

- Why are surveys good ?
- UKIDSS overview
- Recent survey science
- The future

Why are surveys good ?

What is a survey ?

- Two step process
- Summarise sky
- The archive becomes the sky
- Science done with the archive

===> backbone of Virtual Observatory (see AstroGrid demo !)

Why survey ?

• cost effective

- many experiments from same data

• supports other experiments

- create samples to observe elsewhere (follow-up)
- match with observations made elsewhere (follow-down ?)
- produces surprises
 - first looks in new corners of parameter space
 - new populations

Why wide angle ?

• statistics : large samples

- accurate function estimation : eg galaxy power spectrum
- weak signal recovery : e.g. grav lensing
- wider always faster than deeper
- large structures
 - eg Clusters, Milky Way, Dipole
- rare objects
 - eg Y dwarfs, z=7 quasars

Rich Heritage

- Radio : 3C, 4C ...
- IR : IRAS, 2MASS, UKIDSS
- Optical :
- X-ray :

- APM, SuperCOSMOS, SDSS
- Ariel-V, XMM
- Z-surveys PSC-z, 2dFGRS, SDSS-z

the core of modern astronomy

UKIDSS overview

The UKIRT Infrared Deep Sky Survey

> Andy Lawrence, Steve Warren, Omar Almaini, Richard Jameson, Alastair Edge, Phil Lucas, Nigel Hambly, Mike Irwin, Mark Casali, Simon Dye, Andy Adamson, Paul Hirst ... and about a hundred others

UKIDSS

- ESO public survey
- uses new UKIRT
 Wide Field Camera (WFCAM)
- 1000 nights over 7yrs
- UKIDSS = 20 X 2MASS volume
- near-ir SDSS
- began 2005 May 13

UKIDSS design

Large Area Survey	LAS	YJHK	18.2K	4028 s.d.	262n	ExGal
Deep Extragalactic Survey	DXS	JK	20.8	35	118	ExGal
Ultra Deep Survey	UDS	JHK	22.8	0.77	296	ExGal
Galactic Plane Survey	GPS	JHK	19.0	1868	186	Gal
Galactic Clusters Survey	GCS	ZYJHK	18.6	1067	84	Gal

WFCAM pix

NGC 891

M17 2MASS

scary amounts of data

(17000 x 17000 pixels)

Specific goals

- find the nearest and faintest sub-stellar objects
- break the z=7 quasar barrier
- determine the epoch of re-ionisation
- determine the substellar mass function
- discover Pop II brown dwarfs, if they exist
- construct a galaxy catalogue at z=1 as large as the SDSS catalogue
- measure the growth of structure and bias from z=3 to the present day
- determine the epoch of spheroid formation
- clarify the relationship between quasars, ULIRGs, and galaxy formation
- map the Milky Way through the dust, to several kpc
- increase the number of known Young Stellar Objects by an order of magnitude, including rare types such as FU Orionis stars

Data Access

- Raw data : CASU and ESO
- Science ready data : WFCAM Science Archive
 - http//surveys.roe.ac.uk/wsa
- Public ESO wide in staged releases
- Public World-Wide at +18months

- Early Data Release (EDR) 10 Feb 2006 (~1%)
- Data Release One (DR1) July 2006 (~10%)
- Completion ~2012

Large Structures : Milky Way

2MASS all sky map

Large Structures : local Universe 2D

SuperCOS + 2MASS BRJHK nearby galaxy catalogue

Peacock et al in progress

Large Structures : Local Universe 3D

3000 Mpc

2dF Galaxy Redshift Survey

Power spectrum

UKIDSS DXS : LSS at z=1

- Result from SV programme
- **6** hours data
- **0.8** sq.deg.
- Final dataset will be one mag deeper and 45 times larger

Almaini, Edge, Foucaud, et al

rare objects : EROS

- crossmatch with INT-WFS
- select R-K>5
- 1660 EROs with tiny fraction of DXS and UDS data

Almaini, Edge, Foucaud, et al

Rare objects : Brown Dwarfs

2MASS J1146+2230 An L-type dwarf in the constellation Leo The near-infrared view The optical view

2MASS Atlas JHK_s Composite Image

Palomar Digitized Sky Survey

J.D. Kirkpatrick (IPAC/Caltech), I.N. Reid (Caltech), R.M. Cutri (IPAC/Caltech), C.A. Beichman (IPAC/JPL/Caltech), J. Liebert (U of A), M.F. Skrutskie (UMass)

The 2MASS project is a collaboration between the University of Massachusetts and IPAC

Kirkpatrick et al

rare objects : very nearby stars

SCR1845-6357

d=3.5pc M8.5

Deacon et al., 2005

found with 2MASS colours and SuperCOSMOS proper motions

UKIDSS GCS : large substellar sample

- SV obsvns : Upper Sco
- **6** square degrees
- **100,000** objects
- Cluster members clear
- down to 10Jupiter masses
- 10MJ by Z-dropout

hot off the press...

