Astrophysical Cosmology 4 2004/2005

Solution set 2

(1) Write down Friedmann's equation for the scale factor of the universe, $R(t)$. Assuming that the universe contains pressureless matter only, so that $\rho(t)=\rho_{0}\left(R / R_{0}\right)^{-3}$, rewrite the equation in terms of the variable η, where $d \eta=c d t / R(t)$.

Solution: The Friedmann equation is

$$
\dot{R}^{2}=\frac{8 \pi G}{3} \rho R^{2}-c^{2} k .
$$

If $\rho(t)=\rho_{0}\left(R / R_{0}\right)^{-3}$ then

$$
\dot{R}^{2}=\frac{8 \pi G}{3} \rho_{0} R_{0}^{3} R^{-1}-c^{2} k
$$

Since $d \eta=c d t / R(t)$ then $d / d t=c / R d / d \eta$. Substituting in we find

$$
R^{\prime 2}=\frac{8 \pi G \rho_{0} R_{0}^{3}}{3 c^{2}} R-k R^{2} .
$$

If we let $R_{*}=4 \pi G \rho_{0} R_{0}^{3} / 3 c^{2}$ then

$$
\left(R / R_{*}\right)^{\prime 2}=2\left(R / R_{*}\right)-k\left(R / R_{*}\right)^{2}
$$

which is the form required.
(2) Hence verify that $R(\eta)=R_{*}(1-\cos \eta)$ and $R_{*}(\cosh \eta-1)$ are the solutions for respectively positive and negative space curvature, where $R_{*}=\left(c / H_{0}\right) \Omega|1-\Omega|^{-3 / 2} / 2$ (remember $R_{0}=\left(c / H_{0}\right)|1-\Omega|^{-1 / 2}$). Use $d t=R d \eta / c$ to deduce $t(\eta)$.

Solution:

Let $k=+1$, so $R(\eta)=R_{*}(1-\cos \eta)$. Then

$$
\left(R / R_{*}\right)^{\prime 2}=\sin ^{2} \eta
$$

and

$$
\begin{aligned}
2\left(R / R_{*}\right)-\left(R / R_{*}\right)^{2} & =2(1-\cos \eta)-(1-\cos \eta)^{2} \\
& =1-\cos ^{2} \eta \\
& =\sin ^{2} \eta \\
& =\left(R / R_{*}\right)^{\prime 2}
\end{aligned}
$$

This proves the spatially close case. The open case follows by letting $R \rightarrow i R$.
The cosmic time is given by

$$
t=\int_{0}^{t} d t=\int_{0}^{\eta} R(\eta) / c=\frac{1}{c} R_{*}(\eta-\sin \eta)
$$

(3) If $H_{0}=70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ and we inhabit a matter-dominated universe with $\Omega=1.1$, then
(a) What is the current age of the universe?
(solve $R(\eta)$ for η_{0} and use $H_{0}^{-1}=9.78 h^{-1} \mathrm{Gyr}$)

Solution:

The age of the universe is given by

$$
t_{0}=R_{*}\left(\eta_{0}-\sin \eta_{0}\right) / c
$$

and its scale factor is

$$
R\left(\eta_{0}\right)=R_{*}\left(1-\cos \eta_{0}\right)
$$

Inverting this we find $\eta_{0}=\cos ^{-1}\left(1-R_{0} / R_{*}\right)$. Since $R_{0}=\left(c / H_{0}\right)|1-\Omega|^{-1 / 2}$ and $R_{*}=\left(c / H_{0}\right) \Omega|1-\Omega|^{-3 / 2} / 2$, then after a bit of algebra $1-R_{0} / R_{*}=2 \Omega^{-1}-1$. Hence $\eta_{0}=\cos ^{-1}\left(2 \Omega^{-1}-1\right)=0.613$, and so

$$
t_{0}=\frac{\Omega}{2 H_{0}|1-\Omega|^{3 / 2}}\left(\eta_{0}-\sin \eta_{0}\right) \approx 0.654 H_{0}^{-1}
$$

Note that this is less than the naive extrapolation of $t_{0}=H_{0}^{-1}$, and slightly lower than the Einstein-de Sitter value of $t_{0}=2 / 3 H_{0}^{-1}$. With $H_{0}=70 \mathrm{~km}^{-1} \mathrm{Mpc}^{-1}=$ $1 / 9.78 h^{-1} \mathrm{Gyr}$, then we find an age to this model of $t_{0}=9.136 \mathrm{Gyr}$.
(b) How much larger will the universe be when it ceases expanding?

Solution: This universe will stop expanding at the point of turnaround, when the expansion stops so that $\dot{R} \propto R^{\prime}=0$. Afterwards it will recollapse to a big crunch. Since $\dot{R}=R_{*} \sin \eta=0$, we find $\eta=\pi$ at turnaround. The scale factor is then $R(\eta=\pi)=R_{*}(1-\cos \pi)=2 R_{*}$. This is bigger than the current scale factor by a factor $R(\eta=\pi) / R_{0}=2 R_{*} / R_{*}\left(1-\cos \eta_{0}\right)=11.0$.
(c) When will this happen?

Solution: Turnaround happens at a time $t_{\max }=R_{*}(\pi-\sin \pi) / c$, or a factor $t_{\max } / t_{0}=(\pi-\sin \pi) /\left(\eta_{0}-\sin \eta_{0}\right)=83.6$ older, making $t_{\max }=763 \mathrm{Gyrs}$.
(d) What will $H(t)$ and $\Omega(t)$ be at this time?

Solution: Since $\dot{R}=0$ at maximum expansion, $H=\dot{R} / R=0$. As $\Omega(t) \propto 1 / H(t)^{2}$, we see that Ω is infinite at turnaround.
(e) At what time will the big crunch happen?

Solution: From the symmetry of the expansion and collapse of the model, the big crunch will happen at a time $2 \times t_{\text {max }}$.
(4) Suppose instead that we inhabit a universe with a significant vacuum energy. If the matter and vacuum densities are $\Omega_{m}=0.1$ and $\Omega_{v}=1.5$, show that there could not have been a big bang. What is the highest redshift we could expect to see? (This will require some numerical experimentation with your calculator).

Solution: As the vacuum energy increases, the big-bang gets pushed back further and further. Eventually, when its large enough there is no singularity. Instead the universe starts off collapsing from infinitely large in the infinite past, reaches a finite radius, 'bounces', and starts to expand. Hence the signature of no initial singularity is the presence of a point to inflection, or stationary point when $\dot{R}=0=H$, in the past. As this is given by Friedmann's equation written in the form

$$
H(t)^{2}=H_{0}^{2}\left[\Omega_{m}(1+z)^{3}+\Omega_{v}+\left(1-\Omega_{m}-\Omega_{v}\right)(1+z)^{2}\right] .
$$

So we are looking for when the term in square brackets is zero. Plugging some values into a calculator shows that this happens at about $z \approx 0.9$. More distant objects will still be in the collapsing part of the universe and so will be blue-shifted.

