H2

0 ) and we get the Hubble parameter as a
function of z;

H2(z) = H2
0 [Ωm(1 + z)3 + Ωv + Ωr(1 + z)4 + (1− Ω)(1 + z)2],

where Ω = Ωm + Ωv + Ωr.

(2) Integrate this expression for the case of the Ω = 1 Einstein–de Sitter universe. In this
model, calculate the apparent angle subtended by a galaxy of proper diameter 30 kpc,
as a function of redshift (recall c/H0 = 3000 h−1 Mpc). Show that there is a critical
redshift at which this angle has a minimum value.



Solution: EdS has Ωm = Ω = 1 and Ωv = Ωr = 0, so

R0dr = c
H0

(1 + z)−3/2dz.

Integrating from us at z = 0 to the object at redshift z, the proper distance is

R0r = c
H0

∫ z

0

dz (1 + z)−3/2 = 2c
H0

(1− (1 + z)−1/2).

Note the limits on the integration (we are measuring the distance from us to a high-
redshift object), and we have chosen minus signs so the distance from here to there is
positive. As a check we can take the low redshift limit, z ¿ 1, to get R0r = cz/H0

(Hubble’s Law). For z À 1 this converges to R0r = 2c/H0, as we run up against the
particle horizon (i.e. photons only have the age of the universe to travel a finite distance
to us).

Using the small-angle formula, d = θDA(z), where DA(z) = R0r(z)/(1 + z) is
the angular diameter distance, for a fixed diameter, d = 30kpc, the apparent angle of
an object subtended on the sky is

θ(z) = d(1+z)
2c
H0

(1−(1+z)−1/2)
.

As c/H0 = 3000h−1Mpc we find

θ(z) = 1.03h((1 + z)−1 − (1 + z)−3/2)−1 arcsec.

This has a minimum, as can be seen by taking the low-z limit, θ(z) ∝ 1/z and the high-z
limit θ(z) ∝ z. So at low redshift the apparent angular size decreases with distance, as
in a Euclidean universe, but at higher redshift it starts to increase again. This is because
the matter in the universe is bending the light, so it’s like looking through a gold-fish
bowel. The minimum can be found by looking for the turning point dθ(z)/dz = 0. So

dθ
dz ∝ d

dz ((1 + z)−1 − (1 + z)−3/2)−1 = (−(1 + z)−2 − 3/2(1 + z)−5/2) = 0

giving (1 + z)5/2−2 = 3/2, so 1 + z = (3/2)2 = 9/4. Hence the turning point is z = 5/4.

(3) From the relation between distance and redshift, deduce the differential relation
between redshift and time. Integrate this for the case of the Ω = 1 Einstein–
de Sitter universe. A galaxy is observed at redshift 1.5 to contain stars that are
3.5 Gyr old: assuming Ω = 1, deduce a limit on the Hubble constant (remember
H−1

0 = 9.78h−1 Gyr).

Solution: We’ve already got the first part of this from differentiating the redshift-
scale factor relation; dt = dz/(1 + z)H(z). To find the time it’s taken light to travel
from redshift z to Earth, at z = 0, we need to integrate from z = 0 to z;

t(z) =
∫ z

0

dz
(1+z)H(z) .



But if we want to know the age of the universe (from t = 0) at redshift z we need to
integrate from z to z = ∞ (remember 1+ z is the ratio of the size of the universe today
to its size at redshift z, so for R = 0, z = ∞). Hence

tage(z) =
∫ ∞

z

dz
(1+z)H(z) .

In a EdS universe the age of the universe at z is

tage(z) = 1
H0

∫ ∞

z

dz

(1+z)5/2 = 2
3H0

(1 + z)−3/2.

If we see a galaxy at z = 1.5 and can tell its age (e.g. from fitting stellar models to
its spectral energy distribution ) is t = 3.5Gyrs, then we know the universe must be at
least this old, so we can solve for H0 (note that H−1

) = 9.78h−1Gyrs). For z = 1.5 we
find t = 0.169/H0. or t = 1.65h−1Gyrs. As t > 3.5Gyrs then h < 0.47.

(4) Show that the result of integrating dr/dz between ∞ and z is the comoving horizon
length. For redshifts below about 104, the universe may be assumed to be matter
dominated: deduce an expression for the horizon length as a function of z that is valid
for 104 >∼ z >∼ 1.

Solution: Integrating dr/dz from z = ∞ to z will give us the distance a photon has
traveled from z = ∞, i.e. the big bang at t = 0 and R = 0, until the redshift z. As this
is the furthest distance that anything can have traveled by that time in the evolution
of the universe, this must equal the particle horizon at redshift z. In other words

rH(z) =
∫ t

0

dr
dt dt =

∫ z

∞
dr
dz dz.

If the universe is matter dominated then the horizon distance is

R0rH(z) = c
H0

∫ z

∞
dz(1 + z)−3/2

(its ok to integrate to infinity, as it won’t add much to the integral for z > 104), giving

R0dH(z) = 2c
H0

(1 + z)−1/2.

The microwave background was emitted at z ' 1100. Calculate the horizon size
at this epoch. If Ω = 1, what angle on the sky does this length subtend? Is it surprising
that the microwave background radiation is uniform to 1 part in 1000?

Solution: At the redshift of the CMB, z = 1100, this gives dh = 181 h−1Mpc (Note
that this is the comoving size, i.e. the size it would be if we scaled it with the expansion to
the present today). The angle this physical size subtends on the sky today can be found
from question (2), but its quicker to notice that we are in the high-redshift regime, z À 1,
so that DA(z À 1) ≈ 2c/[H0(1 + z)], where 2c/H0 is the current horizon size, rH(0).
Also note that the physical size of the horizon at z is dH(z) = R(z)rH(z) ∝ rH(z)/(1+z).



Putting these together we find the angular size of the horizon at z = 104, for and EdS
model, is

θ(z À 1) = rH(z)
rH(0) = (1 + z)−1/2,

which gives an angular size of θ(z = 1100) = 1.73 degrees. Hence larger angular scales
at the distance of the CMB where never in causal contact, making the fact that points
separated by 180 degrees are the same temperature to within one part in 1000 rather
strange!


