

with Suvi Gezari, Martin Elvis, Martin Ward and the Harvard and Belfast transient pipeline teams (especially Stephen Smartt, Ken Smith, Darryl Wright) and the whole PS1 team

PanSTARRS-1

- 1.8m telescope on Hawaii with FOV 7 sq.deg
- Imaging in *g r i z y*
- Medium Deep Survey : 12 fields, 4 night cadence, g=25-ish
- 3Pi Survey : 30,000 sq.deg, 2 month cadence, g=22-ish
- Pipeline in Maui
- Transient pipelines in Harvard and Belfast
- 3 year survey started Jan 2011
- thousands of transients
- ~400 confirmed SNe

Bright Nuclear Transients

- aimed at finding the brightest TDEs
- trigger by 3Pi vs SDSS difference : choose
 - SDSS object=galaxy
 - distance <0.5"
 - $\Delta m > 1.5 \text{ mag}$
- 80 targets monitored on Liverpool Telescope at *u g r*
 - weekly at first then monthly
 - typically g(gal)=21-23 g(transient)=19-20
- 41 follow-up spectra, mostly WHT
 - 33 AGN
 - 6 SNe
 - 2 variable stars

colours

red objects always turn out to be SNe

some ultra-blue objects much bluer than normal quasars

most blue objects have normal quasar colours

example light curves

extreme quasar variability?

typical transient spectrum

- normal quasar variability $\Delta m \sim 0.3$
- SDSS repeats with $\Delta m=2:0/25,000$ (McLeod et al 2012)
- extrapolated from trends : predict 1/100,000 (ibid)
- rare but important extreme variability?
- accretion disc instability?

redshift anomaly

host photo- $z < z_Q$?

proposal : background AGN microlensed by star in foreground galaxy

- AGN not seen before event
- Seyfert-like rather than quasar (L \sim 10⁴³⁻⁴⁴ erg/s)

cf known microlensing

Lensed Quasars :

- differential flickering in multiple components (Irwin et al 1989)massive galaxy
- •strong macrolensing
- •significant optical depth ==> continual low level flickering

PS1 transients :

- smaller galaxy
- little macrolensing
- small optical depth
- ==> rare high amplification single star events

light curve fit

Fit parameters base level F_0 impact param. $u_{min} = \theta_{min}/\theta_E$ crossing time t_E

note $t_{1/2} \approx 2 u_{min} t_E$ and $amp \approx 1/u_{min}$

 $t_{1/2}$ reasonably measured but F_0 poorly known

==> range of possible t_E/u_{min} values

Model with F_0 1 mag below galaxy :

 $\begin{array}{l} u_{min} = 0.033, \, A = 30 \\ t_E &= 12,000 \; days = 33 \; years \\ t_{1/2} \; \approx \; 2 \; years \end{array}$

expected values

For $z_s=1 z_l=0.25 z_{ls}=0.6$ and solar mass lens : $\theta_E = 2.91 \mu as (M/M_{\odot})^{1/2}$ r_E=2326 AU u_{min}=0.033 ==>r_{min}=77 AU

For relative motion 300 km/s $t_E = r_E/v = 36.8 \text{ years} (M/M_{\odot})^{1/2} (v/300)^{-1}$ $t_{1/2} = 893 \text{ days} (M/M_{\odot})^{1/2} (v/300)^{-1} (u_{min}/0.033)$

For Milky Way like galaxy covering $f \sim 10^{-4}$ $t_{rpt} \sim 6000 \text{ years } (M/M_{\odot})^{1/2} (v/300)^{-1} (u_{min}/0.033)^{-1}$

Surface density of distant AGN $\sim 1 \operatorname{arcmin}^{-2}$ ==> 0.03% of foreground galaxies have a background AGN

10⁸ galaxies at g=22 ==> a few tens in "outburst" at any one time

resolution effects

For $M_{BH}=10^8$; accn disc ~10 R_S; BLR ~1000 R_S; z=1; u_{min}=0.033

disc=12nas lens=10nas BLR=1200nas

Disc should show slight resolution effects BLR should be significantly less amplified Spectral changes across event could measure AGN structure

- sensitive to impact parameter, lens mass, BH mass
- but in very interesting regime!

