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ABSTRACT
The role of higher order Lyman series photons in the 21 cm absorption or emission signature
of the intergalactic medium (IGM) against the background cosmic microwave background
(CMB) during the Epoch of Reionization is examined. It is shown that, taking into account
the diminishing resonance line scattering cross-section with increasing Lyman order, a non-
negligible net scattering rate of higher order Lyman photons is expected. The resulting radiative
cascades will substantially enhance the number density of Lyα photons near a radiation source.
It is also shown that the higher order Lyman series photons are able to collisionally heat the
IGM by amounts of tens to hundreds of degrees kelvin. The possibility that the Wouthuysen–
Field effect may be suppressed by the presence of dust near a galaxy is discussed, and it
is shown that the higher order Lyman series photons would still induce the effect, but with
a somewhat reduced 21 cm radiation efficiency. It is also demonstrated that extended low
surface brightness emission-line haloes will be produced from radiative cascades following
the scattering of higher order Lyman series photons. These haloes would provide a unique
means of confirming that reionization source candidates were surrounded by an IGM that was
still largely neutral on large scales.

Key words: atomic processes – line: formation – radiative transfer – scattering – cosmology:
theory – radio lines: general.

1 IN T RO D U C T I O N

The detection of the first sources of light in the Universe through
their induced intergalactic H I 21 cm signature before the Epoch
of Reionization (EoR; Hogan & Rees 1979; Scott & Rees 1990;
Madau, Meiksin & Rees 1997) may be realized in the near
to not very distant future with the advent of a new gener-
ation of metre-wavelength-scale radio telescopes, such as the
LOw Frequency Array (LOFAR),1 the Murchison Widefield Array
(MWA),2 the Primeval Structure Telescope/21 Centimeter Array
(PaST/21CMA),3 the Precision Array to Probe EoR (PAPER)4 and
a possible Square Kilometre Array (SKA).5 Reviews of this rapidly
growing area are provided by Fan, Carilli & Keating (2006) and
Furlanetto, Oh & Briggs (2006). Central to the detection is the de-
coupling of the spin temperature of the neutral hydrogen from that
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of the cosmic microwave background (CMB). Three possible de-
coupling mechanisms exist: coupling the energy levels to a nearby
bright radio source (Bahcall & Ekers 1969), establishing thermal
equilibrium with the gas through collisions by other hydrogen atoms
and electrons (Field 1958) and coupling the energy levels to Lyman
resonance line radiation through the Wouthuysen–Field (W-F) ef-
fect (Wouthuysen 1952; Field 1958), which will normally quickly
establish thermal equilibrium between the spin state and the scatter-
ing gas. At typical intergalactic densities at redshifts z < 17, where
the signal may be detected by the newly developed or planned radio
facilities, coupling through the scattering of Lyman resonance line
photons is expected to be the dominant mechanism.

Whilst the discussion of the W-F mechanism has normally been
confined to the context of hydrogen Lyα photons, the contribution of
higher order Lyman resonance line photons has received recent at-
tention (Barkana & Loeb 2005; Hirata 2006; Pritchard & Furlanetto
2006). Noting that the higher order photons will scatter only a
few times before the excited atom decays through an alternative
channel, it was concluded that direct collisions by higher order
Lyman series photons would always be negligible compared with
the Lyα collision rate of photons emitted directly by the source.
At the same time, the Lyα photons produced in radiative cas-
cades following the scattering of higher order Lyman series photons
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would provide a substantial boost to the overall scattering rate. The
amount of the boost would depend on the maximum upper principal
quantum number n (n > 3)6 of the photons that are able to reach
a given distance from the source without redshifting into the reso-
nance frequency of the next lower Lyman order.

In this paper, it is shown that the increasing mean free path
through the intergalactic medium (IGM) of higher order Lyman
resonance line photons will result in a total scattering rate of Ly-n
photons a few per cent of that of Lyα for a sufficiently large upper
principal quantum number n, much exceeding previous estimates.
The enhancement of the Lyα scattering rate by Lyα photons pro-
duced in radiative cascades is found to boost the Lyα scattering rate
by up to 30 per cent more than previous estimates. It is also shown
that since the higher order photons will not scatter sufficiently to
establish statistical equilibrium with the gas, these photons may
provide a non-negligible contribution to the heating of the IGM
through collisional heating. The heating may be sufficient to raise
the IGM temperature in the vicinity of a source above the CMB tem-
perature, resulting in an emission signature against the CMB rather
than absorption. Another consequence of the scattering of higher
order Lyman series photons is the production of secondary emission
lines, such as the Balmer and Paschen series, in radiative cascades
in the neutral hydrogen surrounding the source. The emission lines
would appear in the infrared and the emitting regions would sub-
tend large angles on the sky, arising in spatially extended regions.
Although the lines are individually weak, cross-correlations of the
measurements of the expected lines may provide a detectable signal.
The discovery of the emission-line haloes would provide a means
of confirming that high redshift reionization candidate sources were
in fact embedded in an IGM that was still largely neutral on large
scales.

In the next section, the scattering of Lyman resonance line pho-
tons by the IGM is discussed; the energy transfer between the IGM
and the higher order resonance line photons is treated in Section 3;
the W-F effect is extended to higher order Lyman resonance line
photons in Section 4; astrophysical consequences are described in
Section 5; and Section 6 contains a summary of the main conclu-
sions. The frequency redistribution function for higher order Lyman
resonance line photons that degrade on scattering is discussed in the
Appendix.

Unless stated otherwise, a flat cosmology is assumed throughout
this paper with a total mass density ratio to the Einstein–de Sitter
density of �m = 0.3, a vacuum energy contribution �v = 0.7,
a baryon density �b = 0.041 and a Hubble constant of H 0 =
70 km s−1 Mpc−1.

2 THE SCATTERING O F INTERGALACTIC
LY M A N R E S O NA N C E L I N E PH OTO N S

2.1 The source function of Lyman series photons

The optical depth through a homogeneous and isotropic expanding
IGM of a Ly-n photon (with upper state principal quantum number
n) emitted by a source at redshift zS and received at redshift z at
frequency ν > ν lu, where ν lu is the resonance line frequency, is

τν = σn

∫ zS

z

dz′ dlp

dz′ nl(z
′)ϕV

(
an, ν

1 + z′

1 + z

)
, (1)

6Lyβ photons cannot decay to Lyα, but will decay to Hα followed by two-
photon emission.

where nl(z′) is the number density of scattering atoms in the
lower level at epoch z′, σ n = (πe2/mec)f lu � 0.026 43f lu cm2 Hz
is the total resonance line cross-section, f lu is the upward oscil-
lator strength, ϕV(an, ν) is the Voigt line profile normalized to∫

dνϕV(an, ν) = 1, an is the ratio of the decay rate to the Doppler
width 
νD = ν lub/c, where b = (2kT /mH)1/2 is the Doppler pa-
rameter of the gas at temperature T and c is the speed of light, and
lp is the proper path length.7 In the Lorentz wing, expressed as a
function of the normalized frequency offset x = (ν − ν lu)/
νD,
the dimensionless Voigt profile φV(an, x) = (
νD)ϕV(an, ν) is well
approximated by φV(an, x) � an/(πx2). The differential proper
line element evolves according to dlp/dz = c/[H (z)(1 + z)] �
(c/H 0)�−1/2

m (1 + z)−5/2 in a flat universe at redshifts for which
�m(1 + z)3 dominates the contribution from the vacuum energy,
where H(z) is the Hubble parameter at redshift z. In the limit of scat-
tering in the blue wing, the optical depth along the path of a photon
emitted at frequency xe from a source at redshift zs and received at
frequency x (provided it has not passed through any resonance line
centre en route) is given at large separations by

τx � x1

(
1

x
− 1

xe

)
where x1 = σnanλlunl(z)

πH (z)
(2)

(Furlanetto & Pritchard 2006; Higgins & Meiksin 2009), where λlu

is the wavelength of the resonance transition.
In terms of the atomic constants, x1 may be expressed as

x1 = 2

π

(
πe2

mec

)2
gl

gu
f 2

lu

nl(z)

H (z)b
, (3)

where me and e are the mass and charge of the electron, respectively.
For large n transitions, f lu � (28/3e4)n−3 � 1.56n−3 so that x1

decreases rapidly with increasing order as x1 ∼ n−6. The effective
mean free path of the photon as defined through τ x = lp/lmfp, where
lp(zS, z) = ∫ zS

z
dz′dlp/dz′ is the proper distance travelled by the

photon, is given by

lmfp = π

3

(
πe2

mec

)−2
gu

gl
f −2

lu

bc

nl(z)

[(
1 − 1 + z

1 + zS

)3/2
]

x (4)

so that the resonance line photon mean free path increases like n6

for large n. For sufficiently large n, the mean free path will match
the proper distance lp for even small values of x ∼ O(1). Thus,
whilst the scattering of lower order Lyman resonance line photons
occurs in the Lorentz wing, at sufficiently high orders the scattering
will shift to the line core. The scattering of higher order photons,
however, is confined increasingly to the vicinity of the source with
increasing order. This is because, in an expanding IGM, higher order
Ly-n photons may redshift into the next lower order. The redshift
zn to which a Ly-n photon may travel from a source at redshift zS is
given by 1 + zn = (1 + zS)[1 − (n − 1)−2 ]/[1 − n−2 ].

The Lyman resonance order at which the transition to core scat-
tering occurs may be estimated as follows. The Voigt line profile
is well approximated in the core by φV(x) � π−1/2 exp(−x2). For

7 For low Lyman orders, the optical depth is complicated by the presence
of deuterium, which will produce a Gunn–Peterson trough across the Ly-n
profiles for x < 81.5 km s−1/b. For a D/H ratio of 2.8 ± 0.2 × 10−5

(O’Meara et al. 2006), the deuterium optical depths are τα � 15.2 ± 0.5,
τβ � 2.4 ± 0.1 and τγ � 0.85 ± 0.03 at z = 8. The IGM becomes optically
thin to deuterium Ly-n photons for n > 3 at z = 8 (n > 5 at z = 20). Since
the results discussed in this paper rely predominantly on higher orders, as
the direct collisional rates of these lower order Ly-n photons (above Lyα)
are already strongly suppressed, the effect of deuterium is not included.
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Figure 1. Upper panels: the optical depth of photons emitted by a source at
redshift zS = 8 and received at redshift z = 7.99 at the frequency ν near the
resonance line frequency ν0 for Lyα through Lyη (top to bottom, alternating
solid and dashed curves). The frequency is expressed as x = (ν − ν0)/
νD,
appropriate to each order. The left-hand panel shows the optical depth for
an IGM temperature of T = 10 K and the right-hand panel for T = 100 K.
Lower panels: the values x1 of x at which τ ν = 1 for 0.001 < zS − z <

zS − zn for a source at redshift zS = 8, where zn is the limiting redshift at
which the frequency of an emitted Ly-n photon redshifts into the next lower
Lyman resonance frequency. The lines correspond, from top to bottom, to
Lyα (solid line) through Lyη (dashed lines for higher Lyman orders). The
left-hand panel shows the values of x1 for an IGM temperature of T =
10 K and the right-hand panel for T = 100 K. (Not included is the effect of
deuterium; see text.)

hydrogen gas in the temperature range 10 < T < 1000 K, the tran-
sition frequency xm at which the core and wing approximations
match lies in the range 2.6 < xm < 3.3 for Lyman series photons
with n < 8. A second-order perturbation about xm = 2.8 gives the
convenient approximation xm � 2.8(1 + ε), with ε � [0.5987 −
0.1131(5.208 + log a)]1/2 − 0.7738 (accurate to better than 0.1
per cent for 0.001 < an < 0.05). It follows from equation (3) that
Lyman resonance line photons with n � 6, depending on the IGM
temperature, will survive until redshifted into the resonance line
core. In Fig. 1, the intergalactic optical depths through an IGM at
temperatures T = 10 and 100 K are shown for resonance line pho-
tons with n = 2–8 emitted by a source at zS = 8, along with the
corresponding values of x1 as a function of redshift difference from
the source. It is apparent that photons with n ≥ 5 or 6 will first
scatter in the resonance line core.

