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ABSTRACT
We show that the high optical depth of the intergalactic medium to Lyα photons before
the Epoch of Re-ionization results in a negligible magnitude for the Wouthuysen-Field effect
produced by a radiation source on its distant surroundings, unless (i) the scattering medium has
sufficient time for the impinging resonance line photons to establish a steady-state frequency
distribution or (ii) the scattering gas is undergoing internal expansion or has a peculiar motion
of tens to hundreds of km s−1 away from the source. Because of the intergalactic attenuation,
discrete structures will receive only radiation from a source displaced from the resonance
line frequency by typically hundreds to thousands of Doppler widths. The incident radiation
must diffuse across the resonance line to produce a substantial scattering rate. We present
steady-state solutions in the radiative diffusion approximation for the radiation field trapped
in a clump of gas and show that this may result in an enhancement of the strength of the
Wouthuysen-Field effect by as much as a factor of 106 over the free-streaming (single-
scattering) limit. Solutions to the time-dependent diffusion equation, however, show that the
time-scales required to establish a steady state will generally exceed the lifetime of the sources,
resulting in a substantially reduced scattering rate. In the presence of internal expansion, a
steady state may be established as photons are redshifted across the resonance line and into
the red wing, and significant enhancement in the scattering rate over the free-streaming limit
may again be produced. Alternatively, a substantial scattering rate may arise in systems
with a peculiar motion away from the source that redshifts the received radiation into the
resonance line centre. As a consequence, at epochs z � 30, when collisional decoupling of
the hyperfine structure of hydrogen from the cosmic microwave background is small except
in dense regions, and prior to the establishment of any large-scale diffuse radiation field of
resonance line photons, the 21-cm signature from the intergalactic medium produced by the
Wouthuysen-Field effect will, in general, trace the peculiar velocity field of the gas in addition
to its density structure.

Key words: atomic processes – line: formation – radiative transfer – scattering – cosmology:
theory – radio lines: general.

1 IN T RO D U C T I O N

Following the Recombination Era at z � 1100, the baryons pro-
duced in the big bang were largely neutral. By z � 6, the spectra of
high-redshift quasi-stellar objects (QSOs) show that the hydrogen
had become ionized (Becker et al. 2001). The history of structure
formation in the wide redshift expanse between these epochs, when
there were few if any sources of radiation, is largely unknown. In
principle, 21-cm emission from the intergalactic hydrogen could
reveal the evolution of structure in the baryons during these cosmic
‘Dark Ages’. Because the baryons are cold, they would closely trace
the evolution of the dark matter, so that 21-cm imaging could trace
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the growth of structure following the Recombination Era (Hogan
& Rees 1979; Scott & Rees 1990). Because of strong coupling
between the hyperfine structure of the hydrogen and the cosmic
microwave background (CMB), however, a mechanism that decou-
ples the spin temperature of the hydrogen hyperfine structure from
the CMB temperature must be active, otherwise the hydrogen is
rendered invisible: it absorbs and re-emits the CMB radiation at
the same rate, leaving it indistinguishable from the CMB. At red-
shifts z > 30, collisions between hydrogen and electrons and other
hydrogen atoms are adequate to begin decoupling the spin temper-
ature from the CMB (Scott & Rees 1990; Madau, Meiksin & Rees
1997). Except in dense regions, however, at later times collisional
decoupling is inadequate.

Once the first sources of radiation begin to turn on, the scatter-
ing of Lyα photons by the neutral hydrogen offers an alternative
means of decoupling, through the Wouthuysen-Field effect (WFE)
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(Wouthuysen 1952; Field 1958). As sources turn on in sufficient
number to begin re-ionizing the intergalactic medium (IGM), they
will produce a combined intensity of Lyα photons sufficient for
coupling the spin temperature to the light temperature of the Lyα

photons rather than the CMB, rendering the intergalactic hydrogen
visible against the CMB in either emission or absorption (Madau
et al. 1997).

The discovery of the End of the Dark Ages (EDA) and the on-
set of the Epoch of Re-ionization (EoR) have become one of the
paramount goals of a new generation of radio telescopes, such as the
LOw Frequency Array (LOFAR),1 the Murchison Widefield Array
(MWA),2 the Primeval Structure Telescope/21 Centimeter Array
(PaST/21CMA),3 the Precision Array to Probe EoR (PAPER)4 and
a possible Square Kilometre Array (SKA).5 Reviews of this rapidly
growing area are provided by Loeb & Barkana (2001), Fan, Carilli
& Keating (2006) and Furlanetto, Oh & Briggs (2006).

Madau et al. (1997) estimated the Lyα collision rate Pα that drives
the WFE as the integrated intensity from cosmologically distributed
sources, assuming that photons bluewards of Lyα emitted from a
source will contribute their full amount to Pα once they redshift
into the local Lyα resonance. In fact, this provides a lower limit
(assuming photons are not destroyed by, e.g., dust absorption). The
multiple scattering of resonance line photons will, in general, en-
hance the radiation field. For pure Doppler scattering, Field (1959a)
argued that the rate is enhanced by the number of scatters a photon
undergoes before being randomly scattered sufficiently redwards
of line centre to escape. The estimate neglected scattering in the
Lorentz wings, however. It also assumed that the IGM takes part
in the homogeneous and isotropic expansion of the Universe. In
fact, the IGM is clumpy, with structures breaking away from the
cosmological expansion. Efforts are underway to estimate the ra-
diation field and scattering rate in a cosmological context through
Monte Carlo simulations of the scattering of resonance line photons
in an inhomogeneous medium (Chuzhoy & Zheng 2007; Pierleoni,
Maselli & Ciardi 2008; Semelin, Combes & Baek 2007). In this pa-
per, we use analytical means to explore some of the consequences
of intergalactic structure formation for the WFE as a means of
generating an intergalactic 21-cm signature.

In the next section, we discuss the optical depth of the IGM
to resonance line photons and the implications for the scattering
rate. Approximate steady-state solutions to the radiative transfer
equation are derived in Section 3 and time-dependent solutions in
Section 4. A discussion of the solutions and applications is provided
in Section 5, along with a summary of our conclusions.

