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ABSTRACT
We present an analysis of the clustering evolution of dark matter in four cold dark matter (CDM)

cosmologies. We use a suite of high-resolution, 17 million particle, N-body simulations that sample
volumes large enough to give clustering statistics with unprecedented accuracy. We investigate a Ñat
model with an open model also with and two models with )\ 1, one with the stan-)0\ 0.3, )0 \ 0.3,
dard CDM power spectrum and the other with the same power spectrum as the models. In all)0\ 0.3
cases, the amplitude of primordial Ñuctuations is set so that the models reproduce the observed abun-
dance of rich galaxy clusters by the present day. We compute mass two-point correlation functions and
power spectra over 3 orders of magnitude in spatial scale and Ðnd that in all of our simulations they
di†er signiÐcantly from those of the observed galaxy distribution, in both shape and amplitude. Thus, for
any of these models to provide an acceptable representation of reality, the distribution of galaxies must
be biased relative to the mass in a nontrivial, scale-dependent fashion. In the )\ 1 models, the required
bias is always greater than unity, but in the models, an ““ antibias ÏÏ is required on scales smaller)0\ 0.3
than D5 h~1 Mpc. The mass correlation functions in the simulations are well Ðt by recently published
analytic models. The velocity Ðelds are remarkably similar in all the models, whether they are character-
ized as bulk Ñows, single-particle, or pairwise velocity dispersions. This similarity is a direct consequence
of our adopted normalization and runs contrary to the common belief that the amplitude of the
observed galaxy velocity Ðelds can be used to constrain the value of The small-scale pairwise veloc-)0.ity dispersion of the dark matter is somewhat larger than recent determinations from galaxy redshift
surveys, but the bulk Ñows predicted by our models are broadly in agreement with most available data.
Subject headings : cosmology : theory È dark matter È methods : numerical

1. INTRODUCTION

Cosmological N-body simulations play a pivotal role in
the study of the formation of cosmic structure. In this meth-
odology, initial conditions are set at some early epoch by
using linear theory to calculate the statistical properties of
the Ñuctuations. Such a calculation requires some speciÐc
mechanism for generating primordial structure, together
with assumptions about the global cosmological param-
eters and the nature of the dominant dark matter com-
ponent. N-body simulations are then used to follow the
later evolution of the dark matter into the nonlinear regime
where it can be compared with the large-scale structure in
galaxy surveys. This general picture was developed fully in
the early 1980s, building upon then novel concepts like the
inÑationary model of the early universe and the proposition
that the dark matter is nonbaryonic. In the broadest sense,
it was conÐrmed in the early 1990s with the discovery of
Ñuctuations in the temperature of the microwave back-
ground radiation et al. The plausibility of the(Smoot 1992).
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hypothesis that the dark matter is nonbaryonic has
strengthened in recent years, as the gap between the upper
limit on the density of baryons from big bang nucleo-
synthesis considerations (e.g., Fan, & BurlesTytler, 1996)
and the lower limit on the total mass density from dynami-
cal studies (e.g., Yee, & Ellingson hasCarlberg, 1997)
become more Ðrmly established.

Cosmological N-body simulations were Ðrst employed to
study the large-scale evolution of dark matter on mildly
nonlinear scales, a regime that can be accurately calculated
using relatively few particles. Highlights of these early simu-
lations include the demonstration of the general principles
of nonlinear gravitational clustering Turner, &(Gott,
Aarseth evidence that scale-free initial conditions1979) ;
evolve in a self-similar way & Eastwood(Efstathiou 1981 ;

et al. while truncated power spectraEfstathiou 1985),
develop large-scale pancakes and Ðlaments &(Klypin
Shandarin & Melott White, &1983 ; Centrella 1983 ; Frenk,
Davis and the rejection of the proposal that the dark1983) ;
matter consists of light massive neutrinos Frenk, &(White,
Davis Davis, & Frenk1983 ; White, 1983).

During the mid-1980s, N-body simulations were exten-
sively used to explore the hypothesis, Ðrst elaborated by

that the dark matter consists of cold colli-Peebles (1982),
sionless particles. This hypothesisÈthe cold dark matter
(CDM) cosmologyÈhas survived the test of time and
remains the basic framework for most contemporary
cosmological work. The clustering evolution of dark matter
in a CDM universe was Ðrst studied in detail using rela-
tively small N-body simulations et al. hereafter(Davis 1985,
DEFW; Frenk et al. White et al.1985, 1988, 1990 ; 1987a,

& Melott In particular, DEFW con-1987b ; Fry 1985).
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cluded, on the basis of 32,768 particle simulations, that the
simplest (or standard) version of the theory in which the
mean cosmological density parameter )\ 1, and the gal-
axies share the same statistical distribution as the dark
matter, was inconsistent with the low estimates of the root
mean square (rms) pairwise peculiar velocities of galaxies
that had been obtained at the time from the CfA redshift
survey & Peebles They showed that much(Davis 1983).
better agreement with the clustering data available at the
time could be obtained in an )\ 1 CDM model if the
galaxies were assumed to be biased tracers of the mass, as in
the ““ high peak model ÏÏ of galaxy formation (Kaiser 1984 ;

et al. They found that an equally successfulBardeen 1986).
CDM model could be obtained if galaxies traced the mass
but and the geometry was either open or Ñat.)0^ 0.2
Many of the results of this Ðrst generation of N-body simu-
lations have been reviewed by Frenk (1991).

Following the general acceptance of cosmological simu-
lations as a useful technique, the subject expanded very
rapidly. To mention but a few examples in the general area
of gravitational clustering, further simulations have reexa-
mined the statistics of the large-scale distribution of cold
dark matter (e.g., Gelb & BertschingerPark 1991 ; 1994a,

Primack, & Holtzman et al.1994b ; Klypin, 1996 ; Cole
et al. conÐrming, on the whole, the1997 ; Zurek 1994),

results of the earlier, smaller calculations. Large simulations
have been used to construct ““ mock ÏÏ versions of real galaxy
surveys (e.g., et al. et al. etWhite 1987b ; Park 1994 ; Moore
al. or to carry out ““ controlled experiments ÏÏ designed1994)
to investigate speciÐc e†ects such as non-Gaussian initial
conditions & Cole or features in the power(Weinberg 1992)
spectrum & Shandarin Some attempts have(Melott 1993).
been made to address directly the issue of where galaxies
form by modeling the evolution of cooling gas gravita-
tionally coupled to the dark matter (e.g., Couch-Carlberg,
man, & Thomas & Ostriker1990 ; Cen 1992 ; Katz,
Hernquist, & Weinberg Summers, & Davis1992 ; Evrard,

et al. The success of the N-body1994 ; Jenkins 1997).
approach has stimulated the development of analytic
approximations to describe the weakly nonlinear behavior,
using, for example, second-order perturbation theory (e.g.,

et al. as well as Lagrang-Bernardeau 1994 ; Bouchet 1995),
ian approximations to the fully nonlinear regime (Hamilton
et al. Mo, & White & Gaztanaga1991 ; Jain, 1995 ; Baugh

Peacock & Dodds1996 ; 1994, 1996 ; Padmanabhan 1996).
Steady progress has also been achieved on the obser-

vational front with the completion of ever larger galaxy
surveys. The Ðrst real indication that the galaxy distribution
on large scales di†ers from that predicted by the standard
cold dark matter model was furnished by the Automatic
Plate Measuring Facility (APM) survey, which provided
projected positions and magnitudes for over a million gal-
axies. The angular correlation function of this survey has an
amplitude that exceeds the theoretical predictions by a
factor of about 3 on scales of 20È30 h~1 Mpc et al.(Maddox

This result has been repeatedly conÐrmed in redshift1990).
surveys of IRAS (e.g., et al. et al.Efstathiou 1990 ; Saunders