The source function describing the injection of Lyman series
photons following the initial scattering of continuum photons by
the IGM is given by

S inj
n (ν) = nlcσn

∫ ∞

0
dν ′ Rn(ν ′, ν)ninc,n

ν′

� nlσn

Lνn

4πr2
Lhνn

∫ ∞

0
dν ′ Rn(ν ′, ν) exp(−τν′ ) (5)

(Higgins & Meiksin 2009), where ninc,n
ν is the specific number den-

sity of incident continuum photons near the resonance line fre-
quency νn and Rn(ν ′, ν) is the frequency redistribution function

for the scattered photons. The incident photon number density near
Ly-n is given by ninc,n

ν = (4π/c)Lν exp(−τ ν)/[(4πrL)2hν] for a
source of specific luminosity Lν and at a luminosity distance from
the source rL. It is clear that the source functions of Ly-n photons
depend on the order, particularly as a much smaller fraction of high
order photons are scattered out of the line of sight from the source
than low order. As a consequence, the scattering rate of higher or-
der Lyman photons exceeds the rate of lower order Lyman photons
(above Lyα) for a nearly flat spectrum source.

The case of Lyα photons is special since these photons cannot
degrade. Instead, because the IGM is optically thick to Lyα photons
the photons become trapped in the IGM until they redshift through
the Lyα resonance as a consequence of cosmological expansion. A
balance is then achieved between the injection rate and the escape
rate of the photons from the IGM. The number of scatters Nscat

before the photons escape is given by the inverse of the Sobolev
expansion parameter γ , which is the inverse of the Lyα optical depth
in the expanding IGM, Nscat = γ −1 = τα = λασαnl(z)/H (z) (Field
1959a; Gunn & Peterson 1965; Madau et al. 1997).8 The rate of
photon scatters per hydrogen atom, given by integrating equation (5)
over frequency, is then n−1

l

∫
dνS inj

α (ν) = ninc,α
ν (0)cσα(aα/π)x−1

1 ,
approximating the Voigt profile by (aα/π)x−2. Multiplying by the
number of scatters Nscat gives for the scattering rate per hydrogen
atom P direct

α = ninc,α
ν (0)cσ α since (aα/π)(τα/x1) = 1. Thus, the

scattering rate is simply given by the scattering rate of the incident
photons assuming no scattering losses en route (Field 1959a; Madau
et al. 1997; Higgins & Meiksin 2009).

By contrast, Lyman resonance line photons above Lyα that first
scatter in the wings will produce a negligible scattering rate be-
cause they will quickly degrade into a lower energy photon before
they can redshift or diffuse into the resonance line core. A typical
photon will not survive more than about five scatters (Pritchard
& Furlanetto 2006). As will now be shown, higher order Lyman
series photons that first scatter in the resonance line core will pro-
duce a non-negligible scattering rate, contrary to previous estimates
which assumed a constant source function for all the Lyman reso-
nance line photons (Barkana & Loeb 2005; Hirata 2006; Pritchard
& Furlanetto 2006), leading to a scattering rate estimate of the order
of O(5 × 10−6) times smaller than the Lyα rate.

2.2 The direct scattering rate

The scattering rate per atom will depend on the total number den-
sity of resonance line photons built up in the region in which
the incident radiation field generates them. For a mean scatter-
ing time of t scat,n(ν) = 1/nlcσ nφV(an, ν) and a photon survival
probability psurv,n, describing the fraction of Ly-n photons that
produce a subsequent Ly-n photon upon scattering, the contribu-
tion of direct Ly-n scatterings from the source to the photon num-
ber density, including the subsequent rescatterings of the photons,

8 The equivalence Nscat = γ −1 also follows from the IGM scattering prob-
lem of Higgins & Meiksin (2009), who obtain an equilibrium photon num-
ber density nν = ṡ/(nlcσαγ ) in the red wing produced by the redshift-
ing of photons following their injection by a Dirac δ-function source of
strength ṡ at a frequency νinj, describing the trapping and rescattering of
photons in the blue wing by the IGM. In equilibrium, the photons in the
red wing must redshift away at the rate

∫
dν nν/(Nscattscat) = ṡ, giving

Nscat = γ −1.
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is given by

ndirect,n
ν = ninc,n

ν

+ nlcσnpsurv,ntscat,n(ν)

×
∫ ∞

0
dν ′ Rn(ν ′, ν)ninc,n

ν′

+ · · ·
+ (nlcσnpsurv,n)m+1tscat,n(ν)

×
∫ ∞

0
dνm Rn(νm, ν)tscat,n(νm) · · ·

×
∫ ∞

0
dν1 Rn(ν1, ν2)tscat,n(ν1)

×
∫ ∞

0
dν ′ Rn(ν ′, ν1)ninc,n

ν′

+ · · · . (6)

The survival probabilities psurv,n follow from the spontaneous tran-
sition rates A(n, l;n′, l′) according to

psurv,n = A−1
n,1A(n, 1; 1, 0), (7)

where An,l =�n−1
j=1 �

j−1
k=0 A(n, l;j , k) denotes the total decay rate from

level (n, l) to all lower levels. Values for n = 2–31 are provided in
Table 1.

Table 1. Probabilities pn,n′ for a Ly-n photon to convert into a Ly-n′ photon
per scatter. The final column gives the survival probability psurv,n = pn,n

for a Ly-n photon to survive a scattering event as a Ly-n photon.

n pn,n′ = 2 pn,n′ = 3 pn,n′ = 4 pn,n′ = 5 psurv,n

2 1.000 000 0.000 000 0.000 000 0.000 000 1.000 000
3 0.000 000 0.881 665 0.000 000 0.000 000 0.881 665
4 0.041 993 0.000 000 0.839 041 0.000 000 0.839 041
5 0.056 103 0.007 435 0.000 000 0.817 749 0.817 749
6 0.062 869 0.011 134 0.002 231 0.000 000 0.805 282
7 0.066 774 0.013 232 0.003 553 0.000 885 0.797 245
8 0.069 291 0.014 555 0.004 380 0.001 464 0.791 712
9 0.071 035 0.015 452 0.004 935 0.001 850 0.787 718
10 0.072 306 0.016 094 0.005 327 0.002 120 0.784 728
11 0.073 269 0.016 573 0.005 617 0.002 318 0.782 423
12 0.074 020 0.016 941 0.005 838 0.002 468 0.780 605
13 0.074 619 0.017 231 0.006 011 0.002 584 0.779 142
14 0.075 107 0.017 465 0.006 149 0.002 677 0.777 946
15 0.075 510 0.017 657 0.006 261 0.002 751 0.776 953
16 0.075 847 0.017 816 0.006 354 0.002 813 0.776 120
17 0.076 133 0.017 950 0.006 432 0.002 865 0.775 414
18 0.076 378 0.018 064 0.006 499 0.002 908 0.774 808
19 0.076 590 0.018 162 0.006 555 0.002 945 0.774 285
20 0.076 774 0.018 247 0.006 604 0.002 977 0.773 830
21 0.076 936 0.018 321 0.006 646 0.003 005 0.773 432
22 0.077 078 0.018 386 0.006 684 0.003 029 0.773 080
23 0.077 205 0.018 443 0.006 716 0.003 050 0.772 769
24 0.077 317 0.018 494 0.006 746 0.003 069 0.772 491
25 0.077 419 0.018 540 0.006 771 0.003 086 0.772 243
26 0.077 510 0.018 581 0.006 795 0.003 101 0.772 020
27 0.077 592 0.018 617 0.006 816 0.003 115 0.771 818
28 0.077 666 0.018 651 0.006 834 0.003 127 0.771 635
29 0.077 734 0.018 681 0.006 852 0.003 138 0.771 469
30 0.077 796 0.018 709 0.006 867 0.003 148 0.771 318
31 0.077 853 0.018 734 0.006 881 0.003 157 0.771 179

The direct Ly-n scattering rate is given by integrating ndirect,n
ν over

the Ly-n cross-section. Noting that
∫

dνRn(ν ′, ν) = ϕV(an, ν
′), the

integrals in equation (6) contract, resulting in the direct scattering
rate

P direct
n =

∫ ∞

0
dν ndirect,n

ν cσnϕV(an, ν)

= P inc
n /(1 − psurv,n),

= P inc
n (0)Sn/(1 − psurv,n), (8)

where P inc
n (0) = ninc,n

ν (0)cσn = σnLνn
/(4πr2

Lhνn) is the scattering
rate for an optically thin IGM, and

Sn =
∫ ∞

0
dν ′ ϕV(an, ν

′) exp(−τν′ ) (9)

describes the scattering suppression factor due to the scattering out
of source photons by the intervening IGM out to the distance rL

(Dijkstra et al. 2008; Higgins & Meiksin 2009). Values of Sn are
tabulated in Table 2 for some typical situations.

Although the expression in equation (8) follows from a seem-
ingly straightforward account of photon scatters, the expression for
ndirect,n

ν in equation (6) reveals that an implicit non-trivial assump-
tion has been made: it has been assumed that the photons rescattered
from frequency ν j to ν j+1 have sufficient time to do so before their
frequencies are Doppler shifted relative to the expanding (or con-
tracting) gas. Since the photons are initially scattered bluewards
of the line centre, redshifting will generally carry the photons to
frequencies with larger scattering optical depths. If the redshifting
time-scale (characterized by the inverse of the divergence of the
velocity field) is shorter than the scattering time at the frequency
ν j, the redshifting time-scale should be used in equation (6). For
cosmological expansion, redshifting is negligible over a scattering
time for |x| � (anc/πγ b)1/2. In the case of a contracting region,
blueshifting may carry the photons to regions of a longer mean
free path, and hence longer scattering time. If the scattering time
exceeds the contraction time-scale, then scattering may not occur at
all before the photons are blueshifted away, and so the contraction
time-scale should be used. These factors are further complicated
by the redistribution of the photon frequencies by the scattering,
which tends to drive photons towards the line centre for scatters
not too far out in the wing and to concentrate the photon frequen-
cies at the incoming frequency for scatters well into the wings
(e.g. Mihalas 1978). In the event where the scattering time is shorter
than the characteristic expansion or contraction time-scale, equa-
tion (6) may be used, from which equation (8) follows.