2 THE WO UTHUYSEN-FIELD EFFECT
IN THE INTERGALACTIC MEDIUM

The optical depth through a homogeneous and isotropic expanding
IGM of a photon emitted by a source at redshift zS and received
at redshift z at frequency ν > ν0, where ν0 is the resonance line
frequency, is (Field 1959a; Gunn & Peterson 1965)

τν = σ

∫ zS

z

dz′ dlp

dz′ nl(z
′)ϕV

(
a, ν

1 + z′

1 + z

)
, (1)

1 www.lofar.org
2 www.haystack.mit.edu/ast/arrays/mwa
3 web.phys.cmu.edu/∼past
4 astro.berkeley.edu/∼dbacker/eor
5 www.skatelescope.org

where nl(z′) is the number density of scattering atoms in the lower
level at epoch z′, σ = πe2f lu/(mec) � 0.0110 cm2 Hz is the total
resonance line cross-section, where f lu � 0.4162 is the upwards
oscillator strength for hydrogen Lyα, ϕV(a, ν) is the Voigt line
profile normalized to

∫
dνϕV(a, ν) = 1, a � 0.0472T −1/2 is the

ratio of the decay rate to the Doppler width �νD = ν0b/c, where
b = (2kBT/mH)1/2 is the Doppler parameter for hydrogen gas at
temperature T and c is the speed of light and lp is the proper path
length. In the Lorentz wing, expressed as a function of x = (ν −
ν0)/�νD, the dimensionless Voigt profile φV(a, x) = (�νD)ϕV(a,
ν) is well approximated as φV(a, x) � a/(πx2). The differential
proper line element evolves according to dlp/dz � (c/H0)
−1/2

m

(1 + z)−5/2 in a flat universe at redshifts for which 
m(1 + z)3

dominates the contribution from the vacuum energy, where 
m is
the ratio of the total mass density to the critical Einstein–de Sitter
density, and where H0 = 100 h km s−1 Mpc−1 is the Hubble constant
today.

Photons emitted by the source at a frequency νe > ν0(1 + zS)/
(1 + z) will scatter in the blue Lorentz wing (except for those for
which the inequality is nearly an equality, in which case they will
scatter through the Doppler core). In the blue wing, the optical depth
due to Lyα scattering by neutral hydrogen is

τν � 1.75 × 105 cnl(0)

H0

1/2
m

(1 + z)3/2

ν2
0y

3/2

⎧⎨
⎩

[
y1/2

y − 1
− u1/2

u − 1

]

+1

2
log

[
(1 − u1/2)(1 + y1/2)

(1 − y1/2)(1 + u1/2)

]⎫⎬
⎭, (2)

where y = ν/ν0 and u = y(1 + zS)/(1 + z), and all quantities are
assumed to be in cgs units. For 0 < xb/c � (zS − z)/(1 + z) � 1,
the expression simplifies to

τν ≈ x1

x
, (3)

where

x1 = a

π

σc

ν0

nl(0)

H0

1/2
m

(1 + z)3/2 ≈ 214h−1(1 + z)3/2T
−1/2

IGM (4)

for a mean line-of-sight IGM temperature TIGM for a universe with

m = 0.3 and baryon density 
b h2 = 0.022 (O’Meara et al. 2006;
Spergel et al. 2007). As an illustration, τ ν(x) for a source at zS =
8 is shown at z = 7 in Fig. 1 (upper panel). The optical depth is
extremely high until ν is well displaced from the line centre. The
values of x1, at which τ ν = 1, are shown in the lower panel of Fig. 1
for a range of redshifts.

Photons emitted by the source with frequencies between ν0 <

νe < ν0(1 + zS)/(1 + z) will pass through the resonance line fre-
quency en route to the gas at z. Upon passing through the resonance
line, the photons will essentially be completely scattered out of the
line of sight. As a consequence, essentially no photons will be re-
ceived in the frequency range ν0(1 + z)/(1 + zS) < ν < ν0 (the
Gunn–Peterson effect). A general expression for the optical depth
through the Doppler core is provided in Appendix A.

Photons emitted sufficiently redwards of ν0 to avoid the Doppler
core may still be scattered in the Lorentz red wing of the surround-
ing hydrogen. This will produce a halo of scattered Lyα photons
around a central source like a QSO (Loeb & Rybicki 1999). For
frequencies x < 0 near line centre, Loeb & Rybicki (1999) show
that the photons will build up an energy density as they diffuse
through the surrounding IGM of the form uν ∼ (−x)−9/2e−[r/rc (x)]2

,
where rc(x) = (−x)1/2 (2/3)[(b/H)λmfp(x)]1/2 scales like the har-
monic mean between the distance over which Hubble expansion

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 949–958



The Wouthuysen-Field effect in a clumpy IGM 951

1 10 100 1000
0.01

0.1

1

10

100

0.001 0.01 0.1 1
10

100

Figure 1. Upper panel: the optical depth of photons emitted by a source at
redshift zS and received at the frequency ν near the resonance line frequency
ν0 of Lyα at redshift z. The frequency is expressed as x = (ν − ν0)/�νD. The
curves are for T = 10 K (solid), 100 K (dashed) and 1000 K (dot-dashed).
Also shown is the approximation τ ν � x1/x for the T = 10 K model (dotted
line, nearly coinciding with the solid line). Lower panel: the value of x at
which τ ν = 1 for zS − 1 < z < zS. The curves are labelled as in the upper
panel.

produces a velocity difference matching the Doppler parameter b
and the scattering mean-free path of a resonance line photon in the
Lorentz wing

λmfp(x) � π�νD

nlσa
x2, (5)

where nl is the number density of atoms in the lower level. The
energy density is exponentially suppressed for x → 0− at a fixed
position, resulting in a negligible Lyα scattering rate except very
near the QSO. Numerically,

rc(x) � 0.6 pc(−x)3/2h−1/2T
3/4

IGM
−1/4
m

(
1 + z

9

)−9/4

, (6)

so that a substantial Lyα scattering rate is confined to a small region
around the source. The region is so small in fact that the assumption
that the surrounding IGM takes part in the Hubble flow will not be
valid. More likely, the gas would have been ionized and violently
disturbed by the QSO itself.

Finally, photons emitted sufficiently redwards of ν0 at the source
to escape scattering in the Lorentz wing will pass freely through the
IGM, where they will be received at redshift z at frequencies x <

−x0, where

x0 = c

bIGM

zS − z

1 + zS
� 2.3 × 106T

−1/2
IGM

zS − z

1 + zS
. (7)

The vast majority of photons from the source emitted bluewards
of, but near, the resonance line frequency never arrive near the line
centre, having been scattered out of the path along the way. The
resonance line radiation impinging on the absorption site6 from the
source scatters in the Lyα resonance line at the rate per neutral atom

6 Strictly speaking, the photons are scattered. The region at which the scat-
tering rate is computed is referred for simplicity as the absorption site or the
absorber.

in the lower state

Pl = σc

∫ ∞

0
dνϕV(a, ν)

uν

hPν
, (8)

where hP is Planck’s constant and uν is the local specific energy
density of photons received at z from the source at zS with specific
luminosity Lν

uν = 1

c

Lν

4πr2
L

exp(−τν), (9)

where rL is the luminosity distance between the source and the gas
at redshift z. The scattering rate assuming none of the photons has
been scattered out of the line of sight en route to the absorption site
(the free-streaming limit) is

Pl(τν = 0) � σ
Lν/hPν

4πr2
L

. (10)

The ratio of the scattering rate for τ ν � x1/x to the free-streaming
value is then given by

Pl(τν)

Pl(τν = 0)
�

∫ ∞
0 dxaπ−1x−2 exp(−x1/x)∫ ∞

−∞ dxφV(a, x)
= a

πx1

� 7.0 × 10−5h(1 + z)−3/2

(
TIGM

Ta

)1/2

, (11)

where Ta is the temperature of the absorbing gas. The low value
poses a fundamental problem to the effectiveness of the WFE as
a means of decoupling the spin state of the gas from statistical
equilibrium with the CMB. Only if photons have sufficient time to
diffuse across the line centre will the scattering of Lyα photons
be an effective means of decoupling the spin temperature from the
CMB in comoving objects.