-- Upper Sco CMD from SV data: SELECT zAperMag3-jAperMag3 AS zmj, zAperMag3 FROM gcsSource WHERE dec < 0.0 AND jAperMag3>10.5 AND zAperMag3>11.5 AND zClass BETWEEN -2 AND -1 AND jClass BETWEEN -2 AND -1 AND jXi BETWEEN -1.0 AND +1.0 AND jEta BETWEEN -1.0 AND +1.0

Lodieu, Hambly, et al

UKIDSS LAS : large reddened quasar sample

- LAS SV programme
- 20 sq.degrees
- **1** 21,000 sources to K=16.5
- 11 SDSS quasars re-found
- **167** new quasar candidates
- final survey 2 mags deeper and 200 times larger

Rare objects : z=6 quasars

first detection of Gunn Peterson trough (Becker et al 2001) IGM re-ionised at z~6 WMAP-Y1 says z~10-20; WMAP-Y3 says z~8 ?

UKIDSS LAS : 10 pc vs z=7??

- z dropout finds very red objects
 Y-J separates T dwarfs and high-z quasars
- predict 10 quasars z=6-7
- predict 4 quasars z=7-8

EDR sample (30 sq deg) : 4 candidates (Mortlock, Warren et al)

DR1 expectation (150 sq deg) : 20 cands vs 1 quasar predicted at z>6

Low contamination rate

Next steps in OIR surveys

- Now : AKARI : all-sky FIR
- Soon : VST
- Soon : Pan-Starrs
- Soon : SkyMapper
- 2007 : VISTA : WFCAM x 6
- 2010 : WISE : all-sky MIR
- 2015 : LSST : half-sky every few nights

Future Skymapping Projects

PanStarrs

All-sky multi-lamda atlas ?

adapted from WISE website

Twentieth Century : the universe revealed

- radio : pulsars, quasars
- µwave : cosmic bgnd, molec clouds
- IR : ultraluminous galaxies, brown dwarfs
- X-ray : black holes, intra-cluster medium
- submm : galaxy formation with a bang

...any windows left?

Discovery Space

- wavelength
- photon flux
- polzn
- time
- spec. resoln
- spatial resoln
- non-light channels particles

done almost done done but not all wavelengths current big thing done but not all wavelengths next big thing in optical-IR gravitational waves

ever deeper?

$F \propto t^{-1/2} Q E^{-1/2} D^{-1} B^{1/2}$

- integration : done
 - already used many day integns
- quantum efficiency : done - CCD QE ~ 80%
- sky background : done
 - space telescopes
- collecting aperture : expensive
 - 100m telescopes ?
 - depth goes as D but cost goes as D³

the watchers

- long term motions
 - substellar objects
 - Near Earth Objects

- periodic changes
 - exoplanet hunts

- transient events
 - high-z supernovae ==> vacuum energy
 - gamma-ray bursts
 - microlensing from MACHOs

bigger is sharper

 $\theta = \lambda / D$

• opt-IR 100m θ ~ milli-arcsec

- deep and sharp : detect earth-like planets

- IR space interferometry (Darwin)
 - image earth-like planets
- space astrometry with GAIA
 - the Galaxy in 3D
 - watch external galaxies rotating

Darwin

Gaia

gravitational waves

- expected from changes in spacetime distortions
 - eg supernovae; black hole mergers
 - detect from tiny distance changes : $\Delta L/L \sim 10^{-18}$
 - very accurate interferometry with large arms
- Ground : high frequency only (T<100 sec)
 - km scale experiments now : no detections yet
 - next generation : cryogenic detectors : might see something
- Space : low frequency
 - arm length millions of km; drag free, phase locked spacecraft
 - LISA may get launched 2015
 - will almost certainly detect astronomical objects

... but won't usually know where they are ...

particles from space

- Cosmic Rays : non-thermal sources
 - hundred year mystery still unsolved
 - current physics interest : very highest energies : shouldn't get here
 - needs very large detector arrays : AUGER
- Dark Matter : frozen relics of the Big Bang ?
 - deep mine experiments aim to detect directly
 - no results yet ...but next generation can rule out $\sim 30\%$ of models
- Neutrinos : messages from the core
 - solar neutrinos : solar models correct / neutrinos oscillate
 - so relic neutrinos have mass cosmic background
 - supernovae : 19 neutrinos claimed from SN1987A !
 - quasars : no detections yet

The Neutrino Observatory

Neutrino Detectors

Antares

Amanda

the future .. ICECUBE

Amanda results

any surprises in discovery space?

• new windows opening :

high res astronomy grav waves neutrinos

- will certainly do new science...
- ... but revolutionary surprises ...?