2.3 The radiative cascade contribution to the scattering rate

Incident resonance line Ly-n photons that do not rescatter as Ly-n
photons will produce lower order Lyman series photons through the
ensuing radiative cascades, adding to the direct scattering rate above.
The cascade rates may be estimated similarly to the above, except
that the redistribution function must now describe the conversion
of a Ly-n photon to Ly-n′ (n′ < n). The Lyman photon conversion
probabilities per scatter pn,n′ may be computed from the probability
for an atom in state (n, l) to produce a Ly-n′ photon through radiative
cascades:

pcasc(n, l; n′) = A−1
n,l

n−1∑
j=n′

j−1∑
k=0

A(n, l; j, k)pcasc(j, k; n′). (10)
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Table 2. The ratio Nνn /N inc
νn

(0) of Ly-n photon occupation number to the occupation number
from the incident radiation field assuming an optically thin IGM, divided by the IGM suppression
factor Sn, followed by the value of the suppression factor, for a source at redshift zS = 8 and a
T = 10 K IGM, at (proper) distances from the source of 20 kpc (Columns 2 and 3) and 100 kpc
(Columns 5 and 6). For Lyα, only Nα/N inc

α (0) is shown. Also provided are the corresponding
light temperatures 〈Tn〉H due to the direct radiation field ndirect,n

ν (Columns 4 and 7).

n Nνn

N inc
νn (0)Sn

100Sn 〈Tn〉H
Nνn

N inc
νn (0)Sn

100Sn 〈Tn〉H

2 8.883 60 – – 5.111 69 – –
3 17.4419 0.0022 −6.1130 14.7196 0.0015 −7.6446
4 9.778 99 0.0042 −0.6605 8.023 93 0.0037 −0.6873
5 7.149 41 0.0075 −0.0737 6.208 37 0.0071 −0.0739
6 5.890 17 0.0137 −0.0483 5.428 72 0.0135 −0.0483
7 5.324 58 0.0225 −0.0440 5.069 54 0.0224 −0.0440
8 5.023 26 0.0342 −0.0436 4.870 66 0.0342 −0.0436
9 4.844 20 0.0494 −0.0442 4.747 56 0.0494 −0.0442

10 4.729 10 0.0684 −0.0451 4.665 22 0.0683 −0.0451
11 4.650 52 0.0916 −0.0462 4.606 91 0.0916 −0.0462
12 4.594 30 0.1195 −0.0473 4.563 79 0.1195 −0.0473
13 4.552 52 0.1525 −0.0483 4.530 78 0.1526 −0.0483
14 4.520 51 0.1910 −0.0494 4.504 81 0.1911 −0.0494
15 4.495 36 0.2356 −0.0505 4.483 94 0.2356 −0.0505
16 4.475 16 0.2864 −0.0516 4.466 84 0.2866 −0.0516
17 4.458 66 0.3441 −0.0526 4.452 63 0.3443 −0.0526
18 4.444 95 0.4091 −0.0537 4.440 66 0.4092 −0.0537
19 4.433 43 0.4817 −0.0548
20 4.423 63 0.5624 −0.0558
21 4.415 21 0.6516 −0.0569
22 4.407 91 0.7497 −0.0579
23 4.401 53 0.8572 −0.0590
24 4.395 92 0.9745 −0.0601
25 4.390 95 1.1020 −0.0612
26 4.386 52 1.2402 −0.0623
27 4.382 56 1.3894 −0.0634
28 4.379 00 1.5501 −0.0645
29 4.375 79 1.7227 −0.0657
30 4.372 88 1.9077 −0.0668
31 4.370 24 2.1055 −0.0680

The values for pcasc(j , k; n′) may be computed iteratively from low
j to high, initiated by pcasc(n′, 1; n′) = psurv,n′ and pcasc(n′, k; n′) =
0 for k �= 1. The Lyman photon conversion probabilities are then
given by pn,n′ = pcasc(n, 1; n′). Values for n = 2–31 and n′ ≤ 5 are
provided in Table 1.

The photon density ndirect,n
ν serves to source lower order photons

through scatterings in which the original Ly-n photons are converted
into lower energy photons. Since every order will produce further
lower order Lyman photons through scatterings, a production cas-
cade of Lyman photons results. The rates may be computed by
starting with the highest order Lyman resonance line photons, nmax,
reaching a given distance from the central source. The production
rate of the next lower order Lyman photons allowed is

Snmax,nmax−2(ν) = nlσnmaxpnmax,nmax−2

×
∫ ∞

0
dν ′Rnmax,nmax−2(ν ′, ν)ndirect,nmax

ν′ , (11)

where Rn′,n(ν ′, ν) is the redistribution function describing the scat-
tering of a Ly-n′ photon at frequency ν ′ to a Ly-n photon at frequency
ν. The redistribution function is discussed in the Appendix. The re-
sulting density of cascade-produced nmax − 2 photons, including

their rescatterings, is then given by

ncascade,nmax−2
ν = nlcσnmaxpnmax,nmax−2tscat,nmax−2(ν)

×
⎡
⎣∫ ∞

0
dν ′ Rnmax,nmax−2(ν ′, ν)ndirect,nmax

ν′

+ nlcσnmax−2psurv,nmax−2

×
∫ ∞

0
dν1 Rnmax−2(ν1, ν)tscat,nmax−2(ν1)

×
∫ ∞

0
dν ′ Rnmax,nmax−2(ν ′, ν1)ndirect,nmax

ν′

+ · · ·
+ (nlcσnmax−2psurv,nmax−2)m

×
∫ ∞

0
dνm Rnmax−2(νm, ν)tscat,nmax−2(νm) · · ·

×
∫ ∞

0
dν1 Rnmax−2(ν1, ν2)tscat,nmax−2(ν1)

×
∫ ∞

0
dν ′ Rnmax,nmax−2(ν ′, ν1)ndirect,nmax

ν′

+ · · ·
⎤
⎦.

(12)
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As in the case for ndirect,n
ν in equation (6), it has been implicitly

assumed that the photons are not much redshifted (or blueshifted)
relative to the scattering medium if it is expanding (or contracting)
before being rescattered. If not, then integrating ncascade,nmax−2

ν over
the scattering cross-section contracts equation (12) into

P direct−cascade
nmax,nmax−2 = pnmax,nmax−2

1 − psurv,nmax−2
P direct

nmax
. (13)

A similar expression results for the scattering of any directly gen-
erated Ly-n′ photon into a Ly-n photon,

P direct−cascade
n′,n = pn′,n

1 − psurv,n

P direct
n′ . (14)

Each cascade-generated Ly-n photon in turn may give rise to a
lower order Lyman series photon upon scattering. Considerations
similar to the above result in the net cascade-generated collision
rate

P cascade
n = 1

1 − psurv,n

nmax∑
n′=n+1

pn′,nPn′ , (15)

where the total scattering rate of Ly-n′ photons is Pn′ = P direct
n′ +

P cascade
n′ . The cascade scattering rates may be solved for iteratively

starting from higher order to low with Pnmax = P direct
nmax

= P inc
nmax

/(1 −
psurv,nmax ). For Lyα photons (n = 2), the same expression may be
used except that 1/(1 − psurv,n) must be replaced by N scat = τα

to account for the accumulation of Lyα photons as they grow in
density once trapped in the IGM, ultimately redshifting away. It is
the set of total rates Pn that drives collisional photon heating and
the W-F effect extended to higher Lyman orders.

2.4 Photon occupation numbers

It will be convenient below to express the scattering rates in
terms of the mean photon occupation number of the resonance
line photons averaged over the resonance line scattering profile
Nνn

= (c/8π)λ2
n

∫ ∞
0 dν nνφV(an, ν), where nν is the specific pho-

ton number density including the enhancements due to cascades
from any higher order Lyman series photon scatterings and rescat-
terings. The scattering rate per atom in the lower state is then
Pn = (gu/gl)AulNνn

, where gu and gl are the statistical weights
of the upper and lower states, respectively, and Aul is the spon-
taneous decay rate for the transition. In terms of the occupation
numbers, equations (8) and (15) may be used to express the contri-
butions from direct scatters and subsequent cascades, respectively,
to the photon occupation numbers (for n > 2) as

N direct
νn

= N inc
νn

(0)Sn/(1 − psurv,n) (16)

and

N cascade
νn

= 1

1 − psurv,n

nmax∑
n′=n+1

A(n′, 1; 1, 0)

A(n, 1; 1, 0)
pn′,nNνn′ , (17)

where Nνn′ = N direct
νn′ + N cascade

νn′ is the total occupation number of
Ly-n′ photons. For Lyα photons,

N cascade
α = Nscat

nmax∑
n=4

A(n, 1; 1, 0)

A(2, 1; 1, 0)
pn,2Nνn

. (18)

The mean photon occupation number for the Ly-n transition will
also sometimes be indicated by Nlu where greater specification of
the energy levels involved is required. In particular, for Lyα pho-
tons in statistical equilibrium with the gas, Nsi = Nti exp(−Tst/TL),
where Nsi and Nti describe the Lyα photon occupation numbers
corresponding to the hyperfine n = 2 states i and the hyperfine

ground singlet and triplet states, respectively. For higher levels
(n > 2), Nsi = Nti may be assumed.

The spontaneous decay rates A(n, l;n′, l′) are computed following
Condon & Shortley (1970). Excellent agreement is found with the
rates published in Wiese, Smith & Glennon (1966). The survival
probabilities of Ly-n photons computed agree precisely with those
tabulated by Pritchard & Furlanetto (2006), and the Lyα production
probabilities pn,2 agree precisely with those tabulated by Hirata
(2006) and Pritchard & Furlanetto (2006), who cite the fraction
of degraded Ly-n photons that produce Lyα photons, expressed in
terms of the values given here by pn,2/(1 − psurv,2).

Representative photon occupation numbers including rescatter-
ings and cascades are shown in Table 2. The values are normalized
by the occupation number of incident Ly-n photons assuming an
optically thin IGM. A source with constant Lλ is assumed, as this
approximates a starburst spectrum at wavelengths just longwards
of the Lyman edge (Leitherer et al. 1999). Whilst rescatterings in-
crease the numbers of higher order Ly-n photons by the factor 1/(1 −
psurv,n) above the incident number, cascades add little more. The ex-
ception is for Lyα photons, for which cascades substantially boost
the photon density because the Lyα photons become trapped in the
IGM, leaving only as they redshift through the resonance line fre-
quency. Approximately one-third more Lyα photons are obtained
compared with previous findings (Barkana & Loeb 2005; Hirata
2006; Pritchard & Furlanetto 2006; Chuzhoy & Zheng 2007). In-
stead of equation (18), these earlier estimates used the equivalent of
N cascade

α =∑nmax
n=4 pn,2(νn/να)2N inc

νn
(0)/(1 − psurv,n), where N inc

νn
(0)

is the occupation number of the incident Ly-n photons in an optically
thin IGM. For a source at zS = 8 in a T = 10 K IGM, equation (18)
gives 29 per cent more cascade-produced Lyα photons at a proper
separation of 1 Mpc from the source, 32 per cent more at 100 kpc
and 33 per cent more at 20 kpc.

It is emphasized that radiative transfer effects for Lyα photons
involving spatial diffusion, which may enhance the density of Lyα

photons near a source (Loeb & Rybicki 1999; Chuzhoy & Zheng
2007; Semelin, Combes & Baek 2007), or recoils, which may sup-
press the density near line centre and so reduce the scattering rate
(Chen & Miralda-Escudé 2004; Higgins & Meiksin 2009) have not
been included. It is presumed that the Lyα photons produced in
cascades will be subject to the same radiative transfer processes as
the directly incident photons so that the enhancements here reflect
the fractional increase due to cascades alone. This is not obviously
correct, particularly as the injected photons may arrive within the
line core, as opposed to the wings as assumed in most previous
studies. The actual degree of enhancement will depend on the rela-
tive effects of spatial diffusion, recoil, the local rate of expansion or
contraction of the scattering medium and escape from substructures
within the IGM.