& Efstathiou and optical galaxies (e.g.,1990 ; Tadros 1995)
et al. & Efstathiou et al.Vogeley 1992 ; Tadros 1996 ; Tucker

et al. Modern redshift surveys have1997 ; Ratcli†e 1997).
also allowed better estimates of the peculiar velocity Ðeld of
galaxies in the local universe. The original measurement of
the pairwise velocity dispersion (which helped motivate the
concept of biased galaxy formation in the Ðrst place) has

been revised upward by Jing, & Bo� rner andMo, (1993)
Davis, & Primack but et al.Sommerville, (1997), Marzke

and Jing, & Bo� rner have argued that such(1995) Mo, (1996)
pairwise statistics are not robust when determined from
relatively small redshift surveys. The Las Campanas redshift
survey is, perhaps, the Ðrst that is large enough to give a
robust estimate of these statistics Mo, & Bo� rner(Jing, 1997).
Surveys of galaxy distances are also now beginning to map
the local mean Ñow Ðeld of galaxies out to large distances
(e.g., et al. et al.Lynden-Bell 1988 ; Courteau 1993 ; Mould
et al. et al. et al.1993 ; Dekel 1998 ; Giovanelli 1997 ; Saglia

et al. Both pairwise velocity dispersions1997 ; Willick 1997).
and mean Ñows allow an estimate of the parameter com-
bination (where b is the biasing parameterb 4 )00.6/bdeÐned in recent analyses seem to be converging on° 5) ;
values of b around 0.5.

In this paper, we present results from a suite of very large,
high-resolution N-body simulations. Our primary aim is to
extend the N-body work of the 1980s and early 1990s by
increasing the dynamic range of the simulations and calcu-
lating the low-order clustering statistics of the dark matter
distribution to much higher accuracy than is possible with
smaller calculations. Our simulations follow nearly 17
million particles, with a spatial resolution of a few tens of
kiloparsecs, and thus probe the strong clustering regime
while correctly including large-scale e†ects. Such improved
theoretical predictions are a necessary counterpart to the
high precision attainable with the largest galaxy data sets
like the APM survey and particularly the forthcoming gen-
eration of redshift surveys, the Sloan & Weinberg(Gunn

and two-degree Ðeld Our simulations do1995) projects.8
not address the issue of where galaxies form. They do,
however, reveal in quantitative detail the kind of biases that
must be imprinted during the galaxy formation process if
any of the models is to provide an acceptable match to the
galaxy clustering data. We examine four versions of the cold
dark matter theory including, for the Ðrst time, the qCDM
model. This has )\ 1 but more power on large scales than
the standard version, and it o†ers an attractive alternative
to the standard model if )\ 1. We focus on high-precision
determinations of the spatial and velocity distributions and
also carry out a comparison of the simulation results with
the predictions of analytic clustering models.

Many of the issues we discuss in this paper have been
addressed previously using large N-body simulations. Our
study complements and supersedes aspects of this earlier
work because our simulations are signiÐcantly larger and
generally have better resolution than earlier simulations
and also because we investigate four competing cosmo-
logical models in a uniform manner. Thus, for example,

& Bertschinger studied the standard )\ 1Gelb (1994b)
CDM model, but most of their simulations had signiÐcantly
poorer spatial resolution than ours, and the one with
similar resolution had only 1% of the volume. et al.Klypin

simulated a Ñat CDM model with a mass(1996) low-)0resolution at least 10 times poorer than ours or in volumes
that were too small to properly include the e†ects of rare
objects. These simulations missed a number of subtle, but
nevertheless important, e†ects that are revealed by our
larger simulations. Our analysis has some features in
common with the recent work of et al. whoCole (1997),

8 For more information, see (thishttp ://www.ast.cam.ac.uk/ 2dFgg/
web page is neither refereed nor maintained by the Astrophysical Journal).
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simulated a large suite of cosmologies in volumes that are
typically 3 times larger than ours but have 3È6 times fewer
particles and an e†ective mass resolution an order of magni-
tude less than ours. Their force resolution is also a factor of
3 times worse that ours. While Cole et al. focussed on
models in which the primordial Ñuctuation amplitude is
normalized using the inferred amplitude of the COBE
microwave background Ñuctuations, our models are nor-
malized so that they all give the observed abundance of rich
galaxy clusters by the present day. Our choice of normal-
ization is motivated and explained in ° 3.

This study is part of the program of the ““ Virgo Consor-
tium,ÏÏ an international collaboration recently constituted
with the aim of carrying out large N-body and N-body/
gasdynamic simulations of large-scale structure and galaxy
formation, using parallel supercomputers in Germany and
the United Kingdom. Some of our preliminary results are
discussed in et al. and further analysis of theJenkins (1997),
present simulations may be found in et al.Thomas (1997).

The cosmological parameters of our models are described
in and their numerical details in Color images illus-° 2 ° 3.
trating the evolution of clustering in our simulations are
presented in The evolution of the mass correlation func-° 4.
tions and power spectra are discussed and compared with
observations in °° and We compare these clustering5 6.
statistics with analytic models for the nonlinear evolution of
correlation functions and power spectra in The present-° 7.
day velocity Ðelds, both bulk Ñows and pairwise disper-
sions, are discussed in Our paper concludes in with a° 8. ° 9
discussion and summary (including a table) of our main
results.

2. COSMOLOGICAL MODELS

We have simulated evolution in four CDM cosmologies
with parameters suggested by a variety of recent observ-
ations. The shape of the CDM power spectrum is deter-
mined by the parameter, ! (see below) ; observationseq. [4]
of galaxy clustering, interpreted via the assumption that
galaxies trace the mass, indicate a value of !^ 0.2 (Maddox
et al. Efstathiou, & Sutherland1990 ; Maddox, 1996 ;

et al. In the standard version of the theory,Vogeley 1992).
which corresponds, for low baryon density, to!\ )0 h,9

the standard assumption that only photons and three mas-
sless species of neutrinos and their antiparticles contribute
to the relativistic energy density of the universe at late times.
For a given ) and h, smaller values of ! are possible, but
this requires additional physics, such as late decay of the
(massive) q-neutrino to produce an additional suprathermal
background of relativistic e- and k-neutrinos at the present
day Gelmini, & Silk This has the e†ect of(White, 1995).
delaying the onset of matter domination, leading to a
decrease in the e†ective value of !.

In addition to observations of large-scale structure, a
second consideration that has guided our choice of cosmo-
logical models is the growing evidence in favor of a value of

around 0.3. The strongest argument for this is the com-)0parison of the baryon fraction in rich clusters with the uni-
versal value required by big bang nucleosynthesis et(White
al. & Fabian The recently1993 ; White 1995 ; Evrard 1997).
determined abundance of hot X-rayÈemitting clusters at
z^ 0.3 also indicates a similar value of )0 (Henry 1997).

9 Here and below we denote HubbleÏs constant, by kmH0, h \H0/100
s~1 Mpc~1.

The strength of these tests lies in the fact that they do not
depend on uncertain assumptions regarding galaxy forma-
tion. Nevertheless, they remain controversial, and so, in
addition to cosmologies with we have also simu-)0\ 0.3,
lated models with )\ 1.

Three of our simulations have a power spectrum shape
parameter, !\ 0.21. One of these ("CDM) has )0\ 0.3
and the Ñat geometry required by standard models of inÑa-
tion, i.e., j 4 "/(3H2)\ 0.7 (where " is the cosmological
constant and H is HubbleÏs constant). The second model
(OCDM) also has but "\ 0. In both of these)0\ 0.3,
models we take h \ 0.7, which is consistent with a number
of recent determinations Freedman, & Mould(Kennicutt,

Our third model with !\ 0.21 (qCDM) has )\ 11995).
and h \ 0.5 ; this could correspond to the decaying neutrino
model mentioned above. Finally, our fourth model is stan-
dard CDM (SCDM), which has )\ 1, h \ 0.5, and
!\ 0.5. Thus, two of our models ("CDM and OCDM)
di†er only in the value of the cosmological constant, two
others ("CDM and qCDM) have the same power spectrum
and geometry but di†erent values of and two more)0,(qCDM and SCDM) di†er only in the shape of the power
spectrum.

