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Solutions 1

(1) The Robertson-Walker metric can be written as

c2dτ2 = c2dt2 −R2(t)
(

dr2 + S2
k(r) dψ2

)

,

where Sk(r) = sin r (k = +1), r (k = 0), or sinh r (k = −1) and dψ is the angular
separation between the two events under consideration.

(a) Show that, in the k = +1 case, the spatial part of this 3D metric is the same as
that for a 2D space that forms the surface of a sphere.

Solution: If dψ is a general angular separation on the sky, then

dψ2 = dθ2 + sin2 θdφ2

is the line element (an infinitesimal Pythagoras Theorem). This is the same form
as the spatial part of the RW metric if we replace θ by r (a dimensionless distance
from the pole of the sphere), and replace dφ, an infinitesimal angular distance on
a circle of constant θ around the unit sphere, with dψ, and infinitesimal angular
distance between two points on the surface of a 2-sphere.

(b) The proper time interval dτ is not in general the same as the time interval
measured by an observer at the origin. By considering a pair of events with
dr = dψ = 0, explain why not.

Solution: Lets say we are at the origin and dr = dψ = 0. Then c2dτ2 = c2dt2,
i.e., the proper time is the same as the time measured by the fundamental
observer at the origin. But the apparent rate of time of distant galaxies
will appear slower, as they are moving away and so will be time-dilated, i.e.
c2dτ2 = c2dt2 −R2dr2.

(c) The element of radial proper distance is R(t) dr. How does this change with
time? By considering events close to r = 0, deduce Hubble’s law, and show that
H = Ṙ/R.



Solution: Lets call the element of proper (i.e., physical) distance dl = R(t)dr.
Remembering that the comoving distance, r, is time-independent, the rate of
change of the proper distance with time is v = (dl)· = Ṙdr = (Ṙ/R)dl = Hdl,
yielding Hubble’s law.

(d) Show that the curved k = ±1 cases are in practice indistinguishable from the
flat k = 0 case provided R is large enough.

Solution: The Robertson-Walker metric can be written as

c2dτ2 = c2dt2 −R2(t)
(

dr2 + S2
k(r) dψ2

)

,

where Sk(r) = sin r (k = +1), r (k = 0), or sinh r (k = −1). Expanding
Sk(r) ' r − kr3/6, to third order, and substituting the comoving distance r for
the proper distance l = Rr, we can write the RW metric as

c2dτ2 = c2dt2 −
(

dl2 + [l2 − k(l4/R2)/3]dψ2
)

.

Hence if we let R → ∞ we can see the metric turns into the flat Minkowski
metric of special relativity. The condition for this to happen is R� l, i.e. if the
scale factor is very large, or if proper distances are small in comparison.

(2) Using the Robertson-Walker metric, show that the comoving separation between us
and an object seen at redshift z is r =

∫

c dt/R(t). Since r is independent of time, argue
that the redshift is 1 + z = R(now)/R(emit).

Solution: We see galaxies by the photons they emit. Photons, being massless,
travel along null geodesics (i.e. they see zero proper time), c2dτ2 = 0 =
c2dt2 −R2(t)dr2. Solving for dr = dt/R(t) and integrating we find

r(t) = c

∫ t

0

dt′

R(t′)

is the proper distance the photon has travelled. We can use this to find the
redshift formula for an expanding universe. Imagine a photon is emitted from a
galaxy at time t = t0, and arrives at an observer at time t1, having travelled a
comoving distance r. A short time later another photon is emitted at t = t0 +δt0
and is observed at a time t = t1 + δt1. While the physical distances between
galaxies has increased due to the expansion, the comoving distance is still r.
Hence

r = c

∫ t1

t0

dt′

R(t′)
= c

∫ t1+δt1

t0+δt0

dt′

R(t′)

The second integral can be expanded as
∫ t1+δt1

t0+δt0
=

∫ t1

t0
−

∫ t0+δt0

t0
+

∫ t1+δt1

t1
.

Cancelling the
∫ t1

t0
integrals we find

∫ t0+δt0

t0

dt′

R(t′)
=

∫ t1+δt1

t1

dt′

R(t′)
.



For small δt0, δt1 we find
δt0
R(t0)

=
δt1
R(t1)

.

We can always choose the time interval so that λ0 ∝ δt0, hence

λ0

R(t0)
=

λ1

R(t1)
.

Since ν ∝ λ and νemit/νobs = 1 + z, and letting t0 = temit and the time of
observing be t1 = tnow then 1 + z = R(tnow)/R(temit).

(3) Derive the same relation by considering the infinitesimal Doppler shift caused when
a photon travels a distance d, thus encountering an observer with relative velocity
δv = Hd (use d = c δt and remember H = Ṙ/R). Use the same approach to show that
the ‘peculiar’ momentum of any particle decays ∝ 1/R (use a Lorentz transformation
of the particle 4-momentum to get the change in momentum caused by δv).

Solution: The fractional change in frequency of light caused by a small Doppler
shift is δν/ν = +δv/c. The Doppler shift is seen by the observer, who sees the
emitting galaxy moving away with velocity −δv. Hence

δν/ν = −δv/c = −Hd/c = −Hδt = −Ṙ/Rδt = −δR/R.

Hence ν ∝ 1/R.

The 4-momentum of a particle is pµ = (E/c, px, py, pz), measured by a nearby
fundamental observer. If we perform a Lorentz transformation to another frame,
i.e. as seen from a galaxy a distance d away moving with a relative Hubble
velocity of δv = Hd, p′x = γ(px − δvE/c2). Hence to first order in δv the
‘peculiar’ momentum, i.e. the momentum of a particle with respect to the Hubble
expansion measured by the fundamental observers, is δp ' −δvE/c2 (dropping
un-important subscripts). Since E = mc2 then δp ' −mδv (i.e. the Newtonian
limit where v � c). As δv = Hd is just the Hubble velocity δp = −Hmd. The
distance d = δtp/m so δp = −Hpδt or δp/p = −Hδt = −δR/R. Hence p ∝ 1/R.