3 C OLLI SI ONA L H EATI NG BY LYMAN
R E S O NA N C E L I N E P H OTO N S

When Lyα photons are first incident on cold neutral hydrogen gas,
they provide a source of heat resulting from the momentum trans-
ferred to the atoms by the scattering photons (Madau et al. 1997).
This ‘recoil heating’ persists for only a short period before the ra-
diation field reaches statistical equilibrium with the gas through
multiple scatters and establishes thermal equilibrium with the gas
(Field 1959b; Madau et al. 1997; Meiksin 2006). Thereafter at most
a residual amount of energy transfer remains in a cosmological
setting, reduced by the factor γ as photons redshift through the
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resonance line frequency (Chen & Miralda-Escudé 2004). For typ-
ical IGM conditions at high redshifts, the time to achieve thermal
equilibrium is about 1–10 yr, corresponding to several tens to hun-
dreds of scatters (Meiksin 2006); Lyα photon collisional heating
subsequently becomes an inefficient heating mechanism.

By contrast, because higher order Lyman resonance line photons
do not survive long enough to establish thermal equilibrium with
the scattering medium before degrading into lower energy photons,
they may provide a significant source of heating provided their
scattering rate is sufficiently high. The analysis for Ly-n photons
that rescatter as Ly-n photons is identical to that for Lyα photons. In
addition to order-preserving scatterings (Ly-n to Ly-n), scatterings
in which the incident Lyman photon degrades into lower energy
photons (e.g. Lyγ into Paα, Hα and Lyα) also provide a source of
recoil heating. In this case only the photon produced in the scattering
event provides a recoil to the atom, not the subsequent decays, as
may be demonstrated as follows.

The 4-momentum of an incoming atom of rest mass ma and
quantum state energy εi is pai = [γ i(ma + εi/c

2) vi, γ i(mac +
εi/c)]. The 4-momentum of the incoming photon which it scatters
is pγ i = (hν ′/c)(n̂′

, 1). After the scattering event, the 4-momenta
of the atom and photon are, respectively, paf = [γ f (ma + εf /c

2) vf ,
γ f (mac + εf /c)] and pγf = (hν/c)(n̂, 1), for a final atomic quantum
state of energy εf . Here, γ i,f = (1 − v2

i,f /c
2)−1/2. To lowest order

in v/c, and neglecting εi and εf relative to the rest mass energy of
the atom, the resulting frequency shift between the outgoing and
incoming photons becomes

(ν − ν ′)
(

1 − vi

c
· n̂
)

� ν ′ vi

c
· (n̂ − n̂′) − hνν ′

mac2
(1 − n̂ · n̂′) − εf − εi

h
. (19)

The terms reflect, in order, the Doppler shift due to the motion
of the atom, the recoil, which depends on the ratio hνν ′/ma c2

and corresponds on average to energy transfer from the radia-
tion field to the atom, and the change in the energy state of the
atom.

The frequency of an outgoing photon following the spontaneous
decay of the atom after a scattering event may be expressed as the
limit of an incoming photon with ν ′ = 0. The frequency of the
outgoing photon is then

ν = εi − εf

h(1 − vi · n̂/c)
, (20)

which expresses the energy difference of the atom and the Doppler
shift due to its motion, without any recoil term. As a consequence,
whilst recoil due to the scattering of a photon which degrades upon
scattering must be accounted for, no recoils result from any subse-
quent decays of the atom in the non-relativistic limit.

It is shown in the Appendix that the contribution from scatterings
in which the incoming photon is degraded is identical in form to that
of a surviving photon; it is only the absorption-line profile and the
incident and scattered photon energies that enter into the average
amount of energy exchanged with the gas. (Any subsequent Ly-n
photons produced following scattering events in which the original
photon is degraded, of course, will also contribute to the recoil
heating term if scattered, at a rate depending on the corresponding
absorption-line profile.)

The resulting total heating rate per unit volume due to the scat-
tering of Ly-n photons is

Gn = Pnnl
hνn

mac2

n−1∑
n′=1

A(n, 1; n′, 0) + A(n, 1; n′, 2)

An,1

×hνnn′

⎛
⎝1 − T

〈Tnn′ 〉H

⎞
⎠, (21)

for an IGM of temperature T and a harmonic mean light temperature
of

〈Tnn′ 〉H = νnn′

νn

∫ ∞
0 dν nνϕV(an, ν)∫ ∞

0 dν 1
Tn(ν) nνϕV(an, ν)

, (22)

where

Tn(ν) = −h

k

⎛
⎝ d log nν

dν

⎞
⎠

−1

(23)

(cf. Meiksin 2006). Here νnn′ = νL(1/n′2 − 1/n2) (and νn = νn1),
where νL is the frequency of the Lyman edge. An,1 is the total decay
rate of the p state with principal quantum number n. (Note that A(n,
1; n′, 2) is undefined for n′ < 3 and should be regarded as zero.)

The frequency distribution of the photons is determined by both
the incident radiation field and the photons produced through rescat-
terings and cascades. It is convenient to consider the contributions
from these secondary photons separately.

Computing the light temperature for the secondary photons re-
quires integrations over the redistribution functions. An estimate
may be made most simply for Ly-n photons rescattered into Ly-n.
For scatters in the blue wing, the frequency redistribution may
be approximated by coherent scattering for which Rn(ν ′, ν) �
ϕV(an, ν)δD(ν − ν ′), where δD is the Dirac δ-function. Equation (6)
then contracts to ndirect,n

ν � ninc,n
ν /(1 − psurv,n) = ninc,n

ν (0)Sn/(1 −
psurv,n). For a negligible contribution from the core, the light tem-
perature is then given by

〈T wing
n 〉H � −hνL

2k

(
1 − 1

n2

)
b

c
x1

× 1 − exp(−x1/xm)

1 − (1 + x1/xm) exp(−x1/xm)

� −0.0338

(
1 − 1

n2

)
T 1/2x1 K, (24)

where x1  xm has been assumed in the last line. The light temper-
ature is independent of the gas temperature for wing scatters since
x1 ∼ T −1/2. The skewness of the photon number density towards
the blue results in a negative light temperature, corresponding to a
net transfer of heat to the gas resulting from the Doppler shifting
of the photons by the gas. This is in addition to the recoil heating
term and will contribute a comparable amount. Because of the small
value of the suppression factor Sn, however, the scattering rate will
be small, and the heating rate as well.

A larger source of heating will arise from Ly-n photons that
first scatter in the core, x1 � xm. In this case, the redistribution
function may be approximated in the limit of complete redistribu-
tion, Rn(ν ′, ν) � ϕV(an, ν ′)ϕV(an, ν). Equation (6) then contracts
to ndirect,n

ν � ninc,n
ν + ninc,n

ν (0)Snpsurv,n/(1 − psurv,n) for a nearly flat
source spectrum ninc,n

ν (0) over the line profile. The light temperature
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Figure 2. Lyman photon collisional heating rate per neutral hydrogen atom
for a source at zS = 8 and IGM temperatures T = 100 K (solid line) and
T = 10 K (dashed line), as a function of proper distance from the source.
The heating rate is normalized at all distances to a Lyα scattering rate equal
to the thermalization rate P th � 6.8 × 10−12 [(1 + z)/9] s−1 required to
bring the spin temperature to the kinetic temperature of the IGM through the
W-F mechanism. Also shown (dotted line) is the total Lyα scattering rate
P α/P inc

α (0), normalized by the scattering rate of the incident Lyα photons
with the contribution from cascades from higher Lyman orders excluded.

is then

〈T core
n 〉H � h

k

Sn

1 − psurv,n

[∫
dν exp(−τν)

dϕV(an, ν)

dν

]−1

� 0.0677

(
1 − 1

n2

)
T 1/2 Sn

1 − psurv,n

×
[∫

dx exp(−τx)
dφV(an, x)

dx

]−1

K. (25)

Since dϕV/dν < 0 bluewards of the line centre, 〈T core
n 〉H < 0, and

the radiation field again results in a heating term in addition to the
recoil term. The term can be large and even dominate the recoil
heating term. Typical temperatures are provided in Table 2. The
light temperature scales like T 1/2.

The contribution to the heating from photons produced in cas-
cades depends entirely on integrations over the frequency redis-
tribution functions for the photon products following the scat-
tering of a Ly-n photon which is degraded into lower energy
photons (see the Appendix). For example, in the limit of com-
plete redistribution, Rn′n(ν ′, ν) = ϕV(an′ , ν ′)ϕV(an, ν), the contri-
bution of direct Ly-n′ scatters to the number density of Ly-n pho-
tons produced through cascades takes the form ndirect−cascade,n

ν �∑nmax
n′=n+2 ninc,n′

ν (0)(σn′/σn)Sn′pn′,n/(1−psurv,n). Considerations sim-
ilar to the above show that the light temperature will be very large
in magnitude for a source spectrum ninc,n′

ν (0) nearly flat across the
Ly-n′ line profile so that these photons heat the gas primarily through
recoils.

The net heating rate G
Ly
Heat per neutral hydrogen atom by higher

order Lyman photons is shown in Fig. 2 as a function of the dis-
tance from a source at zS = 8 in an IGM with temperatures of T =
10 K and T = 100 K. The steps correspond to the increasing num-
ber of Lyman series transitions that contribute to the overall rate
through radiative cascades as the source is approached. Almost all
the heating results from direct Ly-n photon scatterings; the contri-
bution from cascades is about three orders of magnitude smaller.
The heating rates are normalized by the local Lyα photon thermal-
ization scattering rate P th � 6.8 × 10−12[(1 + z)/9] s−1 (Madau
et al. 1997), required to match the scattering rate of CMB photons

and so couple the spin temperature to the kinetic temperature of the
neutral hydrogen through the W-F mechanism. (As such, geometric
dilution is not included in the figure: if P α = P th at a particular ra-
dius, the heating rate at smaller radii would be larger in proportion
to 1/r2.) When the Lyα intensity is sufficiently strong to initiate the
W-F effect, the collisional heating by the scattering of higher order
Ly-n photons provides a substantial boost to the temperature of the
IGM near a source. An increase in temperature results in a reduction
in the Ly-n IGM optical depths (see Fig. 1) and a resulting increase
in the heating rate. For comparison, also shown in Fig. 2 (dotted
line) is the radial trend of the enhanced total Lyα scattering rate P α ,
including the effect of cascades from higher orders, normalized by
the incident rate P inc

α (0) assuming no scattering losses. The addi-
tional contribution due to cascades above the incident Lyα photon
rate is found to scale nearly like r−3/7, although the dependence
is somewhat sensitive to the incident source spectrum. It is very
insensitive to the IGM temperature.

A fully accurate treatment of the heating rate by higher order
Lyman series photons requires solving the radiative transfer equa-
tion for both the directly incident photons, with their rescatters, and
the photons produced through subsequent radiative cascades. It is
expected, however, that the heating rates will be reduced by at most
a few per cent, as the photons establish only partial thermal equilib-
rium with the gas after only a few to several scatters (Meiksin 2006),
by which time they will degrade to lower energy photons. Even if
the full contribution of photons produced in radiative cascades is
excluded, the rate due to the incident higher order Ly-n photons is
still substantial.

4 THE WO UTHUYSEN– FI ELD EFFECT
F O R TH E LY M A N SE R I E S

In this section, the W-F effect is extended to the scattering of
higher order Lyman resonance line photons. Computing the scat-
tering rates at the hyperfine level introduces several complicating
factors over equations (6) and (12). First, the redistribution func-
tions defined at the hyperfine level should be used. These are not
straightforward, as the ground level is no longer sharp (in particular,
the decay from the triplet to singlet states gives rise to the 21 cm
line). Secondly, a photon emitted at one hyperfine resonance may
redshift into a redder hyperfine resonance before rescattering, as
(
νhfs/νn)c ∼ O(0.1 km s−1), requiring a travel distance of only
0.1 kpc at z = 8. Thirdly, for a similar reason the absorption profiles
will greatly overlap when the thermal motions of the atoms are in-
cluded. Fourthly, the survival probabilities of individual hyperfine
resonance line photons must be used. Finally, scatters in the wings
complicate the averaging over the Voigt profiles since the natural
line broadenings of individual hyperfine transitions differ from the
total linewidths for a Ly-n transition. This latter effect moreover
results in a light temperature in the context of the W-F effect that
differs from the light temperature of equation (22) in the context
of photon collisional heating, unlike the case for scattering rates
dominated by core scatters (Meiksin 2006).