Having chosen the cosmological parameters, we must
now set the amplitude of the initial Ñuctuation spectrum.

did this by requiring that the slope of the present-DEFW
day two-point galaxy correlation function in the simula-
tions should match observations. This was a rather crude
method, but one of the few practical alternatives with the
data available at the time. The discovery of Ñuctuations in
the temperature of the microwave background radiation by
COBE o†ered the possibility of normalizing the mass Ñuc-
tuations directly by relating these to the measured tem-
perature Ñuctuations on large scales. In practice, however,
the large extrapolation required to predict the amplitude of
Ñuctuations on scales relevant to galaxy clustering from the
COBE data makes this procedure unreliable because it
depends sensitively on an uncertain assumption about the
slope of the primordial power spectrum. A further source of
uncertainty is the unknown contribution to the COBE
signal from tensor (rather than scalar) modes. In spite of
these uncertainties, it is remarkable that the normalization
inferred from the simplest possible interpretation of the
COBE data is within about a factor of 2 of the normal-
ization inferred for standard CDM by from galaxyDEFW
clustering considerations.

A more satisfactory procedure for Ðxing the amplitude of
the initial mass Ñuctuations is to require that the models
match the observed abundance of galaxy clusters. The dis-
tribution of cluster abundance, characterized by mass,
X-ray temperature, or some other property, declines expo-
nentially and so is very sensitive to the normalization of the
power spectrum et al. Using the observed(Frenk 1990).
cluster abundance to normalize the power spectrum has
several advantages. First, it is based on data that are well
matched to the scales of interest ; second, it gives the value
of (the linearly extrapolated rms of the density Ðeld inp8spheres of radius 8 h~1 Mpc) with only a weak dependence
on the shape of the power spectrum if )\ 1 and no depen-
dence at all if )\ 1 Efstathiou, & Frenk and(White, 1993) ;
third, it does not require a particularly accurate estimate of
the abundance of clusters because of the strong sensitivity of
abundance on The disadvantage of this method is that itp8.is sensitive to systematic biases arising from inaccurate
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determinations of the particular property used to character-
ize the abundance. However, the consistency of the esti-
mates of when the abundance of clusters is characterizedp8by total mass & Arnaud by mass within the(Henry 1991),
Abell radius et al. or by the X-ray temperature(White 1993),
of the intracluster medium Cole, & Frenk(Eke, 1996 ; Viana
& Liddle suggests that systematic e†ects are likely to1996)
be small.

We adopt the values of recommended by et al.p8 Eke
from their analysis of the local cluster X-ray tem-(1996)

perature function. This requires

p8 \ (0.52^ 0.04))0~0.52`0.13)0 (Ñat models) (1)

or

p8\ (0.52^ 0.04))0~0.46`0.1)0 (open models) . (2)

These values of are consistent with those obtained fromp8the slightly di†erent analyses carried out by et al.White
& Liddle and(1993), Viana (1996), Henry (1997).

The resulting values of for our simulations are listed inp8For reference, these values may be compared toTable 1.
those required by the COBE data under the simplest set of
assumptions, namely that the primordial power spectrum is
a power law with exponent n \ 1 (the Harrison-Zeldovich
spectrum) and that there is no contribution at all from
tensor modes. For our chosen cosmologies, the 4 year
COBE-Di†erential Microwave Radiometer (DMR) data
imply values of of 1.21, 0.45, 1.07, and 0.52 et al.p8 (Go� rski

et al. for SCDM, qCDM, "CDM, and1995 ; Ratra 1997)
OCDM, respectively. Thus, our qCDM and "CDM models
are roughly consistent with the conventional COBE nor-
malization, but our adopted normalizations for the SCDM
and OCDM models are D40% lower and D60% higher,
respectively, than the COBE values. These numbers are
consistent with those obtained by et al. fromCole (1997)
their grid of large COBE-normalized cosmological N-body
simulations with di†erent parameter values. As may be seen
from their Figure 4, there is only a small region of param-
eter space in which the conventional COBE-normalized
CDM models produce the correct abundance of clusters.
Flat models require while open models0.25¹)0¹ 0.4,
require 0.4 ¹)0 ¹ 0.5.

To summarize, we have chosen to simulate four cosmo-
logical models that are of interest for a variety of reasons.
Our three Ñat models are consistent with standard inÑation-
ary theory, and our open model can be motivated by the
more exotic ““ open bubble ÏÏ version of this theory (Garcia-

& Linde By construction, all of our modelsBellido 1997).
approximately reproduce the observed abundance of rich
galaxy clusters. The "CDM model has a value of in line)0

with recent observational trends and a value of ! that is
close to that inferred from galaxy clustering. It has the addi-
tional advantages that its normalization agrees approx-
imately with the conventional COBE normalization and, for
our adopted value of it has an age that is comfortably inH0,accord with traditional estimates of the ages of globular
clusters et al. but see et al.(Renzini 1996 ; Jimenez 1996).
The OCDM model shares some of these attractive features
but allows us also to investigate the e†ects of the cosmo-
logical constant on the dynamics of gravitational clustering.
Its normalization is higher than required to match the con-
ventional COBE value, but this could be rectiÐed by a
modest increase in to about 0.4È0.5. The qCDM model)0is as well motivated by galaxy clustering data, as are the

models, and has the advantage that it allows us tolow-)0investigate the dynamical e†ects of changing while)0keeping the shape of the initial power spectrum Ðxed.
Finally, the traditional SCDM model is an instructive
counterpart to its qCDM variant.

3. THE SIMULATIONS

Our simulations were carried out using a parallel, adapt-
ive particle-particle/particle-mesh code developed by the
Virgo Consortium et al. & Couchman(Pearce 1995 ; Pearce

This is identical in operation to the publicly released1997).
serial version of ““ Hydra ÏÏ Pearce, & Thomas(Couchman,

see Thomas, & Pearce for a detailed1996 ; Couchman, 1995
description). The simulations presented in this paper are the
Ðrst carried out by the Virgo Consortium and were exe-
cuted on either 128 or 256 processors of the Cray T3Ds at
the Edinburgh Parallel Computing Centre and the Rechen-
zentrum, Garching.

The force calculation proceeds through several stages.
Long-range gravitational forces are computed in parallel by
smoothing the mass distribution onto a mesh, typically con-
taining 5123 cells, which is then fast Fourier transformed
and convolved with the appropriate GreenÏs function. After
an inverse fast Fourier transform, the forces are inter-
polated from the mesh back to the particle positions. In
weakly clustered regions, short-range (particle-particle)
forces are also computed in parallel using the entire pro-
cessor set. Hydra recursively places additional higher
resolution meshes, or reÐnements, around clustered regions.
Large reÐnements containing over ^105 particles are exe-
cuted in parallel by all processors while smaller reÐnements,
which Ðt within the memory of a single processor, are most
efficiently executed using a task farm approach. The parallel
version of Hydra employed in this paper is implemented in
CRAFT, a directive based parallel Fortran compiler devel-
oped for the Cray T3D supercomputer Research Inc.(Cray

TABLE 1

COSMOLOGICAL AND NUMERICAL PARAMETERS OF RUNS

Number of mp lsoftRun )0 " h ! p8 (h~1 Mpc) Particles (h~1 M
_

) (h~1 Kpc)