3 THE WO UTHUYSEN-FI ELD EFFECT
I N DI SCRETE OBJ ECTS

3.1 Steady-state solutions without atomic recoil

The assumption of a homogeneous and isotropic universe, while a
fair approximation over large scales, breaks down on small scales:
the IGM is clumpy at the redshifts from which the 21-cm signal
is expected (Tozzi et al. 2000; Gnedin & Shaver 2004). For a suf-
ficiently short mean-free path, photons will be trapped within a
discrete system and diffuse in frequency and space as they scatter
within the system. In this section, we consider the energy distribu-
tion the radiation will reach given an adequate time to relax to a
steady state.

For a Lyα photon to become trapped within an absorber of length-
scale La, the mean-free path must minimally satisfy λmfp < La, for
which τ ν = La/λmfp > 1. As the optical depth in the wing may be
expressed as τ ν = π−1/2(aτ 0)x−2, where τ 0 = nlLaπ

−1/2σ (�νD)−1

is the optical depth at the line centre, this corresponds to photons es-
caping with x > π−1/4(aτ 0)1/2 (Osterbrock 1962). Radiative transfer
solutions for sources embedded within a slab suggest that this may
be somewhat too restrictive for systems with very high line centre
optical depths, in which case the photons escape through spatial
diffusion rather than frequency diffusion. Steady-state solutions in
the diffusion approximation for scattering in the Lorentz wings in
very high optical depth systems show that photons escape the slabs
with frequencies typically of the order of (aτ 0)1/3 (Adams 1972;
Harrington 1973; Neufeld 1990). An escape frequency of xesc =
x∗(aτ 0)1/3 corresponds to a mean-free path smaller than the thick-
ness of the slab by a factor of f = x2

∗π
1/2 (aτ 0)−1/3 � 0.013x2

∗T1/3
a
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N−1/3
19 , where Ta is the temperature of the absorber and N19 is the

column density in units of 1019 cm−2. (This corresponds to a region
24 kpc across for the mean intergalactic hydrogen density at z = 8,
and smaller for overdense systems.) As f depends only weakly on Ta

and NH I, while x∗ depends on aτ 0 and the radiation source param-
eters of any particular problem, we express the escape frequency
simply as

xesc � 395(10f )1/2N
1/2
19 T −1/2

a , (12)

noting that f will, in general, vary with the depth within the absorber,
and must be solved for according to each particular configuration,
but will be of the order of 0.01–1 for applications we consider.
Comparison of equation (12) with equation (4) for x1 shows that
photons with τ ν < 1 in the IGM will not generally be trapped within
a structure comoving with the expansion of the Universe unless the
structure has a neutral hydrogen column density N19 > N19,crit,
where

N19,crit � 0.29 h−2(10f )−1(1 + z)3

(
Ta

TIGM

)
. (13)

If x1 < xesc, the absorber will behave as a photon bucket, allowing
the energy density of the radiation field at frequencies x < xesc to
build up with time as radiation from the source becomes trapped.
As the photons scatter within the absorber, they will diffuse in fre-
quency and space. Because photons with |x| > xesc will escape,
the energy density of the radiation trapped within the absorber will
reach a steady state when the rate of incoming photons balances the
rate of escape. In principle, the energy density that develops could
produce a substantial scattering rate, even exceeding the rate esti-
mated assuming no photon losses from the source due to scattering
by the intervening IGM.

The depth to which photons at frequency x1 penetrate an absorber
depends on the optical depth of the absorber. If it is optically thin at
x1, the photons will stream through. If optically thick, the photons
will scatter near the surface of the absorber. Photons bluewards
of x1, however, will penetrate more deeply, as the cross-section
diminishes like 1/x2. In general, photons will be injected at varying
layers within the absorber, with bluer photons injected at increasing
depths.

We would like to estimate the evolution of the radiation field
within an absorber. No solution to this problem exists in the lit-
erature. The full radiative transfer problem through the slab is an
involved one, as the radiation field will vary with both the optical
depth through the slab and with frequency. It is particularly impor-
tant in our application to obtain the solution across the Doppler core
to estimate the Lyα scattering rate. Instead of solving the full prob-
lem, we seek approximate solutions in which we treat the scattered
radiation field as locally isotropic, neglecting the spatial diffusion
of the radiation through the absorber. We show in Appendix B that
the resulting radiative transfer equation in the diffusion approxi-
mation is formally identical to the equation of Harrington (1973)
for the problem of a slab with a uniform distribution of spectrally
flat sources. The solution we obtain neglecting the spatial diffusion
of the radiation agrees well with Harrington’s solution which in-
cludes both spatial and frequency diffusion. A detailed quantitative
description will require a more exact solution to the problem, but
our approximate approach allows us to explore qualitatively several
effects of interest. We would like to estimate the energy density that
may be achieved as a function of xesc. We also wish to examine the
effect of internal motions on the radiation energy density across the
line centre and the possible role of atomic recoil. Lastly, we would
like to estimate the time it takes for the radiation field to establish a

steady state. All of these effects extend well beyond those explored
by existing slab solutions.

We estimate the radiation density that builds up within an ab-
sorber by assuming a steady state between the rate of photons
injected into the absorber and the rate of diffusion of the pho-
tons across the escape frequency, imposing the boundary condition
u(x) = 0 for |x| > xesc, where u(x) = �νDuν . We assume isotropic
scattering within a homogeneous absorber and use the diffusion ap-
proximation to describe the resonance line scattering of the photons.
In equilibrium,

1

2

d

dx

[
D(a, x)

dn(x)

dx

]
= −S̃(x), (14)

where n(x) = �νDnν, nν = uν/hPν, S̃(x) = (�νD)2S(ν)/(nlcσ ),
where S(ν) is a source function, and D(a, x) is the diffusion coef-
ficient. The second-order moment of the frequency redistribution
function gives for the diffusion coefficient D(a, x) = φV(a, x) +
(1/3)d2φV(a, x)/dx2 (Rybicki & dell’Antonio 1994). The deriva-
tion of the diffusion equation, however, does not conserve photon
number to the order of the approximation. As a consequence, the dif-
fusion coefficient is left ambiguous. Rybicki & dell’Antonio (1994)
advocate adopting D(a, x) = φV(a, x) for its simplicity, and we will
do so here.