To make an estimate of the magnitude of the role higher order
Ly-n photons play in the W-F mechanism, these effects will be
neglected. In particular, it will be assumed that the photons enter
the core so that the Voigt profile shapes for the hyperfine transitions
are the same as for their parent Ly-n transitions. Since the scattering
rates of photons that scatter far in the wings are negligible, this
should be a reasonably good approximation to the overall effect.
Accordingly, the photon occupation numbers for a given hyperfine
transition become the same as for the parent Ly-n transition. The
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hyperfine scattering rate per atom in the lower state is then Pn =
(gu/gl)AulNνn

, where gu and gl are the statistical weights of the
upper and lower hyperfine structure states, respectively, and Aul is
the spontaneous decay rate for the hyperfine transition.

Because the level populations above the ground state are assumed
to be excited exclusively by the scattering of Lyman resonance line
photons, in equilibrium the ratio of the occupation number of the
excited states to the ground state levels will all be of the order of
the photon occupation numbers of the incident Lyman photons or
less, depending on the branching ratios from the upper state. The
22S state is an exception. Since radiative decays from the 22S state
to the ground state are forbidden by the selection rules for dipole
transitions, this state will fill up until other processes become ef-
fective. The dominant mechanism for vacating the state is through
two-photon decays. For this state, the occupation number will be
larger than the other excited states by a factor on the order of the ratio
of the dipole decay rate to the two-photon decay rate, still resulting
in occupation numbers much smaller than the ground state levels
because of the smallness of the photon occupation number. Accord-
ingly, resonance line scatterings from states above the ground state
may be neglected, as these will result in corrections to the state pop-
ulations quadratic in the photon occupation numbers of the incident
radiation field. Denoting the singlet and triplet state occupations by
ns and nt, respectively, and all the hyperfine levels above the ground
state by ni with i = 1 to i = N indicating the levels that may be
reached by scattering Lyman resonance line photons up to order n,
the radiative cascade equations become

dns

dt
=

N∑
i=1

niAis − ns

N∑
i=1

giNsiAis + P R
ts nt − P R

st ns,

dnt

dt
=

N∑
i=1

niAit − nt

N∑
i=1

gi

3
NtiAit + P R

st ns − P R
ts nt (26)

and

dni

dt
= giAisNsins + 1

3
giAitNtint +

N∑
j=i+1

njAji

− ni

(
Ais + Ait +

i−1∑
j=1

Aij

)
, (27)

where Nsi and Nti denote the photon occupation number between
state i and the singlet and triplet ground states, respectively, Aij

denotes the electric dipole Einstein A spontaneous decay rate from
hyperfine level i to hyperfine level j and gi = 2Fi + 1 denotes
the degeneracy of hyperfine level i, where Fi = Ji + I for total
angular momentum Ji = Li + S, nuclear spin I = ±1/2, angular
momentum Li = li, where li is the orbital angular momentum of state
i, and electron spin S = ±1/2. The transition rates are computed
similarly to the above transitions, but applying the Russell–Saunders
multiplet formalism twice to allow for J and I coupling to F. The
resulting rates were checked by verifying that applying the sum
rules recovers the fine-structure and full spontaneous decay rates.

It is convenient to label the states by increasing n and then by
increasing L followed by increasing J and F. Since only sponta-
neous decays from levels n to levels n′ with n′ < n are considered,
this labelling ensures that the transitions from states with higher
labels to lower will always correspond to transitions from higher
energy states to lower. (It is noted that the labelling scheme does
not always correspond to increasing energy levels. For example,
the n2S+1LF

J = 22S1
1/2 energy level is higher than both the hyperfine

levels of 22 P1/2; Breit & Teller 1940.) Since fine and hyperfine

transitions between states with the same principal quantum number
are neglected, there is no need to reorder the labelling by energy
within these quantum structure levels. If transitions up to n = nmax

are allowed, then the total number of hyperfine states above the n =
1 states is N = 2(n2

max − 1). Labelling the 22S0
1/2 state by i = 1 and

the 22S1
1/2 state by i = 2, the rates A1s and A2t are taken to corre-

spond to two-photon emission at the rate A2γ = 8.23 s−1 (Spitzer
& Greenstein 1951). The corresponding two-photon absorption
terms from the ground state singlet and triplet states to the pair of
22S1/2 hyperfine states are therefore highly negligible and excluded.
Equations (26) also include radiative excitation and de-excitation
between the singlet and triplet hyperfine states, given by the respec-
tive rates P R

st and P R
ts, to allow for an incident continuum radiation

field due to the CMB or nearby radio sources. Similar collisional
terms may be added if required.

The excited levels n > 1 will rapidly achieve statistical equilib-
rium on a time-scale of the order of A−1

ij ∼ O(10−8 s) (except for
the 22 S 1/2 states, for which the time-scale is on the order of 0.1 s).
The states may thus be assumed to have reached a steady state so
that equation (27) reduces to a matrix equation. It is convenient to
renormalize the level occupations by ñi = ni/[nsN inc

L (0)], where
N inc

L (0) is the incident photon occupation number just longwards of
the Lyman edge, and to define the ratio r = nt/ns between the triplet
and singlet ground state levels. Denoting the rescaled occupation
levels by the vector ñ, the matrix equation for the excited levels
becomes

M · ñ = y, (28)

where M is an upper triangular matrix with diagonal elements Mii =
Ais + Ait +

∑i−1
j=1 Aij ,Mij = −Aji, y is an absorption vector with

elements y1 = y2 = 0 (indicating no two-photon absorption to states
i = 1 and i = 2) and yi = giAisvsi + (gi/3)Aitrvti for i > 2. Here
the notation vsi = Nsi/N inc

α (0) and vti = Nti/N inc
α (0) has been

introduced.
Following Field (1958), the value for r may be determined by

casting equation (26) in the form

dns

dt
= P

Ly
ts nt − P

Ly
st ns + P R

ts nt − P R
st ns,

dnt

dt
= P

Ly
st ns − P

Ly
ts nt + P R

st ns − P R
ts nt, (29)

where P
Ly
st and P

Ly
ts are the effective excitation and de-excitation

rates, respectively, of the triplet state by the scattering of Lyman
resonance line photons. Defining Tst as the effective temperature
corresponding to the 21 cm transition, given by hc/(kλ21cm) = T st �
0.068 K, and the 21 cm spontaneous transition rate Ats = 2.85 ×
10−15 s−1 (Wild 1952), in equilibrium, r = 3 exp (− T st/T S), where
TS is the spin temperature, is given by r = (P Ly

st + P R
st)/(P Ly

ts + P R
ts),

where P R
st = 3Ats(T R/T st) and P R

ts = Ats(1 + T R/T st). Here TR is
the brightness temperature of the incident continuum radiation field
at the 21cm transition frequency. In statistical equilibrium without
an incident continuum (T R = 0), r = 3 exp (− T st/T L) = P

Ly
st /P

Ly
ts ,

where TL is defined as the light temperature, and is identical (to
order kT st/hνα) to the harmonic mean temperature equation (22)
of the radiation field when the scattering rate is dominated by core
scatters (Meiksin 2006). It relaxes to the kinetic temperature of the
gas after a few dozen to a few hundred scatters across the resonance
line centre (Field 1959b; Meiksin 2006). Using the definition of TL

above, the spin temperature may be generally expressed as

TS = Tst

⎡
⎣Tst

TL
+ log

Tst (1 + TR/Tst) /TL + yLy

TR exp(Tst/TL)/TL + yLy

⎤
⎦

−1

, (30)
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where yLy = T stP
Ly
ts /(T LAts). (The expression must be modified if

electron or atomic collisions are important, here assumed negligi-
ble.)

When the light temperature of the Lyα photons has relaxed to the
kinetic temperature of the gas, the problem is entirely determined
once the triplet de-excitation rate P

Ly
ts is specified. For pure Lyα

scattering, P Ly
ts = (4/27)P α , where Pα = 3NαAα (Field 1958). The

higher order generalization is given by

P
Ly
ts =

∑
nlJF

(
2F + 1

3

)
Nt,(n,l,J ,F )

×A

(
n, l, J , F ; 1, 0,

1

2
, 1

)
ps(n, l, J , F ), (31)

where Nt,(n,l,J ,F ) is the occupation number of photons with frequen-
cies at the hyperfine structure resonance between the ground triplet
state and the state (n, l, J , F ), and ps(n, l, J , F ) is the probability
that an electron in the hyperfine state (n, l, J , F ) produces a decay
to the ground singlet state:

ps(n, l, J , F ) = A−1
nlJF

∑
n′<n,l′,J ′,F ′

A(n, l, J , F ; n′, l′, J ′, F ′)

×ps(n
′, l′, J ′, F ′). (32)

Here, AnlJF = ∑
n′<n,l′,J ′,F ′ A(n, l, J , F ; n′, l′, J ′, F ′)(= An,l by

the sum rules) is the total decay rate of state (n, l, J , F ). The
probabilities ps may be solved for iteratively from equation (32),
initiated by ps(2, 0, 1

2 , 0) = 1, ps(2, 0, 1
2 , 1) = 0, ps(2, 1, 1

2 , 0) =
0, ps(2, 1, 1

2 , 1) = 1/3, ps(2, 1, 3
2 , 1) = 2/3 and ps(2, 1, 3

2 , 2) = 0.
The solution to the equations shows the singlet–triplet excitation

and triplet–singlet de-excitation rates are boosted only by the in-
crease in the Lyα collision rate P α due to the Lyα photons produced
in cascades following the scattering of higher order Ly-n photons
(Fig. 2). The ratio P

Ly
ts = (4/27)P α is found to be accurate to a

small fraction of 1 per cent even close to a source (down to a proper
separation smaller than 20 kpc for a source at zS = 8).

5 A STRO PHYSICAL CONSEQUENCES

The redshift zr of the reionization of the IGM is constrained primar-
ily by measurements of intergalactic Lyα absorption in the spectra of
high redshift quasi-stellar objects (QSOs) and by polarization mea-
surements of the CMB. The spectra of high redshift QSOs constrain
zr > 5.7, above which the Lyα optical becomes immeasurably large
(Fan et al. 2006). The five-year Wilkinson Microwave Anisotropy
Probe polarization data yield zr = 11.0 ± 1.4 assuming sudden
reionization, with 2σ and 3σ lower limits of zr > 8.2 and zr > 6.7,
respectively (Dunkley et al. 2009). Radio telescope efforts to detect
the EoR through its 21 cm signature are focused on appropriate red-
shift ranges accordingly: 6.1 < z < 10.8 (LOFAR), z < 17 (MWA),
6.1 < z < 27 (PaST/21CMA) and 6.1 < z < 13 (PAPER). Since the
impact of higher order Lyman photons on the IGM is sensitive to
redshift, the astrophysical consequences are illustrated for a range
of redshifts.