SCDM1 . . . . . . . . 1.0 0.0 0.5 0.50 0.51 239.5 2563 2.27] 1011 36
qCDM1a . . . . . . . 1.0 0.0 0.5 0.21 0.51 239.5 2563 2.27] 1011 36
qCDM1ab . . . . . . 1.0 0.0 0.5 0.21 0.51 239.5 2563 2.27] 1011 36
"CDM1 . . . . . . . . 0.3 0.7 0.7 0.21 0.90 239.5 2563 6.86] 1010 25
OCDM1 . . . . . . . 0.3 0.0 0.7 0.21 0.85 239.5 2563 6.86] 1010 30
SCDM2 . . . . . . . . 1.0 0.0 0.5 0.50 0.51 84.5 2563 1.00] 1010 36
qCDM2 . . . . . . . . 1.0 0.0 0.5 0.21 0.51 84.5 2563 1.00] 1010 36
"CDM2 . . . . . . . . 0.3 0.7 0.7 0.21 0.90 141.3 2563 1.40] 1010 30
OCDM2 . . . . . . . 0.3 0.0 0.7 0.21 0.85 141.3 2563 1.40] 1010 30
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We have checked that the introduction of mesh1900).
reÐnements in high-density regions does not introduce inac-
curacies in the computation by redoing our standard
qCDM simulation using a parallel P3M code (without
reÐnements). The two-point correlation functions in these
two simulations di†ered by less than 0.5% over the range
0.1È5 h~1 Mpc.

3.1. Simulation Details
Initial conditions were laid down by imposing pertur-

bations on an initially uniform state represented by a
““ glass ÏÏ distribution of particles generated by the method of

Using the algorithm described byWhite (1996). Efstathiou
et al. which is based on the approx-(1985), Zeldovich (1970)
imation, a Gaussian random Ðeld is set up by perturbing the
positions of the particles and assigning them velocities
according to growing mode linear theory solutions. Individ-
ual modes are assigned random phases, and the power for
each mode is selected at random from an exponential dis-
tribution with mean power corresponding to the desired
power spectrum, *2(k).

Following convention, we deÐne thePeeblesÏ (1980)
dimensionless power spectrum, *2(k), as the power per
logarithmic interval in spatial frequency, k :

*2(k) 4
V

(2n)3 4nk3 o 2d
k
o2 , (3)

where is the power density, and V is the volume. If theo d
k
o2

primordial power spectrum is of the form theno d
k
o2 P kn,

the linear power spectrum at a later epoch is given by
*2(k) \ kn`3T 2(k, t), where T (k, t) is the transfer function.
The standard inÑationary model of the early universe pre-
dicts that n ^ 1 & Pi and we shall take n \ 1.(Guth 1981),
For a cold dark matter model, the transfer function depends
on the values of h and the mean baryon density, We use)

b
.

the approximation to the linear CDM power spectrum
given by & EfstathiouBond (1984),

*2(k)\ Ak4
M1 ] [aq ] (bq)3@2 ] (cq)2]lN2@l , (4)

where q \ k/!, a \ 6.4 h~1 Mpc, b \ 3 h~1 Mpc, c\ 1.7
h~1 Mpc, and l\ 1.13. The normalization constant, A, is
chosen by Ðxing the value of as discussed inp8 ° 2.

For our models, the analytic approximation of equation
provides a good approximation to the accurate numeri-(4)

cal power spectrum calculated by & ZaldarriagaSeljak
using their code For example, setting(1996) CMBFAST.10

h \ 0.7 and in our "CDM and OCDM and)
b
\ 0.026

normalizing to the same value of we Ðnd that thep8,maximum di†erence at small scales between the Ðt of
and the output of CMBFAST is 13% in powerequation (4)

or 6% in amplitude. These numbers are smaller for a lower
value of or a small increase in h. These di†erences are)

bcomparable to those induced by plausible changes in or)
bh. (For example, for a "CDM model, the ratio of the p8-CMBFAST power spectra for andnormalized )

b
\ 0.01

respectively, is 1.08 at the Nyquist frequency of)
b
\ 0.03,

our simulation volumes [k \ 3.36 h Mpc~1] and 0.85 at the
fundamental frequency [k \ 0.0262 h Mpc~1] ; if is kept)

b

10 Publicly available at http ://arcturus.mit.edu :80/D matiasz/
CMBFAST This website contains information that has not/cmbfast.html.
been refereed, neither is it maintained by the Astrophysical Journal.

Ðxed but h is allowed to vary between 0.67 and 0.73, these
ratios become 1.08 and 0.9, respectively.) Similarly, we set
up our qCDM model simply by changing the value of ! in

This gives a satisfactory Ðt provided that theequation (4).
length-scale introduced in the power spectrum by the decay
of the q-neutrino is smaller than Nyquist frequency of the
simulation volume. This requires the mass of the decaying
particle to be in excess of about 10 keV & Efstathiou(Bond

Thus, over the range of wavenumbers relevant to our1991).
simulations, gives a good, but not perfect,equation (4)
approximation to the true qCDM power spectrum for a
broad one-dimensional subset of the two-dimensional
mass-lifetime space for the q-neutrino (see et al.White 1995).
Again, these di†erences are small compared to those
induced by changes, similar to those above, in and h.)

bFinally, as discussed above, the normalization of the power
spectrum from the cluster abundance is uncertain by at least
15% (1 p) et al. These various uncertainties limit(Eke 1996).
the accuracy with which the dark matter distribution can be
calculated at the present time.

For each cosmological model, we analyze two simula-
tions of regions of di†ering size. To facilitate inter-
comparison, we employed the same random number
sequence to generate initial conditions for all of these simu-
lations. To test for Ðnite volume e†ects, however, we carried
out an additional simulation of the qCDM model, this time
using a di†erent realization of the initial conditions. In the
Ðrst set of simulations (which includes the extra qCDM
model), we adopted a box length of L \ 239.5 h~1 Mpc.
The gravitational softening length was initially set to 0.3
times the grid spacing and was kept constant in comoving
coordinates until it reached the value given in atTable 1,
z^ 3. Thereafter, it was kept constant in physical units.
(The functional form of the gravitational softening used is
that given by & Eastwood the values weEfstathiou 1981 ;
quote correspond to the softening scale of a Plummer
potential, which matches the actual force law asymp-
totically at both large and small scales. The actual force is
53.6% of the full 1/r2 force at one softening length and more
than 99% at two softening lengths.) In the second set of
simulations, the particle mass in solar masses (rather than
the volume) was kept constant in all four models, and the
gravitational softening was taken to be either 30 or 36 h~1
kpc in physical units (after initially being kept Ðxed in com-
oving coordinates as before). The mass resolution in these
simulations is a factor of 3È20 better than in the Ðrst set.
The large box simulations are large enough to give
unbiased results and relatively small sampling Ñuctuations
for all of the statistics we study, with the exception of large-
scale bulk Ñows. For example, on scales less than 5 h~1
Mpc, the typical di†erences in the correlation function and
pairwise velocities of the two qCDM realizations are only
about 2%. We use the large box simulations for most of our
analysis of large-scale clustering and velocities (°° 5, 6, 8).
The smaller volume simulations, on the other hand, resolve
structures down to smaller mass scales. We use these to test
the e†ects of numerical resolution and for a comparison
with analytic models in where special emphasis is given° 7,
to the strong clustering regime. All of our simulations have
16.7 million particles. The number of time steps varied
between 613 and 1588. The SCDM and qCDM simulations
were started at z\ 50 ; the OCDM were started at z\ 119,
and the "CDM at z\ 30. The parameters of our simula-
tions are listed in Table 1.
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4. SLICES THROUGH THE SIMULATIONS

Figures (Plates 1È3) show slices through the dark1È3
matter distribution in our four models at three di†erent
redshifts : z\ 0, 1, and 3. The slices are 239.5 h~1 Mpc on a
side and have thickness 1/10 of the side length. The project-
ed mass distribution in these slices was smoothed adap-
tively onto a Ðne grid employing a variable kernel technique
similar to that used to estimate gas densities in smoothed
particle hydrodynamics.