The source S(ν) represents the rate at which photons received
from the source are incident on the absorber at x < xesc, where they
are trapped and diffuse in frequency. It is given by the scattering
emissivity (per photon energy)

S(ν) = nlcσ

∫ ∞

0
dν ′R(ν ′, ν)nν′ , (15)

where R(ν ′, ν) is the photon redistribution function for resonance
line scattering (Mihalas 1978). Since scattering in the wings is
coherent, R(ν ′, ν) � ϕV(a, ν ′)δD(ν ′ − ν), where δD is the Dirac δ

function. Then,

S(ν) � nlcσϕV(a, ν)nν

� nlσaπ−1(�νD)−1 Lν/hPν

4πr2
L

x−2 exp(−x1/x). (16)

The dependence on x results in a sharp peak at x = x1/2, so that the
source S̃(x) is well approximated by

S̃(x) � a

πc

�νD

x1

Lν/hPν

4πr2
L

δD(x − xinj)

= AδD(x − xinj),
(17)

where the normalization constant A = 2.5 × 10−6h(1 + z)−3/2T1/2
IGM

[(Lν/hPν)/4πr2
L] (with all quantities expressed in cgs units),

matches the source rate of equation (16) integrated over all fre-
quencies. Note that the dependence on the absorber temperature
cancels. Here, the frequency at which photons are injected into the
absorber is represented generally as xinj to allow for any peculiar
motion of the absorber, which could shift the peak of the received
radiation either redwards or bluewards, and to allow for scatter-
ing within the absorber which will shift the peak of the radiation
field penetrating to deeper layers further towards the blue. For a
comoving absorber, xinj = x1/2 near the surface. The solution to
equation (14) using the wing approximation for φV(a, x) is

n(x) =

⎧⎪⎪⎨
⎪⎪⎩

π

3a
A

(
1 − x3

inj

x3
esc

) (
x3

esc + x3
)

; −xesc < x < xinj

π

3a
A

(
1 + x3

inj

x3
esc

) (
x3

esc − x3
)

; xinj < x < xesc.

(18)
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Figure 2. The steady-state distribution of Lyα resonance line photons for
a source function S̃(x) = δD(x − xinj) with xinj = 100, allowing photons
with |x| > xesc = 200 to escape, as given by the diffusion approximation,
equation (14), with D(a, x) = φV(a, x). An absorber temperature Ta =
100 K is assumed.

The solution is shown in Fig. 2. We find that adopting D(a, x) =
φV(a, x) + (1/3)d2φV(a, x)/dx2 produces a nearly identical solution,
agreeing to within a fraction of a per cent for xinj well out of the
core. Numerically integrating the diffusion equation using the full
Voigt profile produces a solution that also differs negligibly from
equation (18).

The ratio of the collision rate Pl, given by using equation (18)
in equation (8), to the free-streaming collision rate Pl(0) of equa-
tion (10) is then

Pl,ss

Pl(0)
� 1

x1

a

πA

∫ ∞

−∞
dx φV(a, x)n(x)

� 1

3x1

[(
1 − x3

inj

x3
esc

)
x3

esc + a

π

(
3x2

inj − x2
esc − 2

x3
inj

xesc

)]

� 1

3x1

(
1 − x3

inj

x3
esc

)
x3

esc

� 9.6 × 104h

[
(10f )N19

(1 + z)Ta

]3/2

T
1/2

IGM

(
1 − x3

inj

x3
esc

)
, (19)

where we have used the approximation equation (A1) for the Voigt
profile with xesc > xinj � xm assumed, and neglected the terms
following the leading. The enhancement may be substantial. For
N19 = N19,crit, Pl,ss/Pl(0) � 1.5×104h−2(1+z)3T −1

IGM(1−x3
inj/x

3
esc),

so that even for a warm IGM temperature of T IGM = 1000 K, a
substantial boost in the scattering rate will result.

The solution equation (18) assumes that velocities internal to the
cloud are negligible. To estimate the effect internal motion may
have on the frequency distribution of the photons, we approximate
the motion as an isotropic expansion (or contraction) within the
cloud characterized by a uniform velocity gradient Ha (which, in
general, will not be the same as the Hubble parameter). In the
diffusion approximation, equation (14) is modified to (Rybicki &
dell’Antonio 1994)

1

2

d

dx

[
2γ n(x) + D(a, x)

dn(x)

dx

]
= −S̃(x), (20)

where γ = ν0Ha/(σnlc) is (c/b) times the ratio of the scattering time
of the photons at line centre to the expansion time H−1

a of the gas.
For this solution, the steady state applies to the comoving number
density of photons per frequency (Rybicki & dell’Antonio 1994).
Overdense structures are typically contracting, but the internal mo-
tions along a filament may expand along the filament in regions
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Figure 3. The steady-state distribution of Lyα resonance line photons for
a source function S̃(x) = δD(x − xinj) with xinj = 100 in an absorber with
temperature Ta = 100 K, allowing photons with | x| > xesc = 200 to escape
and including the effects of internal motions with a dimensionless velocity
gradient γ = 1.7 × 10−7 (solid line), representing expansion. Virtually all
the injected photons are redshifted, escaping for x < − xesc. The solution for
xinj = 25 and xesc = 50 for γ = 1.7 × 10−7 is also shown (long-dashed line),
showing a weak tail at x > xinj. The corresponding case with contraction,
γ = −1.7 × 10−7 (short-dashed line) shows a more complex behaviour as
contraction curtails the redwards diffusion.

(Zhang et al. 1998). For an overdensity 10 times the cosmic mean
at z = 8, an internal velocity gradient of 100 km s−1 over 100 kpc
corresponds to γ � 1.7 × 10−7. Contraction by the same magnitude
corresponds to γ � −1.7 × 10−7.

The solution for the source S̃(x) = AδD(x − xinj) is

n(x) =
{

gγ (x, −xesc) ; −xesc < x < xinj

gγ (x, −xesc) − gγ (x, xinj) ; xinj < x < xesc

, (21)

where gγ (x, y) = (A/γ )f γ (xesc, xinj)f γ (x, y)/f γ (xesc, y) and
fγ (x, y) = 1 − exp[− 2πγ

3a
(x3 − y3)]. The solution is extremely

sensitive to γ x3
esc/a. For γ � γ crit ≡ 3a/(2π x3

esc), a broad wing
of amplitude A/γ redwards of xinj will result as photons are red-
shifted across the line centre. The distribution will cut-off sharply
at x > xinj. For an absorber with Ta = 100 K (a � 0.00472) and
xesc = 200, γ crit � 2.8 × 10−10. The solutions for γ = 1.7 × 10−7

with (xinj, xesc) = (100, 200) and (25, 50) are shown in Fig. 3. A
substantial decrease in n(x) is produced compared with the γ = 0
case. A significant enhancement of the Lyα collision rate over the
free-streaming limit, however, may still result, with Pl,ss/Pl(0) �
a/(πγ x1). For γ < 0, a broad wing bluewards of xinj will form as
photons are blueshifted in the contracting gas. A complex profile,
however, may form redwards of xinj as redward diffusion is resisted
by blueshifting. Such a case is illustrated in Fig. 3 for γ = −1.7 ×
10−7 with xinj = 25 and xesc = 50.