5.1 Photon collisional heating

The impact Lyman photon collisional heating may have on the tem-
perature of the IGM is illustrated in Fig. 3 using a starburst galaxy.
A galaxy continuously forming low metallicity (Z = 0.05 Z�) stars
at the rate 10 M� yr−1 with masses between 1 < M < 100 M� and
a Salpeter initial mass function (IMF) will have a steady luminosity
at λ = 915 Å of Lν = 3.8 × 1028 erg s−1 Hz−1 after about 107 yr

5 10 15 20 25
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50

100

150

200

T = 10K

T = 100K

Figure 3. Lyman photon collisional heating rate at a distance of 100 kpc
from a 10 M� yr−1 starburst, for source redshifts in the range 6 < zS < 26.
Shown for IGM temperatures of T = 100 K (solid line) and T = 10 K (dashed
line). Also shown (dotted line) is the corresponding total Lyα collision rate
P α/P inc

α (0), normalized by the collision rate of the incident photons.

(Leitherer et al. 1999). This corresponds to a photon occupation
number at the Lyman edge of Nν � 4.8 × 10−23r−2

Mpc, where the
(proper) distance is normalized to 1 Mpc.

The heating rate is found to decline with increasing source red-
shift as the IGM becomes increasingly optically thick to Lyman
photon scattering, reducing the effective Lyman photon collision
rates. A second reduction factor with redshift is the decrease in the
number of Lyman orders that may contribute at a fixed proper dis-
tance before a photon redshifts into the resonance frequency of the
next lower order. Each step in Fig. 3 corresponds to a decrease by
one order. For comparison, also shown in Fig. 3 (dotted line) is the
redshift trend of the enhanced total Lyα scattering rate P α/P

inc
α (0),

including the contribution from cascades following the scattering of
higher order Lyman photons. The rate is normalized by the incident
rate excluding the cascade contribution.

In addition to the heating by the scattering of higher order Lyman
series photons, the contribution from the scattering of Lyα photons
must be included. Adapting the formalism of Furlanetto & Pritchard
(2006), the Lyα heating rate may be cast in the form

Gc,i
α � γPαnl

hνα

mac2
hναĨc,i, (33)

where Ĩc and Ĩi correspond to integrals over the radiation
field produced either by a continuum source or by photons
injected at the resonance line centre, respectively, normalized
by the radiation field at x � −1. The integrals may be ex-
pressed as Ĩc � (1/2π)(16π/3)1/3�2(1/3)(a/γ )1/3(1 − β̃ +
β̃2 + · · ·) � 3820T −1/3(10−6/γ )2/3(1 − β̃ + β̃2 + · · ·) and
Ĩi � (a/γ )1/3ε−1

rec �
∞
i=0Ãi β̃

i � 1420T 1/3(10−6/γ )1/3�∞
i=0Ãi β̃

i ,
where β̃ = (2π)2/3(2/31/6)[1/�2(1/3)]εrec(a/γ )1/3 �
0.7250T −2/3(10−6/γ )1/3 with the recoil parameter εrec =
(c/b)hνα/(mac

2), and the first few coefficients Ãi are Ã0 �
−0.5514, Ã1 � 2.0088 and Ã2 � −2.0263. Comparison with
equation (21) shows that the radiative transfer and cosmological
expansion effects reduce the heating rate by Lyα photons by a
factor of the order of |γ Ĩc,i(Pα/Pn)(−〈Tn〉H/T )| � 1 compared
with heating by Ly-n photons. Since the radiative transfer of Lyα

photons builds up the photon number density in a homogeneous
expanding medium until the scattering rate matches the rate for an
optically thin IGM, P α/Pn � S−1

n . From Table 2, 3 � −〈Tn〉H/

Sn � 100. It follows that heating by source continuum-produced
Lyα photons is on the order of a factor of 10–100 times smaller
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than produced by Lyman continuum photons in regions where n >

8 Ly-n photons are able to reach, and so is normally only a small
correction.

As an example, for an IGM with temperature T = 100 K at z =
10, γ Ic � 8.9 × 10−4. At a distance of 100 kpc from a 10 M� yr−1

starburst, the heating rate per particle contributed by the scattering
of continuum photons is then Gc

α/nl � 0.32 K Gyr−1. The heating by
cascade-produced Lyα photons may be estimated from Ii assuming
that the photons are created with frequencies at the resonance line
centre. In this case, the scattering of Lyα photons tends to cool
the gas due to the redward asymmetry produced in the radiation
field by the expansion of the Universe. Taking P casc

α � 3.6P inc
α (0)

from Fig. 2, with γ Ĩi � −0.0040, gives Gi
α/nl � −6.3 K Gyr−1.

The total contribution then results in a net cooling contribution
from Lyα photon scattering of (Gc

α + Gi
α)/nl � −6.0 K Gyr−1. In

absolute magnitude, this is a factor of 12 times smaller than the
heating rate due to the scattering of Ly-n photons shown in Fig. 3.

Because the optical depth of the IGM diminishes with increasing
temperature, the total photon collisional heating rate dominated by
higher order Lyman photon scattering strengthens with increasing
temperature, varying as G

Ly
Heat ∝ T 1/2. This gives rise to a weak

thermal instability that grows quadratically with time. Photon colli-
sional heating may thus produce a substantial increase in the temper-
ature of the IGM surrounding a source and transform an absorption
signature against the background CMB into an emission signature
(Madau et al. 1997).

5.2 W-F effect in the absence of Lyα photons

It was found that the radiative cascades following the scattering of
Ly-n photons will enhance the number density of Lyα photons by as
much as an order of magnitude near a source. Near a galactic source,
however, dust may be present. It is unclear that Lyα photons will
be able to survive sufficiently long to build up the photon density
required to initiate the W-F effect before being absorbed by dust
grains. Observational searches for dust surrounding galaxies sug-
gest that dust may be present at least as far out as 100 kpc around low
redshift galaxies (Zaritsky 1994; Ménard et al. 2009). If comparable
amounts of dust were introduced into the surroundings of galaxies
at the time of the EoR following bursts of star formation, then the
long total path Lyα photons must travel to migrate from the blue fre-
quencies at which they become trapped in the gas at large distances
into the Doppler core, where they become effective scatterers, may
exceed the mean free path for dust scattering. The measurement
of Ménard et al. (2009) of AV � 3.2 × 10−3 (rp/100 kpc)−0.84 at a
projected separation of rp suggests a mean free path for colliding
with dust grains of about 2 × 105(r/100 kpc)1.74 kpc at a distance
r from the centre of the galaxy, assuming Aλ � 1.086N dQeσ d for
a column density of Nd dust grains with cross-sections σ d and an
extinction efficiency factor of Qe � 2 in the visual (Spitzer 1978).
For Lyα photons with a mean free path on the order of the distance
to which they are able to survive before becoming trapped within
the blue wing of an atom, the distance travelled by the photons (of
the order of N scat � 1000 in the wings times the Lyα mean free
path), before diffusing into the resonance line core approaches the
mean free path for scattering off a dust grain, which may cause
some suppression of the W-F effect. The density of dust around
starbursts, however, is likely to be considerably larger than in a
normal galaxy, by as much as two orders of magnitude, and may
extend to quite large radii (Heckman et al. 2000). In this case, the
diffuse Lyα photon radiation field required to drive the W-F effect
may become substantially suppressed. Only the photons that have

scattered too few times to have migrated far into the core would
contribute.

The loss of the Lyα photons, however, does not mean that the
W-F effect will be extinguished. Although far fewer in number, the
higher order Lyman series photons will still induce a W-F effect.
Because the higher order photons will not achieve thermal equi-
librium with the gas, the spin temperature will no longer reflect
the kinetic temperature of the gas but rather the net exchange rate
between the ground state singlet and triplet levels resulting from
collisions by the higher order Lyman photons.

The evolution of the triplet–singlet de-excitation rate at a (proper)
distance of 100 kpc from a 100 M� yr−1 starburst (as above) is
shown in Fig. 4 (upper panel) for an IGM temperature of T = 10 K.
(The results are found to be very insensitive to temperature.) The
de-excitation rate is only a fraction of the rate for a total Lyman
photon scattering rate matching the thermalization rate Pth, but
is non-negligible. The light temperature TL is found to be high,
varying only moderately with redshift, from T L = 170 K at z = 6 to
T L = 200 K at z = 26. The spin temperature established, however,
must include the scattering of CMB photons. Shown in the lower
panel is the resulting 21 cm radiation efficiency factor η = 1 −
T CMB/T S, which controls the strength of the 21 cm signal through
δT � η T S(1 − e−τ )/(1 + z), where δT is the change in the antenna
temperature compared with the CMB temperature in a medium
with 21 cm optical depth τ (Madau et al. 1997). Typical efficiency
factors of only 1 per cent or smaller result so that a detection would
be difficult with the upcoming telescopes. The efficiency, however,
rises at smaller radii, as shown in Fig. 5 for the galaxy at zS = 8. It
is noted the time-scale for the Lyman resonance photons to affect
the spin temperature will be on the order of (P Ly

ts )−1 � 1 Myr, so
that bursts of shorter duration may not have much effect. A brighter
source, however, would increase the signal proportionally. Also,
scatters by the residual Lyα photons still outside the resonance line
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Figure 4. Upper panel: the de-excitation rate of the ground triplet state,
normalized by the rate corresponding to the thermalization scattering rate
Pth, induced by higher order Lyman series photons in the absence of Lyα

photons. The rate is shown at a distance of 100 kpc from a 100 M� yr−1

starburst, for source redshifts in the range 6 < zS < 26. An IGM temperature
T = 10 K is assumed. Lower panel: The corresponding 21 cm radiation
efficiency η.
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Figure 5. Upper panel: the de-excitation rate of the ground triplet state,
normalized by the rate corresponding to the thermalization scattering rate
Pth, induced by higher order Lyman series photons in the absence of Lyα

photons. The rate is shown for a 100 M� yr−1 starburst at zS = 8. An IGM
temperature T = 10 K is assumed. Lower panel: the corresponding 21 cm
radiation efficiency η.

core, not included in the discussion here, will contribute as well,
further enhancing the signal.

Although the emphasis in this paper is on the effect of higher
order Lyman photons around a single source, a diffuse radiation
field will result in regions that are sufficiently near multiple sources
that higher order photons from the sources are able to penetrate
(before scattering through a lower order Lyman resonance). In this
case, the collective incident radiation field from the sources is given
by

Jν = 1

4π

∫ ∞

z

dz′ dlp

dz′
(1 + z)3

(1 + z′)3
〈εν′ (z′) exp[−τν(z, z′)]〉 (34)

(Meiksin 2009), for a source emissivity εν′ , where ν ′ = ν(1 + z′)/
(1 + z), and τ ν(z, z′) is the total optical depth due to all the Lyman
resonances (and any other contributing terms) encountered by the
photons from gas between the redshifts z and z′. The spatial average
indicated is over the sources and the IGM optical depth jointly, as
these are likely correlated since sources form in overdense regions.

5.3 Cascade radiation emission lines

A consequence of the scattering of Lyman series photons is the
generation of a host of intermediate emission lines produced in
the cascades following the scattering. The emissivities for these
transitions may be computed from the state occupancies given by
the solution to equation (28).

The scaled Balmer and Paschen photon number emissivities,
ε̃n2 = ñnAn2 and ε̃n3 = ñnAn3, summed over the hyperfine struc-
ture lines for a given upper principal quantum number n, are shown
in Table 3 for a source at zS = 8 at (proper) distances of 20 kpc,
100 kpc and 1 Mpc from the source, for an IGM at temperature
T = 10 K. (The emissivities are very insensitive to temperature.
The values change by no more than a few per cent for T = 100 K.)