At z\ 0, the general appearance of all of the models is
similar because, by construction, the phases of the initial
Ñuctuations are the same. The now-familiar pattern of inter-
connected large-scale Ðlaments and voids is clearly appar-
ent. However, at the high resolution of these simulations,
individual galactic dark halos are also visible as dense
clumps of a few particles. On larger scales, the higher Ñuc-
tuation amplitude in the "CDM and OCDM models is
manifest in sharper Ðlaments and larger voids compared to
the SCDM and qCDM models. Because of their higher nor-
malization, the models also have more small-scalelow-)0power than SCDM and qCDM, and this results in tighter
virialized clumps. The linearly evolved power spectra of
"CDM and OCDM are almost identical, and so the
primary di†erences between them reÑect their late-time
dynamics, dominated by the cosmological constant in one
case and by curvature in the other. In OCDM, structures of
a given mass collapse earlier and so are more compact than
in "CDM. The Ðne structure in SCDM and qCDM is
similar, but since the relative amounts of power in these
models cross over at intermediate scales, clumps are slightly
fuzzier in the qCDM case.

The large-scale di†erences among the models are much
more apparent at z\ 1. There is substantially more evolu-
tion for )\ 1 than for in the former case, the linearlow-)0 ;
growth factor is 0.50 of the present value, whereas in
"CDM and OCDM, it is 0.61 and 0.68, respectively. Thus,
OCDM has the most developed large-scale structure at
z\ 1, while "CDM is intermediate between this and the
two )\ 1 models. By z\ 1, the OCDM model has already
become curvature dominated ()\ 0.46), but the cosmo-
logical constant is still relatively unimportant in the "CDM
model ()\ 0.77).

At the earliest epoch shown, z\ 3, the di†erences
between the models are even more striking. The linear
growth factor for SCDM and qCDM is 0.25, while for
"CDM it is 0.32 and for OCDM 0.41 of its present value.
The SCDM model is very smooth, with only little Ðne struc-
ture. The qCDM model has some embryonic large-scale
structure, but it is even more featureless than SCDM on the
Ðnest scales. By contrast, structure in the models,low-)0particularly OCDM, is already well developed by z\ 3.

5. THE TWO-POINT CORRELATION FUNCTIONS

In this section we discuss the redshift evolution of the
mass two-point correlation function, m(r), and compare the
results at z\ 0 with estimates for the observed galaxy dis-
tribution.

For each volume, we have a single simulation from which
to estimate m(r). Since this volume is assumed to be periodic,
contributions to the correlation function from long-
wavelength modes are poorly sampled. In principle, it is
possible to add a systematic correction, based on the linear
theory growth of long wavelength modes (see the Appendix

for a derivation) :

*m(r) \ ;
nE(0,0,0)

= [ mlin( o r ] L n o ) , (5)

where L is the simulation box length, and is the linearmlintheory correlation function given in terms of the linearly
evolved power spectrum, by*lin2 ,

mlin(r) \
P
0

=
*lin2
Asin kr

kr
B dk

k
. (6)

This expression gives a correction that is negligible for
most of our simulation volumes. For example, for qCDM2,
our simulation with the smallest box size (L \ 84.5 h~1
Mpc) and substantial large-scale power (!\ 0.21), the
correction is only 0.01 at small separations. The expression
in is approximately a factor of 3 smaller forequation (5)
the 84.5 h~1 Mpc volume than the heuristic correction,

*2(sin kr/kr)dk/k, used by et al. In any/02n@L Klypin (1996).
case, for a single simulation, there is also a random error
associated with the fact that the power originally assigned
to each mode is drawn from a distribution. This introduces
a random scatter in the correlation function which is com-
parable to the correction in The most directequation (5).
way of assessing the importance of this e†ect in our simula-
tions is by comparing two or more realizations of the same
model. For the case of qCDM, we have carried out a second
simulation with identical parameters to the Ðrst one but
using a di†erent random number seed to set up initial con-
ditions. The di†erence between the correlation functions of
these two simulations is less than 2% on all scales below 5
h~1 Mpc, comparable to the thickness of the line used to
plot them in Figure 5 below.

On small scales, the amplitude of the two-point corre-
lation function is suppressed by resolution e†ects due to the
use of softened gravity and Ðnite mass resolution. To test
the Ðrst of these e†ects, we performed a series of three simu-
lations of the qCDM model with 1283 particles, identical
initial conditions, the same mass resolution as the qCDM1a
simulation, and three di†erent values of the gravitational
softening length. The resulting two-point correlation func-
tions are shown in The e†ects on the correlationFigure 4.
function at twice the softening length are very small. Simi-
larly, mass resolution e†ects in our simulations are small, as
we discuss later in this section and in ° 7.

shows the mass two-point correlation functionsFigure 5
in our four cosmological models at four di†erent epochs.
These data were computed using the simulations SCDM1,
qCDM1a, "CDM1, and OCDM1. As the clustering grows,
the amplitude of the correlation function increases in a non-
linear fashion. The overall shape of m(r) is similar in all the
models. In all cases, d2m/dr2\ 0 on scales below r D 500
h~1 kpc, and there is an inÑection point on scales of a few
megaparsecs. The Ñattening o† of m(r) at small pair separa-
tions is unlikely to be a numerical artifact. It occurs on
scales that are several times larger than the gravitational
softening length and are well resolved. That this change in
slope is not due to mass resolution e†ects (associated, for
example, with the limited dynamic range of the initial
conditions) is demonstrated by the excellent agreement
between the small-scale behavior of the correlation func-
tions plotted in and the correlation functions ofFigure 5
our smaller volume simulations that have 3È20 times better
mass resolution (see Fig. 8 below; see also Weinberg,Little,
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FIG. 4.ÈE†ect of the gravitational softening length on the two-point
correlation function. The curves show results for three 1283 particle simu-
lations of the qCDM model with identical initial conditions but with gravi-
tational softening lengths of 30, 60, and 120 h~1 kpc, respectively. Beyond
twice the softening length, the e†ect on the correlation function is small.

& Park for a discussion of why neglecting the power1991
below the Nyquist frequency of the initial conditions has
little e†ect on nonlinear evolution). Rather, the Ñattening of
m(r) at small pair separations seems to be due to the tran-
sition into the ““ stable clustering ÏÏ regime. We return to this
point in where we compare the correlation functions in° 7,
the simulations with analytic models for nonlinear evolu-
tion.

The mass correlation functions at z\ 0 (thick solid lines)
may be compared with the observed galaxy correlation
function. The largest data set available for this comparison
is the APM galaxy survey of over 106 galaxies, for which

has derived the two-point correlation func-Baugh (1996)
tion, by inverting the measured angular correlationm

g
(r),

function, w(h). The advantage of this procedure is that it
gives a very accurate estimate of the correlation function in
real space, but the disadvantage is that it requires assump-
tions for the redshift distribution of the survey galaxies and
for the evolution of in the (relatively small) redshiftm

g
(r)

range sampled by the survey. The solid line with error bars
in assumes that clustering on all scales is Ðxed inFigure 5
comoving coordinates, while the dotted line assumes that
clustering evolves in proportion to the scale factor. Changes
in the assumed redshift distribution produce a systematic
scaling of the entire correlation function. On scales Z20È30
h~1 Mpc, the statistical error bars may underestimate the
true uncertainty in since residual systematic errors inm

g
(r),

the APM survey on these scales cannot be ruled out
et al.(Maddox 1996).