3.2 Steady-state solution with atomic recoil

The above solutions neglect the effect of atomic recoil on the evolu-
tion of the radiation field. Since the photon momentum (∼hPν0/c)
is small as compared to the momentum of the hydrogen atoms
(∼mHb), the effect should be small, but may result in a significant
heating rate when the gas is still cold (Madau et al. 1997; Chen &
Miralda-Escudé 2004; Meiksin 2006). Allowing for atomic recoils
modifies equation (14) to

1

2

d

dx

[
2εφV(a, x)n(x) + D(a, x)

dn(x)

dx

]
= −S̃(x), (22)
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Figure 4. The steady-state distribution of Lyα resonance line photons in
the diffusion approximation for a source function S̃(x) = δD(x − xinj)
with xinj = 100, allowing photons with |x| > xesc = 200 to escape and
including the effect of atomic recoils. Shown are the solution with ε =
0.0079, corresponding to Ta = 10 K (solid line), the solution with ε = 0
(long-dashed line) and the first-order solution n0(x) + εn1(x) for ε = 0.0079
(short-dashed line).

where the recoil parameter ε = hPν0/(2kBTmHc2)1/2 � 0.025T−1/2

is the ratio of the momentum of a resonance line photon to the
momentum of an atom moving at the thermal velocity (Rybicki &
dell’Antonio 1994; Meiksin 2006). Equation (22) expresses only
the first-order correction in ε. The solution for a source S̃(x) =
AδD(x − xinj) is

n(x) =
{

gε(x,−xesc) ; −xesc < x < xinj

gε(x,−xesc) − gε(x, xinj) ; xinj < x < xesc,
(23)

where gε(x, y) = A[π/(2ε3 a)] exp(−2εx)[f ε(x) − f ε(y)][f ε(xesc) −
f ε(xinj)]/[f ε(xesc) − f ε(y)] and f ε(x) = (1 − 2εx + 2ε2x2) exp(2εx).
Here, the wing approximation for φV(a, x) is adopted, but we find a
nearly identical result allowing for the Doppler core as well.

The solution for xinj = 100, xesc = 200 and ε = 0.0079, cor-
responding to T � 10 K, is shown in Fig. 4. The result differs
substantially from the solution for ε = 0. In fact, the solution can-
not be trusted, as it is not consistent with the original order of
equation (22) in ε. This may be demonstrated by adding the quan-
tity ε2y(x) to 2εφV(a, x)n(x), where y(x) is an unspecified function
representing the higher order corrections to the recoil, and which,
in general, may also depend on n(x). Inserting the series solution
n(x) = �∞

i=0ε
ini(x) into equation (22) and equating equal orders

in ε recovers n0(x) as given by equation (18) and produces the
first-order equation (d/dx)[2φV(a, x)n0(x) + D(a, x) dn1(x)/dx] =
0 and the second-order equation (d/dx)[2φV(a, x)n1(x) + y(x) +
D(a, x) dn2(x)/dx] = 0. The first-order equation gives n1(x) in terms
of n0(x), subject to the boundary conditions n1(−xesc) = n1(xesc) =
0. The second-order equation shows that n2(x) depends on the un-
specified (neglected) function y(x). Thus, the solution is valid only
up to n(x) = n0(x) + εn1(x). If higher order terms are substantial,
then the solution for n(x) cannot be trusted. The solution n0(x) +
εn1(x) for the above example differs substantially from the solution
n(x), and indeed is not even positive definite, as shown in Fig. 4,
demonstrating the solution is not valid.

Including higher order terms involves a non-trivial expression for
the redistribution function including non-linear terms in the recoil
parameter (Basko 1981; Meiksin 2006). (Additional higher order
terms in the recoil parameter arise from relativistic corrections, but
these are reduced by factors of b/c.) For temperatures T > 100 K,
the discrepancy between the full solution and the first-order solution

is smaller than about 20 per cent for xinj = 100 and xesc = 200. In
general, the correction will be small for εxesc � 1, and we caution
that if this is violated then the steady-state solutions may not be
valid. We do not pursue further consequences of the atomic recoil
solution here.

3.3 The role of bulk peculiar velocities

Absorption systems with a bulk peculiar velocity component away
from the source will see the photons redshifted into line centre.
In this case, the scattering rate of resonance line photons may be
appreciable even in an optically thin absorber (N19 < N19,crit), so
that the buildup of a strong radiation field at line centre through
photon capture and diffusion is not necessary for significant WFE
decoupling of the spin state from the CMB. The peculiar velocity
required to bring the absorber into the peak of the source function
S(ν) in equation (16) is given by vpec � 1

2 x1ba, where x1 is given
by equation (4). For pure thermal broadening (assuming negligible
internal velocity structure within the absorber), this corresponds to

vpec � 14h−1(1 + z)3/2

(
Ta

TIGM

)1/2

km s−1. (24)

This is comparable to the typical peculiar velocities of non-linear
cosmological structures at the epochs of interest. As a result, the
WFE will produce a 21-cm signature that maps the peculiar velocity
field of the structures within the IGM.

As an illustration, we consider the signal produced by a collapsing
halo, such as around a forming galaxy or galaxy cluster, illuminated
by an external radiation source, as depicted in Fig. 5.

The collision rate from a source of specific luminosity Lν on
an absorber with Doppler parameter ba at luminosity distance rL

moving away from the source with peculiar velocity v is

Pl = σ
Lν

hPν

1

4πr2
L

∫ ∞

0
dν ϕV

[
a, ν

(
1 − v

c

)]
exp(−τν)

� σ
Lν

hPν

1

4πr2
L

exp

[
− bax1

v0 cos(θ )

]
, (25)

Figure 5. Surface of constant Lyα scattering rate Pl produced by a con-
tinuum source to the left within a collapsing halo of neutral hydrogen. The
inner surface terminates at the accretion shock. The circle represents the
turnaround radius rta of the halo, with the solid line representing the hemi-
sphere of gas with peculiar velocity redshifted relative to the source and the
dashed line the hemisphere with blueshifted peculiar velocity. The surface
shown corresponds to a maximum radius of 0.59rta. The figure is tilted by
5◦ to reveal the three-dimensional structure of the surface.
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using equation (3), approximating φV(a, x) � π−1/2 exp(−x2), not-
ing that the resulting exponential in the integrand peaks sharply
near x = v/ba assuming v0/ba � x1 or larger, Taylor expanding
the argument of the exponential to second order in x − v/ba and
expressing the peculiar velocity as v = v0 cos (θ ), the projected
accretion velocity along the line of sight to the source.