The bolometric emissivities in physical units are then given by
εij = (nH/4)hνijN inc

L (0)ε̃ij , where the factor of 4 takes into account
the fact that only one-fourth of the ground state hydrogen atoms are
in the hyperfine singlet state and noting that ñi is normalized by the
singlet ground state occupation density (see Section 4). The emis-
sivities ε̃ij for a source at zS = 20 are about a factor of 5 smaller.
The emissivities are found to diminish slowly with distance from
the source. The lower order Balmer sequence emissivities scale to
better than 8 per cent accuracy as r−1/3 for Hα, r−1/4 for Hβ and
r−1/5 for Hγ . These scalings apply to the Paschen series Paα, Paβ
and Paγ as well. The halo of any given emission line vanishes
beyond the horizon of the lowest order Ly-n required to generate it.

The bolometric intensity a projected distance b from a source at
redshift zS for a bolometric emissivity varying as εij = ε∗

ij(r/r∗)−α−2

is

iij � 1

2π
ε∗
ij r

α+2
∗ (1 + zS)−4

∫ ∞

0
dl (b2 + l2)−(α+2)/2 (35)

= 1

2π1/2α

�( 1+α

2 )

�(α/2)
ε∗
ij r∗
( r∗

b

)1+α

(1 + zS)−4, (36)

where the redshift factor has been introduced to convert the bolo-
metric intensity to the value measured at z = 0. The corresponding
specific intensity is

iν = 1

4π

c

H (z)

ε∗
ij

νij

1

(1 + zS)3

⎡
⎣( b

r∗

)2

+
(


v

H (z)r∗

)2
⎤
⎦

−(α+2)/2

,

(37)

where 
v is the velocity difference from the line centre. A homoge-
neous and isotropic medium around the source has been assumed.
More realistic line profiles would need to include the structure of
the underlying density and velocity fields.

The profiles may be illustrated by the cascade line radia-
tion produced by a 100 M� yr−1 starburst at zS = 8 in a T =
10 K IGM. The bolometric intensities for Hα, Hβ and Hγ

are then iHα � 1.1 × 10−20θ−4/3 erg cm−2 s−1 arcsec−2, iHβ �
4.3 × 10−21θ−5/4 erg cm−2 s−1 arcsec−2 and iHγ � 2.6 × 10−21

θ−6/5 erg cm−2 s−1 arcsec−2, at an observed angular separation from
the source θ measured in arcsec. The profiles are shown in the
upper panel of Fig. 6. In the lower panel, the specific intensity at
θ = 10 arcsec, iν � 2.5 × 10−32 erg cm−2 s−1 Hz−1 arcsec−2 [1 +
(
v/47 km s−1)2]−7/6 is shown.

In addition to the higher order transitions, Lyα haloes will also be
produced. These were first considered by Loeb & Rybicki (1999)
in the context of scattered Lyα photons emitted by a central source
in a homogeneous and isotropic expanding neutral IGM, including
diffusion in both space and frequency. Allowing for the scattering
of redshifted photons originally emitted in the continuum between
the rest-frame Lyα and Lyβ frequencies, the source continuum will
produce a more extended halo. The results here suggest, however,
that the dominant contribution near the source will arise from Lyα

photons produced in radiative cascades following the scattering of
higher order Lyman series photons. Since in equilibrium, the rate
at which Lyα photons redshift far enough into the red wing to es-
cape the IGM and reach the observer must balance their production
rate, the ratio of the bolometric luminosity of the Lyα emission to
Balmer and higher order lines should be on the order of the ratio
of the photon production probabilities following the scattering of
the higher order Lyman series photons. It is then expected that the
bolometric luminosity of the Lyα halo will be comparable to, and
possibly somewhat exceed, the bolometric luminosity of the other
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Table 3. Scaled emission-line photon number emissivities ε̃nn′ = ñnAnn′ (in units of s−1), for a
source at redshift zS = 8 and a T = 10 K IGM, at (proper) distances of 20 kpc (Columns 2 and 3),
100 kpc (Columns 4 and 5) and 1 Mpc (Columns 6 and 7) from the source. The results are shown
in pairs of Balmer and Paschen lines with upper principal quantum number n.

n ε̃n2 ε̃n3 ε̃n2 ε̃n3 ε̃n2 ε̃n3

3 360 953 – 203 484 – 91 735.4 –
4 112 580 56 787.4 70 098.6 33 785.3 39 451.5 16 654.2
5 58 433.7 27 836.5 39 844.4 17 841.3 26 111.4 10 273.5
6 41 193.9 18 287.5 30 835.2 12 820.4 23 025.4 8617.90
7 32 874.8 13 850.3 26 252.1 10 412.6 21 148.9 7724.69
8 28 240.0 11 450.3 23 617.6 9085.13 19 960.5 7197.96
9 25 390.9 10 009.5 21 964.1 8278.14

10 23 509.6 9077.03 20 854.9 7750.76
11 22 200.0 8439.03 20 072.8 7387.03
12 21 252.7 7984.15 19 501.7 7126.15
13 20 542.8 7647.83 19 068.8 6931.77
14 19 996.7 7392.26 18 731.9 6782.75
15 19 568.0 7193.75 18 464.0 6665.82
16 19 225.1 7036.52 18 246.1 6571.86
17 18 946.5 6909.93 18 065.2 6494.71
18 18 717.1 6806.52 17 912.9 6430.56
19 18 525.8 6720.97
20 18 364.2 6649.25
21 18 227.6 6588.95
22 18 109.9 6537.39
23 18 008.3 6493.12
24 17 919.5 6454.62
25 17 841.7 6421.08
26 17 772.5 6391.43
27 17 710.7 6365.05
28 17 655.4 6341.53
29 17 604.7 6320.09
30 17 558.5 6300.60
31 17 515.8 6282.66

lines. The detailed specific emission spectrum, however, will de-
pend on the spatial and frequency diffusion of the Lyα photons, the
computation of which is beyond the scope of this paper.

Although the intensities of the emission-line haloes are small, the
integrated fluxes are appreciable. At zS = 8, Lyβ photons are able
to travel as far as 56 Mpc from the source before redshifting into
the Lyα resonance. This corresponds to an angular distance of 3.◦4.
The total integrated flux is f tot

Hα � 5.5 × 10−17 erg cm−2 s−1. Whilst
isolating the flux from such an extended halo is likely unfeasible,
even within the inner arcminute the total flux is f Hα(1 arcmin) �
1.6 × 10−18 erg cm−2 s−1. Similarly, the fluxes for Hβ and Hγ are
f Hβ (1 arcmin) � 8.2 × 10−19 erg cm−2 s−1 and f Hγ (1 arcmin) �
5.8 × 10−19 erg cm−2 s−1, respectively. An observing strategy in-
volving narrow-band near-infrared imaging over a wide area would
be required to detect the haloes. The existence of multiple emission
lines has the advantage that it would be possible to correlate the
signals in frequency space with continuum emission from contam-
inating sources subtracted. For example, defining δf Hβ = f Hβ +
f cont − 〈f cont〉, and similarly for Hγ , the correlation of the Hβ and
Hγ signals is 〈δf Hβδf Hγ 〉 = 〈f Hβ f Hγ 〉 + [〈f 2

cont〉 − 〈f cont〉2] so
that the signals only need to be detectable above the noise of the
continuum across the frequency band of the detector. The emis-
sion lines will also give rise to a diffuse sky brightness. At a few
such bright sources per square degree, a minimum near-infrared
bolometric sky brightness of ∼0.1 mJy sr−1 may be expected; the
value would be much larger if a much higher density of sources
was required to reionize the IGM. Although the detection of in-

dividual hyperfine emission lines is unlikely in the near future, it
is noted that the state occupancies at the hyperfine structure level
are found to scale nearly in proportion to their statistical weights
2F + 1.

It was assumed in Section 4 that the optical depths of all levels
above the ground n = 1 levels were negligible so that absorp-
tions from them could be ignored. This assumption is now justi-
fied. As discussed in Section 4, the ratio of the occupancies to the
ground state occupancy will be on the order of the photon occupa-
tion numbers, and typically much smaller. Only the 22 S1/2 states
have large values because of the smallness of the two-photon decay
rate.

The optical depth for transitions between hyperfine states i and j
is (for absorption from i to j)

τij = λijσij ni(z)H (z)−1

� 1549
gj

gi

(
λ3

ijAji

λ3
αAα

)
ñiN inc

L (0)(1 + z)3/2, (38)

where λ3
ijAji has been normalized by the value for Lyα. Even for

the 22S 1/2 hyperfine states (n1 and n2 in the notation of this paper),
the optical depths will be tiny. Balancing n1A2γ ∼ N inc

α (0)Aαns

gives an upper limit ñ1 ∼ O(Aα/A2γ � 8 × 107); in practice, the
value is more than two orders of magnitude smaller because of the
suppression factors Sn and reduced cross-sections for n > 2. Since
generally ñi < ñ1, using this generous upper limit for ñ1 shows that
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Figure 6. Cascade radiation emission-line profiles around a 100 M� yr−1

starburst galaxy at zS = 8 in an IGM with temperature T = 10 K. Upper
panel: bolometric Hα, Hβ and Hγ intensities are shown, corresponding to
the respective observed wavelengths of 5.9, 4.4 and 3.9 μm. The integrated
fluxes within 1 arcmin of the source are f Hα = 1.6 × 10−18 erg cm−2 s−1,
f Hβ = 8.2 × 10−19 erg cm−2 s−1 and f Hγ = 5.8 × 10−19 erg cm−2 s−1.
Lower panel: Hα-specific intensity at θ = 10 arcsec.

τ ij < 1 provided

gj

gi

(
λ3

ijAij

λ3
αAα

)
< 8.48 × 10−12

[
N inc

α (0)
]−1

(1 + z)−3/2, (39)

an equality that is readily met for any relevant transition and realistic
radiation field. As an illustration, for a source at zS = 8 in a T =
10 K IGM, at a distance of 100 kpc from the source the largest
n �= n′ hyperfine transition optical depth is found for absorption
from (n, l, J , F ) = (2, 0, 1

2 , 1) → (3, 1, 3
2 , 2) with τ � 1.3 ×

1010N inc
α (0) � 5 × 10−11 for N inc

α (0) � 3.5 × 10−21 corresponding
to the thermalization Lyα scattering rate Pth at z = 8.

6 C O N C L U S I O N S

Higher order Lyman series photons from sources at high redshift
may have a substantial influence on the 21 cm signature from the
IGM in the vicinity of the source before the IGM is reionized.
Taking into account the diminishing cross-section for scattering
with increasing order, it is found that Ly-n resonance line photons
with n ≥ 5 or 6 will first scatter in the resonance line core, where
they scatter efficiently. The consequences for the subsequent rate of
collisional heating, the intensity of the W-F effect and the formation
of extended diffuse haloes of emission lines produced in radiative
cascades are summarized.

Whilst Lyα photons readily establish thermal equilibrium with
the IGM, higher order resonance line photons degrade into lower
order photons before they are able to do so. Because of the much
smaller fraction of higher order Ly-n photons scattered out of a line
of sight compared with Lyα, they are able to produce a substantial

amount of collisional heating. The heating arises primarily from
the blue distortion of the photon density distribution, as only pho-
tons bluewards of the resonance line frequency are able to survive
to large distances without being scattered out of the line of sight.
Typical light temperatures for Ly-n photons, where n is the princi-
pal quantum number of the upper state, of 〈Tn〉H ≈ −0.015T 1/2 K
are obtained, where T is the temperature of the IGM. Resulting
collisional heating rates of several tens to hundreds of kelvin per
Gyr are obtained. The heating rate scales as T 1/2, inducing a weak
thermal instability in the IGM, with the IGM temperature increas-
ing quadratically with time. One consequence would be that warm
regions are heated more rapidly than cooler regions, which would
contribute to the patchiness of a 21 cm absorption signature against
the CMB where the spin temperature is still less than the tempera-
ture of the CMB.