None of the model mass correlation functions match the
shape of the observed galaxy correlation function. For the
galaxies, is remarkably close to a power law over 4m

g
(r)

orders of magnitude in amplitude above at largerm
g
\ 1 ;

pair separations, it has a broad shoulder feature. By con-
trast, the slope of the mass correlation functions in the

models varies systematically, so that none of the theoretical
curves is adequately Ðt by a single power law over a sub-
stantial range of scales. We have checked (C. M. Baugh
1997, private communication) that the inversion procedure
used to derive the APM from the measured w(h) doesm

g
(r)

not artiÐcially smooth over features that may be present in
the intrinsic clustering pattern. We have also checked that
features present in the model m(r) are still identiÐable in the
corresponding w(h) derived with the same assumptions used
in the APM analysis. The di†erences in shape and ampli-
tude between the theoretical and observed correlation func-
tions may be conveniently expressed as a ““ bias function.ÏÏ
We deÐne the bias as the square root of the ratio of the
observed galaxy to the theoretical mass correlation func-
tions at z\ 0, and plot this function atb(r) 4 [m

g
(r)/m(r)]1@2

the bottom of each panel in At each pair separa-Figure 5.
tion, b(r) gives the factor by which the galaxy distribution
should be biased in order for the particular model to match
observations. For all the models considered here, the
required bias varies with pair separation.

The standard CDM model, illustrated in the top left
panel, shows the well-known shortfall in clustering ampli-
tude relative to the galaxy distribution on scales greater
than 8 h~1 Mpc. The required bias is close to unity on
scales of 0.1È1 h~1 Mpc but then rises rapidly with increas-
ing scale. The choice of !\ 0.21 for the other models leads
to mass correlation functions with shapes that are closer to
that of the galaxies on large scales. For these models, the
slope of the bias function is relatively modest on scales Z10
h~1 Mpc. The large-scale behavior of b(r), however, may be
a†ected by possible systematic errors in the APM w(h) at
large pair separations and by Ðnite box e†ects in the simula-
tions. The qCDM model, which has the smallest amount of
small-scale power, requires a signiÐcant positive bias every-
where, b ^ 1.5, and this is approximately independent of
scale from D0.2È10 h~1 Mpc. At smaller pair separations,
the bias increases rapidly. As discussed in the next section,
the power spectrum, which is less a†ected by Ðnite box
e†ects than the correlation function, indicates that a con-
stant bias for the qCDM model is consistent with the APM
data even on scales larger than 10 h~1 Mpc. Thus, uniquely
among the models we are considering, the shape of the
correlation function and power spectrum in the qCDM
model are quite similar to the observations on scales Z 0.2
h~1 Mpc.

In the "CDM and OCDM models, the amplitude of the
dark matter, m(r), is close to unity at r \ 5 h~1 Mpc, the pair
separation at which is also close to unity. However, atm

g
(r)

small pair separations, the mass correlation function has a
much steeper slope than the galaxy correlation function,
and, as result, m(r) rises well above the galaxy data. Thus,
our low-density models require an ““ antibias,ÏÏ i.e., a bias less
than unity, on scales ^0.1È4 h~1 Mpc. A similar conclusion
was reached by et al. from a lower resolutionKlypin (1996)
N-body simulation of a similar "CDM model. As pointed
out by et al. the requirement that galaxies beCole (1997),
less clustered than the mass must be regarded as a negative
feature of these models. Even if a plausible physical process
could be identiÐed that would segregate galaxies and mass
in this manner, dynamical determinations of from)0cluster mass-to-light ratios tend to give values of if)0^ 0.2
the galaxies are assumed to trace the mass (e.g., etCarlberg
al. If, instead, the galaxy distribution were actually1997).
antibiased, this argument would result in an overestimate of
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FIG. 5.ÈEvolution of the mass correlation function, m(r). The top panels show the two-point correlation function in our four models at the redshifts given
in the legend, with results at z\ 0 plotted as a heavy solid line. The galaxy correlation function for the APM galaxy survey, determined by isBaugh (1996),
shown as a solid line with error bars and as a dotted line. The former corresponds to the assumption that clustering is Ðxed in comoving coordinates and the
latter to the assumption that clustering evolves in proportion to the scale factor. The small panels below each m(r) plot show the square root of the ratio of
the observed galaxy to the theoretical mass correlation functions at z\ 0. This ratio is the bias in the galaxy distribution that would be required for
the particular model to match the observations.

the true value of Models with smaller than our)0. )0adopted value of 0.3 require even larger values of andp8,therefore even larger antibias, in order to match the
observed abundance of galaxy clusters. In our )\ 1
models, the required bias always remains above unity and
is, in fact, quite close to unity over a large range in scales.

This is an attractive feature of these models that may help
reconcile them with virial analyses of galaxy clusters (Frenk
et al. and results, in part, from the relatively low1996),
normalization required to match the cluster abundance.
However, the bias we infer is only about 60% of the value
required by et al. to obtain acceptable clusterFrenk (1990)
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mass-to-light ratios in an )\ 1 CDM cosmology with
““ high peak ÏÏ biasing.

It seems almost inevitable that the process of galaxy for-
mation and subsequent dynamical evolution will bias the
galaxy distribution relative to the mass in a complicated
way. Indeed, a variety of biasing mechanisms have been
discussed in the past. These are essentially of two types. In
the Ðrst, galaxy formation is assumed to be modulated, for
example, by the local value of the density smoothed on
cluster scales, as in the high peak bias model of galaxy
formation et al. or by the e†ects of(Bardeen 1986 ; DEFW),
a previous generation of protogalaxies (e.g., & ReesDekel

Such local processes tend to imprint features on the1987).
galaxy correlation function on small and intermediate
scales, but and have arguedColes (1993) Weinberg (1995)
that they do not appreciably distort the shape of the mass
correlation function on large scales. This, however, may be
achieved by some form of nonlocal bias as in the
““ cooperative galaxy formation ÏÏ scheme proposed by

et al. see also & White In thisBower (1993 ; Babul 1991).
case, a match to the APM w(h) on large scales is possible
with a suitable choice of model parameters. The second type
of biasing mechanism is of dynamical origin. An example is
the ““ natural bias ÏÏ found in the CDM simulations of White
et al. who showed that the dependence of Ñuctua-(1987b),
tion growth rate on mean density naturally biases the dis-
tribution of massive dark halos toward high-density regions
(see also & Ostriker Another example is dynami-Cen 1992).
cal friction which, as Loeb, & Turner andRichstone, (1992)

et al. among others have shown, can segregateFrenk (1996)
galaxies from mass in rich clusters. Dynamical biases of this
type tend to enhance the pair count at small separations,
Ñattening the bias function on scales of a few hundred kilo-
parsecs. Mergers, on the other hand, have the opposite
e†ect and may even give rise to an antibias of the kind
required in our models (cf. et al. Thus,low-)0 Jenkins 1997).
it seems likely that the correlation function of the galaxies
that would form in our models will di†er from the corre-
lation function of the mass. Nevertheless, the Ðne tuning
required to end up with an almost featureless power-law
correlation function over at least 2 orders of magnitude in
scale seems a considerable challenge for this general class of
models.

6. THE POWER SPECTRA

For an isotropic distribution in k-space, the power spec-
trum is related to the correlation function by

m(r) \
P
0

=
*2(k)

Asin kr
kr
B dk

k
. (7)

To measure the power spectrum of our simulations over a
wide range of scales, we use a technique that is efficient both
in terms of computational expense and memory. To evalu-
ate the power spectrum on the smallest scales, we divide the
computational volume into m3 equal cubical cells and
superpose the particle distributions of all m3 cells. The
Fourier transform of this density distribution, which is now
periodic on a scale L /m, recovers exactly the power present
in the full simulation volume in modes that are periodic on
the scale L /m. These modes form a regular grid of spacing
2mn/L in k-space. The estimate of *2(r) is obtained by
averaging the power of large numbers of modes in spherical
shells. Provided these modes have, on average, representa-

tive power, this gives an unbiased estimate of the power
spectrum of the simulation. In principle, the power of all the
modes in the full simulation can be obtained by applying a
complex weighting, exp (2nin Æ r/L ), to a particle at position
r during the charge assignment prior to taking the discrete
fast Fourier transform. This charge assignment creates a
uniform translation in k-space by 2nn/L . With a suitable
choice of n, one can recover a di†erent set of modes from the
original simulation, always with a spacing of 2mn/L in k-
space. Applying this method m3 times allows the recovery of
all modes present in the simulation, although there is no
longer any gain in CPU time over a single large fast Fourier
transform. Because of the sparse sampling of k-space, the
estimate of the power on the scale L /m has a large variance.
However, by using a 643 mesh and evaluating the Fourier
transform for several values of m, one can evaluate the
power spectrum on any scale with adequate sampling and
avoid this problem except for m\ 1.