In general, v0 will vary with distance from the centre of the
collapsing halo. As a definite case, we approximate the peculiar
velocity of the accreting gas using the self-similar solution of
Bertschinger (1985) for the adiabatic accretion of a γ = 5/3 gas
of negligible density on to a dark matter halo with a comoving
centre in an Einstein–de Sitter cosmology. The velocity field in the
region between the accretion shock and the turn-around radius at
cosmological time t is well approximated by

v0(r) � rta

t

Vmin

log10 λs
log10 λ, (26)

where rta is the turn-around radius, λ = r/rta, λs = rs/rta � 0.3472,
where rs is the radius of the accretion shock, and Vmin � −1.433
characterizes the inflow velocity of the gas just before passing
through the accretion shock.

Contours of constant values of Pl correspond to the values of
constant projected accretion velocity. If at a radius r towards the
source (θ = 0), the accretion velocity is a fraction f of its maximum
infall velocity, then contours of fixed Pl will correspond to the
surfaces

λ = λf sec(θ)
s , (27)

extending over the angular range 0 ≤ θ ≤ arccos(f ). The surface
corresponding to f = 0.5 is shown in Fig. 5, with a maximum angle
θmax = 60◦ and maximum radius λ0 = λf

s = 0.59. The loci of
constant Pl correspond to arcing sheets. The exponential sensitivity
of Pl to v for v0/ba � x1 (see equation 25) ensures a surface of
narrow width will dominate the 21-cm signal produced. Such a
surface could be mistaken for the region of neutral hydrogen just
outside an H II region surrounding a source of ionizing radiation. A
varying gas temperature, and therefore varying ba, in the accreting
region will further complicate the signal. If v0/ba � x1, then the
entire solid hemisphere will be illuminated by the source (except
for a thin circular wafer at θ � 90◦).

A similar effect may apply to an expanding void. Since voids
expand faster than the Hubble expansion, the peculiar velocity on
the far side of a void from a distant source could redshift the re-
ceived radiation into the line centre. A shell of direct scattering may
then result even without including the reddening effects of radiative
transfer within the void.

4 TH E E VO L U T I O N O F TH E
WO UTHUYSEN-FIELD EFFECT
IN DISCRETE OBJECTS

It was assumed for the solutions in Section 3 that the photons are able
to achieve a steady state as they scatter within the absorbing system.
In this section, we compute the time-scales required to establish a
steady state by solving the time-dependent diffusion equation

∂n(x, τ )

∂τ
= 1

2

∂

∂x

[
D(a, x)

∂n(x, τ )

∂x

]
+ S̃(x), (28)

where τ = t/ts and ts = �νD/(nlσc) � 3.2n−1
l T1/2

a s is the scattering
time of the resonance line photons at line centre.

Figure 6. (a) Convergence of the time-dependent solution to the diffusion
equation for a source S̃(x) = δD(x − xinj) with xinj = 100, xesc = 200
and Ta = 100 K. Shown are the steady-state photon frequency distribution,
equation (18) (solid line) and the photon frequency distributions at the times
their values at x = 0 take on 50 per cent (dashed line), 90 per cent (dotted
line) and 97 per cent (dot-dashed line) of the steady-state value. (b) The
evolution of the ratio of the photon frequency distribution at line centre
(x = 0) to the steady-state value, as a function of time in units of the
scattering time at line centre.

We solve equation (28) using a Crank–Nicholson scheme. We
tested the scheme against the time-dependent solutions for a con-
stant δ function source at line centre in an infinite homogeneous
medium and a flat continuum source in the diffusion approximation
(Rybicki & dell’Antonio 1994). The results applied to the source
S̃(x) = δD(x − xinj) with xinj = 100 and boundary condition n(x) =
0 for |x| > xesc = 200 are shown in the upper panel of Fig. 6. The
photon frequency distribution takes on the approximate shape of
the final steady-state solution equation (18) as it converges towards
it. The evolution of the photon frequency distribution at line centre
(x = 0) is shown in the lower panel of Fig. 6. For sources that have
been active only for a small fraction of the time required to achieve
full convergence, the scattering rate may be negligibly small.

Dimensional analysis of equation (28) suggests the time to estab-
lish a steady state for photons injected at x = xinj is τ ss � 2x2

inj/D(a,
xinj) � (2π/a)x4

inj = (π/8a)x4
esc � 8.3T1/2

a x4
esc for xinj = xesc/2. The

time for the photon distribution to converge to the steady-state value
at x = 0 found from the numerical integration of equation (28) is
shown in Fig. 7 for convergence to 50 and 90 per cent of the steady-
state value, for a source S̃(x) = δD(x − xinj) with xinj = xesc/2
and Ta = 100 K. The convergence times scale like τss,50 � 210x4

esc

(50 per cent) and τss,90 � 750 x4
esc (90 per cent), in good agreement

with the expected behaviour.

5 D I SCUSSI ON AND C ONCLUSI ONS

The role played by the WFE in decoupling the spin temperature
of the neutral hydrogen from the CMB temperature depends most
crucially on the scattering rate of Lyα photons. The spin temperature
TS is generally a weighted mean of the colour temperature Tα ,
kinetic temperature TK of the gas and brightness temperature TR of
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Figure 7. The convergence time in units of the scattering time at line centre
for the photon frequency distribution with source S̃(x) = δD(x−xinj) having
xinj = xesc/2 to reach 50 per cent (dashed line) and 90 per cent (solid line)
of the steady-state value at x = 0. A temperature of Ta = 100 K is assumed.

any incident radiation (such as the CMB) at the 21-cm frequency,

TS = TR + yαTα + ycTK

1 + yα + yc

, (29)

where

yα ≡ P10

A10

T∗
Tα

and yc ≡ C10

A10

T∗
TK

(30)

are the Lyα and collisional pumping efficiencies, respectively (Field
1958; Madau et al. 1997), A10 = 2.85 × 10−15 s−1 is the spontaneous
decay rate of the 21-cm transition and T∗ ≡ hPν10/kB, where ν10

is the frequency of the 21-cm transition. Here, P10 = 4Pl/27 is
the indirect de-excitation rate of the triplet hyperfine state induced
by Lyα photon scattering. The colour temperature of the radiation
field is the harmonic mean temperature Tα = 1/〈T−1

u (ν)〉, where
Tu(ν) = −(hP/kB)(d ln uν/dν)−1, weighted by uν ϕV(a, ν) for an
energy density uν of resonance line photons (Meiksin 2006). The
coefficient C10 is the de-excitation rate of the triplet hyperfine state
induced by atomic collisions.