Radiative cascades following the scattering of higher order Ly-
man photons will add substantially to the number density of Lyα

photons near a source, enhancing their number by an order of mag-
nitude. The number of Lyα photons produced in cascades is found
to be as much as 30 per cent higher than previous estimates, with
the difference depending on the source spectrum.

Measurements of the dust content in nearby starburst galaxies
suggest that the W-F effect induced by Lyα photons may be partially
suppressed due to the absorption of Lyα photons by dust grains,
and possibly even completely eliminated, in the vicinity of starburst
galaxies at high redshift during the EoR if comparable amounts
of dust were present. It is demonstrated that higher order Lyman
series photons will induce a non-negligible W-F effect even in the
complete absence of Lyα photons. The 21 cm radiation efficiency
at distances exceeding 100 kpc from the galaxy would then be 1
per cent or smaller except for extremely strong bursts, although
the signal is stronger closer to the galaxy. The signal would still
likely be too weak to be discovered around an individual galaxy
by first generation 21 cm detection experiments, although it may
be detectable by an SKA. Future radio detections and upper limits
may provide a means of exploiting the suppression to constrain
the dust production rates and transport efficiency in high redshift
galaxies.

Cascade radiation following the scattering of higher order Lyman
photons will produce emission-line haloes extending over several
arcminutes around a source, limited only by the distance to which
Lyman photons may travel before redshifting into the resonance
frequency of the next lower order. It is shown that the integrated
lower order Balmer fluxes within 1 arcmin surrounding starburst
galaxies would be substantial. The bolometric luminosity of the Lyα

halo produced by radiative cascades is expected to be comparable
or larger, although the profile shape will differ due to radiative
transfer effects within the halo. The detection of the emission-line
haloes would provide a unique means of confirming that candidate
reionization sources are in fact surrounded by an IGM that is still
largely neutral.

The effects discussed here are in the context of a homogeneous
and expanding universe. Accounting for cosmological structures
will modify the results in several ways (Higgins & Meiksin 2009).
The local density and velocity fields will affect the mean free paths
of the Lyman photons, as will heat input from other possible sources
such as active galactic nuclei or QSOs. Of particular interest are
H II regions surrounding photoionization sources. The horizons of
high order Lyman photons could then be substantially extended
as the ionized gas would become optically thin at their resonance
frequencies. The collisional heating, W-F effect and the production
of emission-line haloes would then extend into the neutral gas just
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beyond the ionization front. Even with these complications, it is
expected that the salient features of the effects discussed here will
still be present.
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APPENDIX A : R EDISTRIBUTION FUNCTION
F O R D E G R A D E D LY M A N R E S O NA N C E L I N E
P H OTO N S

The redistribution function for an incoming Ly-n′ and an outgo-
ing photon other than Ly-n′ differs from the normal redistribution
function for scattering photons in which the outgoing photon is the
same as the ingoing photon (Ly-n′ → Ly-n′). The principal differ-

ence arises from the re-emission function following absorption. In
the case of a preserved Ly-n′ photon, the outgoing frequency is the
same as the ingoing in the rest frame of the atom. In the case of
a degraded photon, the outgoing frequency distribution is given by
the appropriate Lorentz profile (Weisskopf 1933).

As an example, a scattering event is considered in which a Ly-n′

photon is degraded into a final Ly-n photon, with two intermediate
transitions (the minimum required to produce a final Lyman photon).
The final photon need not be a Ly-n photon; the example only serves
to illustrate the computations involved.

Accordingly, four levels are considered in the atom, labelled 0–3,
corresponding, respectively, to the ground state (n = 1), the lowest
energy excited state, a higher intermediate state and the n′ energy
level. The formalism and notation of Weisskopf (1933) are followed.
The absorption profile for an incoming photon of frequency ξ ′ in
the frame of the atom is

f (ξ ′) = 1

π

δ3

(ξ ′ − ν3)2 + δ2
3

, (A1)

where the line-centre absorption frequency is ν3 and the total decay
width of the upper level is δ3. The decay from state 3 to state 2
involves recoil. Because the upper state was excited from a definite
energy level (the ground state), the upper energy level is definite.
As a consequence, only the uncertainty in the energy level of state
2 will determine the width of the emission profile. Since the atom
will decay to the centre of energy level 2 on average, the frequency
of the emitted photons will peak at ξ = [hξ ′ − (ε2 − ε0)]/h = ξ ′ −
ν2, where ν2 = (ε2 − ε0)/h. The probability density for emitting a
photon of frequency ξ in the rest frame of the atom is then given by

p3,2(ξ ′, ξ ) = 1

π

γ2

(ξ − ξ ′ + ν2)2 + γ 2
2

, (A2)

where γ 2 is the decay width of state 2. The redistribution function
in the rest frame of the atom is given by f (ξ ′)p3,2(ξ ′, ξ ). Note that
if the incoming photon is absorbed bluewards (redwards) of the line
centre, the emitted photon frequency ξ will also be shifted bluewards
(redwards) of the line-centre frequency ν23 = (ε3 − ε2)/h.

For an atom moving at velocity v in the laboratory frame, the
redistribution function in terms of the incoming and outgoing photon
frequencies ν ′ and ν in the laboratory frame becomes, allowing for
the Doppler shifting of the frequencies to first order in v/c,

Rv(ν ′, n̂′; ν, n̂) = δ3γ2

π2

1[
ν ′ − ν3

(
1 + v · n̂′/c

)]2 + δ2
3

× 1(
ν − ν ′ + ν3v · n̂′/c − ν23v · n̂/c + 
νrecoil + ν2

)2 + γ 2
2

,

(A3)

where the recoil term 
νrecoil = (hν3ν23/mac
2)(1 − n̂ · n̂′) has been

included.
It is convenient to define the dimensionless frequencies

x = ν − ν23


νD
, x ′ = ν ′ − ν3


νD
, with 
νD = ν3

b

c
, (A4)

where the frequencies are normalized by the same Doppler width.
The dimensionless decay widths a3 = γ 3/
νD and a2 = γ 2/(ν23

b/c) are also introduced along with the recoil parameter ε = hν23/

mabc and the dimensionless velocity u = v/b. It is also
convenient to introduce the new coordinate system (Hummer
1962)

n̂1 = γ+(n̂′ + n̂), n̂2 = γ−(n̂′ − n̂), n̂3 = n̂ × n̂′, (A5)
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where γ ± = [2(1 ± μ)]−1/2 and μ = n̂ · n̂′. A dimen-
sionless velocity-dependent redistribution function is defined by
Ru(x ′, n̂′; q, n̂) = (
νD)2Rv(ν ′, n̂′; ν, n̂), where q = x − x ′. It is
given by

Ru(x ′, n̂′; q, n̂) =
(a3

π

) 1

(x ′ − γ −1
+ u1/2 − γ −1

− u2/2)2 + a2
3

×
(

ν23a2/ν3

π

)⎧⎨
⎩
⎡
⎣q + 1

2
γ −1

+ u1

(
1 − ν23

ν3

)

+ 1

2
γ −1

− u2

(
1 + ν23

ν3

)
+ ε(1 − μ)

⎤
⎦

2

+
(

ν23

ν3
a2

)2
⎫⎬
⎭

−1

. (A6)

It is convenient to perform the velocity average over a Maxwellian
of the redistribution function in Fourier space. The Fourier transform
of equation (A6) is given by

R̂u(κ, n̂′; λ, n̂) =
∫ ∞

−∞
dx ′ eikx′

∫ ∞

−∞
dqeiλqRu(x ′, n̂′; q, n̂)

= exp

⎧⎨
⎩ 1

2
iγ −1

+ u1

(
κ − ν2

ν4
λ

)

+ 1

2
iγ −1

− u2

[
κ −

(
1 + ν23

ν3

)
λ

]

− iλε(1 − μ) − a3|κ| − ν23

ν3
a2|λ|

⎫⎬
⎭. (A7)

Averaging over a Maxwellian velocity distribution gives

R̂(κ, n̂′; λ, n̂) = π−3/2

∫
d3u e−u2

R̂u(κ, n̂′; λ, n̂)

= exp

⎡
⎣−a3|κ| − 1

4
κ2 − ν23

ν3
a2|λ|

− iε(1 − μ)λ + 1

2
κλ − 1

4

(
1 + ν2

23

ν2
3

)
λ2

− 1

2

ν23

ν3
(κ − λ)λμ

⎤
⎦. (A8)

Moments of the dimensionless frequency shift are given by

an(x, μ) =
∫ ∞

−∞
dq qnR(x ′, n̂′; q, n̂). (A9)

The Fourier transforms of the moments may be expressed as

ân(κ, μ) = ∂n

∂(iλ)n
R(κ, n̂′; λ, n̂)

∣∣∣∣∣∣
λ=0

, (A10)

noting that the factor qn corresponds to the nth derivative with
respect to iλ in the Fourier space. The transformed moments are
readily computed from equation (A8). Angle averaging the results
and Fourier transforming back to frequency space give for the first
three moments

a0(x) = φV(a3, x),

a1(x) = 1

2

dφV(a3, x)

dx
− ε,

a2(x) = 1

2

(
1 + ν2

23

ν2
3

)
φV(a3, x) − ε

(
1 + 1

3

ν23

ν3

)
dφV(a3, x)

dx

+ 1

4

(
1 + 1

3

ν2
23

ν2
3

)
d2φV(a3, x)

dx2
, (A11)

where only the first-order terms in ε are retained. The first-order
moment a1(x) is of the same form as for the scattering of Ly-n
to Ly-n (Meiksin 2006) and results in the heating rate given by
equation (21). The Fourier transform of the redistribution function
averaged over angle is

R̂3,23(κ, λ) =
sinh

[
1
2

ν23
ν3

λ
(
κ − λ − 2iε ν3

ν23

)]
1
2

ν23
ν3

λ
(
κ − λ − 2iε ν3

ν23

)

× exp

⎡
⎣−a3|κ| − 1

4
κ2 − ν23

ν3
a2|λ|

− iελ + 1

2
κλ − 1

4

(
1 + ν2

23

ν2
3

)
λ2

⎤
⎦, (A12)

where the subscript on R̂3,23(κ, λ) indicates the scattering of a pho-
ton of frequency ν3 to ν23.

Similar redistribution functions may be defined for the decay
product photons of frequencies ν12 and ν1; however, the anal-
ysis becomes considerably more complicated as transitions be-
tween non-sharp levels are involved. Following the discussion of
Weisskopf (1933), the frequency distributions may be multiple
peaked and correlated with the frequencies of previously emitted
photons. For example, for photons absorbed and emitted in the
Lorentz wings, the distribution of photons produced in the tran-
sition from level 2 to level 1 could have two peaks. In one, the
emitted frequency would be correlated with the frequency νP of
the photon emitted in the transition 3 → 2, peaking at ν ′ − νP −
ν1, followed by a transition 1 → 0 with the photon frequencies
peaking at ν1 = (ε1 − ε0)/h. A second peak would occur at the
frequency ν12 = (ε2 − ε1)/h, with the transition 1 → 0 produc-
ing photons peaking in frequency at the difference between ν2 and
the frequency of the photon emitted in the 2 → 1 transition. As
the most probable frequency for the final emitted Lyman photons
(in this example) is independent of the incoming frequency ν ′, a
good approximation to the redistribution function Ly-n′ to Ly-n is
Rn′,n(ν ′, ν) = ϕV(an′ , ν ′)ϕV(an, ν).
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