The assumption that these sparsely sampled modes carry
representative power is true by construction in the initial
conditions. The violation of this assumption as a result of
nonlinear evolution is very unlikely because it would
require a detailed large-scale ordering to develop over the
simulation. This may, however, come about artiÐcially ; for
example, the MAPS procedure of & BertschingerTormen

see also which is designed to extend the(1996; Cole 1997),
dynamic range of an N-body cosmological simulation,
requires periodically replicating a simulation and then
modifying the large-scale modes so as to e†ectively add
large-scale power not present in the original simulation. In
this case, the large-scale order that arises by the replication
introduces signiÐcant Ðne-scale structure in k-space (Cole

and one should be wary when applying this method.1997),
shows the time evolution of the power spectrumFigure 6

for the same four simulations (L \ 239.5 h~1 Mpc) illus-
trated in As before, two graphs are shown for eachFigure 5.
model. The larger one gives the time evolution of the power
spectrum, plotted at four di†erent epochs. The z\ 0 results
may be compared with the three-dimensional power spec-
trum of the APM galaxy survey & Efstathiou(Baugh 1993).
As for the correlation function, two versions of the APM
power spectrum are plotted, one assuming that the clus-
tering pattern remains Ðxed in comoving coordinates (solid
curve with error bars) and the other assuming that it evolves
in proportion to the scale factor (dotted curve). For wave-
numbers k \ 0.086 h/Mpc, we have plotted the linear
theory power spectrum rather than the simulation results
since the sparse sampling of the modes with wavelength
comparable to the simulation box size gives rise to spurious
Ñuctuations. The linear extrapolation can be seen to join
smoothly onto the actual power spectrum on these scales.
The smaller panels show the square root of the ratio of the
APM galaxy power spectrum to that of the dark matter in
the simulation at z\ 0. As before, this is the scale-
dependent bias required in the galaxy distribution for a
particular model to be a good match to the APM data.

Comparison of the APM data with the power spectrum
of the dark matter in the di†erent cosmological models
brings out essentially the same features as the correspond-
ing comparison with the correlation function. In the SCDM
model, the dark matter power spectrum falls below that of
the galaxies at small wavenumbers, requiring a bias func-
tion that increases rapidly at small k. The shape of the
power spectrum in the models is similar to that oflow-)0
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FIG. 6.ÈEvolution of the power spectrum of the dark matter in the simulations. The large panels show the power spectrum evaluated at the redshifts
given in the Ðgure legend, with results at z\ 0 shown as a solid line. The solid line with error bars and the dotted line are estimates of the power spectrum of
the APM galaxy survey obtained assuming, respectively, that clustering is Ðxed in comoving coordinates or that it grows with the scale factor &(Baugh
Efstathiou The small panels show the square root of the ratio of the APM galaxy power spectrum to the present-day dark matter spectrum. This ratio1991).
is the bias in the galaxy distribution required for the model to match the APM data. For k \ 0.086 h Mpc~1, the linear theory power spectrum has been
plotted, rather than the actual spectrum, which is noisy due to the small number of modes that contribute to each bin.

the APM galaxies only for k \ 0.1 h/Mpc ; at larger k the
dark matter distribution has more power than the galaxy
distribution, requiring a bias less than unity. Only the
qCDM model has a dark matter power spectrum whose
shape matches that of the galaxy data over a wide range of
scales. The required bias in this case is approximately con-
stant for 0.02 [ k/h Mpc~1 [ 10.

7. COMPARISON WITH ANALYTIC PREDICTIONS

We now compare the results of our simulations with a
parameterized Ðtting formula that & DoddsPeacock (1996)
use to predict the power spectrum of the nonlinear mass
density Ðeld which develops through gravitational ampliÐ-
cation of any given Gaussian Ðeld of linear density Ñuctua-
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tions. We consider both the power spectrum and the
correlation function. We Ðrst summarize the theory and
then compare it with the simulation results discussed in °° 5
and 6.

7.1. Method
et al. suggested a formalism for comput-Hamilton (1991)

ing the nonlinear growth of the two-point correlation func-
tion. & Dodds adapted this method to thePeacock (1994)
computation of nonlinear power spectra and extended it to
cosmologies with & Gaztanaga)0D 1. Baugh (1996)
applied it to the power spectrum of the APM galaxy survey.
The original formalism of et al. was inde-Hamilton (1991)
pendent of the shape of the power spectrum, but et al.Jain

showed that this is not correct. & Dodds(1995) Peacock
give an improved version of the Peacock & Dodds(1996)

(1994) method that takes this into account and allows the
nonlinear spectrum produced by evolution from any
smoothly varying linear spectrum to be calculated. etSmith
al. have tested the new procedure with a large(1997)
number of N-body simulations. The method may be sum-
marized as follows.

The nonlinear spectrum is a function of the linear spec-
trum at a smaller linear wavenumber :

*NL2 (kNL)\ fNL[*L
2(k

L
)] , (8)

k
L
\ [1] *NL2 (kNL)]~1@3kNL . (9)

The following Ðtting formula for the nonlinear function, fNL,was proposed by & DoddsPeacock (1996) :

fNL(x)\ x
A 1 ] Bbx ] [Ax]ab
1 ] M[Ax]ag3()0)/[V x1@2]Nb

B1@b
. (10)

In this expression, B describes a second-order deviation
from linear growth ; A and a parametrize the power law that
dominates the function in the quasi-linear regime ; V is the
virialization parameter that gives the amplitude of the

asymptote (where the behavior enters thefNL(x)P x3@2
““ stable clustering ÏÏ limit) ; and b softens the transition
between these regimes. For power spectra of the form

the parameters and their dependence on n areo d
k
2 oP kn,

A\ 0.482(1] n/3)~0.947 ,

B\ 0.226(1] n/3)~1.778 ,

a \ 3.310(1] n/3)~0.244 ,

b \ 0.862(1] n/3)~0.287 ,

V \ 11.55(1] n/3)~0.423 . (11)

The growth factor, g()), is proportional to the ratio of the
linear growth factor to the expansion factor. It takes the
value unity for )\ 1, and, for it tends to unity as)0\ 1,
)] 1.

For linear spectra that are not a power law, particularly
for the CDM model, & Dodds suggestedPeacock (1996)
that a tangent spectral index as a function of linear wave-
number should be used :

neff(kL) 4
d ln P
d ln k

(k \ k
L
/2) . (12)

The factor of 2 shift to smaller k is required because the
tangent power law at overestimates the total degree ofkL

nonlinearity for curved spectra in which is a decreasingnefffunction of k and underestimates it in the opposite case.
& Dodds state that this prescription is ablePeacock (1996)

to predict the nonlinear evolution of power-law and CDM
spectra up to *2^ 103 with an rms precision of about 7%.
Since the Ðtting formula is designed to reproduce the results
for power-law spectra, the main uncertainty in this method
is whether or not the shifted tangent power law is the best
means of deducing the e†ective n as a function of scale. This
issue becomes especially important when the e†ective index
is more negative than [2 (because nonlinear e†ects diverge
as n ] [ 3) and when the curvature of the spectrum is
especially severe. This means that spectra with low values of

or of present the greatest challenge for the analytic)0 h p8method.
The e†ect of cosmology enters into the Ðtting formula

only through the growth factor, g()), which governs the
amplitude of the virialized portion of the spectrum.