For a Lyα scattering rate Pl exceeding the critical thermalization
rate

Pth = 27A10TCMB

4T∗
� 6.8 × 10−12 s−1

(
1 + z

9

)
, (31)

where TCMB � 2.73(1 + z) (Mather et al. 1994) is the CMB tempera-
ture, the spin temperature will be driven to the colour temperature in
the absence of strong collisional de-excitation (Madau et al. 1997).
The radiation field will typically rapidly thermalize with the neutral
hydrogen, resulting in Tα → TK (Field 1959b; Meiksin 2006). The
neutral hydrogen will then appear in either absorption or emission
against the CMB, depending on whether TK is below or above TCMB,
respectively.

Before the EoR, when the first radiation sources turn on at the
EDA, regions around the sources may become visible through their
21-cm signature. Because the photons produced by a source, such
as a QSO or star-forming galaxy, near the Lyα resonance will be
scattered out of the line of sight over short distances, the scattering
rate of Lyα photons will be much smaller than Pth except extremely
near the source. Only photons emitted sufficiently bluewards of
the Lyα resonance frequency will survive to any distant structures,
where they will be received well in the blue Lorentz wing. If a
structure has a sufficient optical depth in the wing to the photons
received, it will trap them and rescatterings within the structure
will allow the photons to diffuse in frequency across the resonance
line. The radiation field may be built up in this way until it reaches a

steady state in which the rate of incoming photons is balanced by the
rate at which photons diffuse sufficiently far from the resonance line
frequency to escape in the wings where the structure is optically thin.
The resulting photon scattering rate in the diffusion approximation
may greatly exceed the estimate Pl(0) in the free-streaming limit, for
which it is assumed that no resonance line photons emitted by the
source have been scattered out of the line of sight before reaching
the absorber.

We identify several factors, however, that may reduce the energy
density of the resonance line photons from the steady-state diffusion
approximation estimate for static structures:

(1) Internal expansion within the structure, characterized by the
dimensionless expansion parameter γ , will redshift the photons
into a red wing, where they will escape, on a time-scale much faster
than the diffusion time, resulting in a much reduced energy density.
In the diffusion approximation, the scattering rate will be reduced
compared with the γ = 0 case by a factor of (3a/πγ )/(x3

esc −
x3

inj) for γ � γ crit = 3a/(2π x3
esc), where xesc is the dimensionless

escape frequency at which photons escape the structure and xinj is
the frequency at which photons are predominantly received from
the source. Contraction within the structure may altogether prevent
photons from diffusing across the resonance line frequency.

(2) The scattering rate may be reduced by atomic recoil. Esti-
mating the magnitude of this effect, however, generally requires
including non-trivial higher order terms in the recoil parameter ε

than first order in the steady-state equation. We caution against in-
troducing atomic recoils into Monte Carlo calculations and other
steady-state solutions, as the results obtained may not be physi-
cally self-consistent if the solutions differ substantially from those
obtained for ε = 0.

(3) The time-scale to establish a steady state will typically exceed
the duration of high star formation rates in galaxies or the lifetime
of QSOs. As a consequence, the collision rate will be reduced
by factors of tens to thousands as compared with the steady-state
value.

As an illustration, consider the region around a bright QSO with
specific luminosity at the Lyman edge of 1031 erg s−1 Hz−1 pre-
heated by soft X-rays ahead of the ionization front to a mean tem-
perature of T IGM � 1800 K at a distance of 10 Mpc (Madau et al.
1997). According to equation (4), x1 � 200 at z = 8 (assuming h =
0.7). A structure 250 kpc across with a moderate overdensity of three
and internal temperature of Ta � 120 K will have a neutral hydro-
gen column density of NH I � 3 × 1020 cm−2 and escape frequency
xesc � 200, from equation (12). For a power-law spectrum ν−1.5,
equation (10) gives for the Lyα collision rate in the free-streaming
limit Pl(0) � 8.7 × 10−13 s−1, about an order of magnitude smaller
than the thermalization rate Pth. The steady-state value from equa-
tion (19) then gives Pl,ss � 10−8 s−1, well in excess of Pth. The time
to establish a steady state, however, is long. The scattering time of
Lyα photons in the structure is about ts � 8.5 × 104 s. According
to Fig. 7, the time for the radiation field to achieve a steady state is
then about 1017 s, or 3 Gyr, greatly exceeding the expected lifetime
of the QSO. If the QSO had illuminated the structure for as long as
0.1 Gyr, according to Fig. 6 the steady-state value must be reduced
by a factor of 0.05. The resulting scattering rate will still exceed
Pth. If the system has a peculiar velocity away from the QSO, the
rate could be quite different. Equation (24) shows that a peculiar
velocity of 140 km s−1, a plausible value, would shift the peak of
the radiation from the source received by the structure to the reso-
nance line frequency. The radiation field would then rapidly reach
its steady-state value, and Pl,ss would greatly exceed Pth.
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A much more overdense structure at the same distance from the
QSO would be able to achieve the steady-state scattering rate. For
example, a virialized structure 35 kpc across with an overdensity of
200 and temperature Ta � 1000 K would have a neutral hydrogen
column density of 3 × 1021 cm−2 and xesc � 220. The time for the
radiation field to reach a steady state would then be about 0.2 Gyr,
a plausible lifetime for the QSO.

By contrast, it may be difficult to achieve a steady state in a void.
For an IGM temperature T IGM � 100 K, x1 = 825 at z = 8. A region
3 Mpc across with a temperature of Ta = 10 K, and underdense
by a factor of 3 will have a neutral hydrogen column density of
4 × 1020 cm−2, xesc � 800 and a scattering time at line centre
of ts � 2.2 × 105 s. The time to reach a steady state is then
2100 Gyr. Even if the void is illuminated for as long as the age of the
Universe, the radiation field will be negligibly small compared with
its steady-state value. Since the void will expand, however, the inci-
dent radiation will be redshifted across the resonance line. Rybicki
& dell’Antonio (1994) estimate a characteristic time for redshifting
to dominate diffusion in an infinite homogeneous medium to be
τ γ � (a/γ 4)1/3. Voids expand somewhat faster than the mean Hub-
ble expansion. Adopting the Hubble constant at z = 8 for h = 0.7,
γ � 5 × 10−6. A steady state should be established for t � τ γ ts �
2 × 104 yr, and the steady-state scattering rate will then match the
free-streaming value, with Pl,ss/Pl(0) � a/(πγ x1) � 1, which may
be adequate for producing a 21-cm signature in the presence of
sufficient sources.

The examples above show that the effect of peculiar motions
may lead to an enhancement in the Lyα scattering rate over the
free-streaming limit and produce the required decoupling of TS

from TCMB. Even if the scattering rate is inadequate for inducing
decoupling throughout most of the structure, it may be adequate
along narrow loci within which the velocity field either permits
the resonance line photons to accumulate near the resonance line
frequency or shifts the resonance line frequency of the absorber to
matching the peak frequency of the incident radiation field from
the source as filtered through the IGM. We presented an example
of an accreting halo which produces a 21-cm signature along a
curved surface for which the impinging photons are received at the
resonance line frequency due to the infall velocity of the accreting
gas. Such a curved structure could be mistaken for a rim of neu-
tral gas outside an H II region in radio maps of the IGM. Similar
curved surfaces may form on the far side of voids from a distant
source.

As a consequence of the above effects, the 21-cm signature of
the IGM will not simply trace the density structure of the IGM,
but will trace the peculiar velocity structure as well. We have not
considered multiple sources. In the presence of a large number of
nearby sources, a greater fraction of the gas will be able to match the
incident radiation field through their peculiar motions. In addition,
the escaping radiation from the absorbers will contribute to the am-
bient radiation field. In due course, a metagalactic diffuse radiation
field may grow sufficiently strong to ensure that the WFE is capa-
ble of decoupling the spin temperature from the CMB temperature
throughout the IGM, and so ensure the production of a 21-cm signa-
ture everywhere. The effects described here suggest that in the early
stages, before any such metagalactic field has been established (and
it has yet to be demonstrated that such a field will be established),
the 21-cm signatures produced at the EDA, and possibly extend-
ing into the EoR, may only be interpreted with a thorough under-
standing of the evolution of the energy density of resonance line
photons within a clumpy medium, including the effects of peculiar
motions.
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A P P E N D I X A : O P T I C A L D E P T H T H RO U G H
D O P P L E R C O R E

Radiation from a source at zS received at z with frequency ν in the
range ν0[(1 + z)/(1 + zS)] < ν < ν0, where ν0 is the resonance line
frequency, would have passed through the resonance line frequency
en route to the absorber. To estimate the optical depth of the IGM
at these frequencies, it is convenient to approximate the Voigt line
profile as

φV(a, x) = π−1/2 exp(−x2); −xm < x < xm

= a

πx2
; |x| > xm, (A1)

where xm is the value of x = (ν − ν0)/�νD at which the two
approximations match. For T = 10, 100 and 1000 K, the values of
xm are 2.58, 2.83 and 3.05, respectively.

A photon of frequency ν at z will have x = ± xm at the redshift
z(±)
m , given by

ν

ν0

1 + z(±)
m

1 + z
= 1 ± xm

b

c
, (A2)

where b = (2kBT IGM/mH)1/2 is the Doppler parameter of the IGM at
temperature TIGM, assumed constant. (In principle, a turbulent ve-
locity component may be added in quadrature.) The optical depth in
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equation (1) may then be expressed as a sum of three contributions,
corresponding to the ranges x < −xm, −xm < x < xm and x > xm,

τν = σa

π�νD

∫ z
(−)
m

z

dz′ dlp

dz′ nl(z
′)

(�νD)2(
ν 1+z′

1+z
− ν0

)2

+ σ

π1/2�νD

∫ z
(+)
m

z
(−)
m

dz′ dlp

dz′ nl(z
′) exp

⎡
⎣−

(
ν 1+z′

1+z
− ν0

�νD

)2
⎤
⎦

+ σa

π�νD

∫ zS

z
(+)
m

dz′ dlp

dz′ nl(z
′)

(�νD)2(
ν 1+z′

1+z
− ν0

)2 . (A3)

The first and third terms are similar to equation (2). The domi-
nant term is the second, representing scattering through the line
core. Setting u = {[ν(1 + z′)/(1 + z) − ν0]/�νD}2, and assuming
b/c � 1 within the integrand, gives for this contribution

τ core
ν � 1

π1/2

σcn(0)

H0

1/2
m

(1 + z)3/2ν
1/2
0 ν−3/2γ

(
1

2
, x2

m

)

� 8000h−1(1 + z)3/2y−3/2γ

(
1

2
, x2

m

)
, (A4)

where y = ν/ν0, γ (t, x) = ∫ x

0 duut−1 exp(−u) is an incomplete
gamma function, and 
m = 0.3 and 
bh2 = 0.022 are assumed.
This will in general ensure that essentially no flux from the source
is received in the frequency range ν0(1 + z)/(1 + zS) < ν < ν0.
This is the Gunn–Peterson effect.

APPENDIX B: SLAB SOLUTION

The diffusion equation for the transfer of radiation through a static
slab in the Eddington approximation is given by Harrington (1973)
as

∂2nx(τ, σ )

∂τ 2
+ ∂2nx(τ, σ )

∂σ 2
= −3φ2

V(a, x)
G(τ )

4π
,

� −61/2δD(σ )
G(τ )

4π
, (B1)

for a spectrally flat source G(τ ), in the limit φV(a, x) � a/(πx2).
Here, σ is related to x through dx/dσ = (3/2)1/2 φV(a, x) and τ =

τ ν/φV(a, x) is the mean optical depth vertically through the slab.
The photon number density n(x) is expressed as nx(σ ). The last
line in equation (B1) follows from approximating 3φ2

V(a, x) as a
Dirac δ function, 61/2 δD(σ ), where the coefficient preserves the
normalization. The boundary conditions assumed are

∂nx(τ, σ )

∂τ

∣∣∣∣∣∣
±B

= ∓3

2
φV(a, x)nx(B, σ ) (B2)

and

nx(τ, σ ) → 0 for σ → ±∞. (B3)

For a uniformly distributed source of unit strength, Harrington
(1973) takes G = 1/(2B), where −B < τ < B describes the vertical
extent of the slab. In terms of the total optical depth at line centre,
τ 0 = 2BφV(a, 0) = 2B/π1/2, the source becomes G = π−1/2/τ 0.
The solution at the centre of the slab is

nx(0, x) = 61/2

2π3
S

(
exp

[
−21/2

(π

3

)3/2 |x|3
aτ0

])
, (B4)

where the function S(z) = z − z3/32 + z5/52 − +. . . � z for 0 <

z < 1.
The diffusion approximation equation (14) transforms to

d2nx(σ )

dσ 2
= −61/2AδD(σ ), (B5)

for a source S̃(x) = AδD(x) and adopting D(a, x) = φV(a, x).
Identifying A = G/(4π) = 1/(4π3/2τ 0) reproduces equation (B1)
with the τ -dependence suppressed. Expressing xesc = x∗(aτ 0)1/3,
the solution equation (18) becomes

nx(x) = x3
∗

12π1/2

(
1 − |x|3

x3∗aτ0

)
(|x| ≤ xesc), (B6)

for xinj = 0. Noting S(1) � 0.92, equating the values of equations
(B4) and (B6) at x = 0 gives x∗ � 0.92. The two profiles are very
similar, with equation (B4) forming an exponential tail with a cut-off
at x � 0.87(aτ 0)1/3 � 0.95xesc.
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