7.2. Fit to the Simulations
The nonlinear power spectrum predicted by equation (11)

for each of our four cosmological models is plotted as a
solid line in The solid circles and crosses show theFigure 7.
results from our large- and small-volume simulations,
respectively. Note the excellent agreement between them.
The dashed curve shows the linear theory prediction for the
present-day power The points are plotted onlyspectrum.11
on scales where the power exceeds the shot noise. The
agreement between the analytical and numerical results is
generally good, particularly for SCDM and "CDM. For all
the models with !\ 0.21, the predicted power spectrum
slightly underestimates the detailed power spectrum of the
simulations around the region *2^ 10. As discussed above,
these cases are expected to be especially challenging because
they have a more negative at the nonlinear scale. Theneffslight mismatch illustrates the difficulty in deÐning precisely
the e†ective power-law index for these rather Ñat spectra,
and a more accurate formula could be produced for this
particular case, if required. Note that in the quasi-linear
portion the power spectra follow very closely the general
shape predicted by equations in particular, there is(8)È(12) ;
essentially no di†erence between the OCDM and "CDM
results, as expected.

The power spectra of the di†erent cosmological models
are expected to part company at higher frequencies, where
the spectrum enters the ““ stable clustering ÏÏ regime, and
indeed they do. However, although the predictions match
the "CDM results almost precisely at *2^ 1000, they lie
above the OCDM results at high k : *2(k \ 30)^ 4500,
compared to the simulation value of 2500. At one level, this
is not so surprising, since the smaller simulations that

& Dodds used to derive the parameters ofPeacock (1996)
the Ðtting formula were not able to resolve scales beyond
*2^ 1000. However, the amplitude of the stable clustering
asymptote is very much as expected in the )\ 1 and
"CDM cases, and the argument for how this amplitude
should scale with is straightforward : at high redshift,)0

11 The realization of the power spectrum in our simulations can be seen
to have a downward Ñuctuation in power at 1 ¹ o kL /2n o\ 2, where L is
the simulation box size. A s2 test for these 26 modes shows that a Ñuctua-
tion lower than this is expected in 7% of cases. While this Ñuctuation is not
particularly unusual, it has little e†ect on the results of interest (except for
bulk Ñows ; see °° and because our simulated volumes are suffi-3.1, 5, 8)
ciently large.
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FIG. 7.ÈPredicted nonlinear power spectra at z\ 0 compared with N-body simulation results. The analytical results for our four cosmological models
are shown as solid curves, and the N-body results in our large- and small-volume simulations are shown by Ðlled circles and crosses, respectively. The dashed
line shows the linear theory prediction for the power spectrum at z\ 0. At small wavenumbers, the simulations depart from the linear theory curve because
of the small number of modes in each bin.

clustering in all models evolves as in an )\ 1 universe, and
so evolution to the present is determined by the balance
between the linear growth rate and the ()0-independent)
rate of growth of stable clustering. The failure of this scaling
for the OCDM case is therefore something of a puzzle. It is
conceivable that the numerical result could be inaccurate,
since it depends on resolving small groups of particles with
overdensities of several thousand, and these collapse very
early on. However, we have veriÐed that changing the start-
ing redshift from 59 to 119 does not alter the results of the
simulations signiÐcantly.

shows the two-point correlation functionFigure 8
derived using and the predicted nonlinearequation (7)
power spectrum, equations As before, the N-body(8)È(12).
results are plotted as Ðlled circles and crosses for the large-
and small-volume simulations, respectively. Note that, in
general, the agreement between each pair of simulations is
very good, and the very small discrepancies that there are
can be understood simply. At large pair separations, m(r) is
slightly depressed in the smaller simulations because these
separations are becoming an appreciable fraction of the box
length and the integral constraint requires m(r) to average to
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FIG. 8.ÈPredicted mass correlation functions at z\ 0 compared with N-body simulation results. The analytical results for our four cosmological models
are shown as solid curves, and the N-body results in our large- and small-volume simulations are shown by Ðlled circles and crosses, respectively. The dashed
line shows the linear theory prediction for m(r) at z\ 0. At large pair separations, the integral constraint in the smaller simulations depresses m(r) slightly,
whereas at small pair separations, m(r) is slightly higher in the smaller volumes because they have better mass resolution.

zero over the volume of the simulation. At small pair
separations, m(r) is slightly higher in the smaller volumes
because of their higher mass resolution. Once again, there is
good agreement in general between the analytical predic-
tions and the N-body results, particularly for the "CDM
and SCDM models. For qCDM, the model underpredicts
the correlation function on scales below 700 h~1 kpc, while
for OCDM, the model correlation function is somewhat
steeper than in the simulations. These di†erences occur on
scales signiÐcantly larger than those a†ected by resolution
e†ects and are fully consistent with the analogous devi-
ations seen in the power spectrum.

8. THE VELOCITY FIELDS AND DISTRIBUTIONS

In this section we compute bulk Ñows, velocity disper-
sions, and pairwise velocities of the dark matter particles in
our simulations. Potentially, measurements of galaxy pecu-
liar velocities can provide powerful tests of the models. In
practice, there are a number of complications that weaken
these tests. Foremost among them is the uncertain relation
between the velocity Ðelds of dark matter and galaxies, par-
ticularly on small scales where various dynamical biases
may operate et al. et al. It is(Carlberg 1990 ; Frenk 1996).
relatively straightforward to calculate, with high precision,
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the velocity Ðelds of the dark matter in a given cosmology,
using simulations like ours or, in the appropriate regime,
using linear theory. To relate these to observations on small
scales requires an understanding of possible dynamical
biases and, in the case of pair-weighted statistics, of sam-
pling uncertainties and systematic e†ects arising from the
discrete nature of the galaxy population. Only on sufficient-
ly large scales do we expect galaxy bulk Ñows that are, in
principle, measurable to be simply related to the dark
matter bulk Ñows.

Observational determinations of galaxy velocities have
their own complications. For example, determining bulk
Ñows over representative volumes requires measuring pecu-
liar velocities, and thus determining distances with an accu-
racy of a few percent, for large samples of galaxies. DeÐning
such samples in a homogeneous way and keeping system-
atic e†ects in the distance measurements within tolerable
levels is a complex and still uncertain process (e.g., Willick
et al. Other measures of the galaxy velocity Ðeld such1997).
as the pairwise relative velocities of close pairs are also
a†ected by systematic and sampling e†ects, even though
they do not require measuring distances (e.g., et al.Marzke

et al.1995 ; Mo 1996).
In view of the various uncertainties just mentioned, we

focus here on high-precision estimates of various measures
of the dark matter velocity Ðeld. Our main purpose is to
contrast the velocity Ðelds predicted in the four cosmo-
logical models considered in this paper, in the expectation
that these and related calculations may eventually be
applied to a reliable interpretation of real galaxy velocity
Ðelds. We do, however, carry out a limited comparison of
dark matter velocity Ðelds with existing data on large-scale
galaxy bulk Ñows and pairwise velocity dispersions. In ° 8.1
we compute distributions of the mean and rms dark matter
velocity on various scales, and in we consider pairwise° 8.2
velocities also over a range of scales.

8.1. Bulk Flows and Dispersions
We compute bulk Ñows and velocity dispersions of dark

matter particles in the simulations by placing a large
number of spheres of varying radii around random loca-
tions in the computational volume. We deÐne the bulk
velocity of a sphere as

V \ 1
N

;
i/1,N

¿
i
, (13)

where is the peculiar velocity of the ith particle out of N in¿
ia given sphere, and all particles have equal weight. The

dispersion, is deÐned asp
v
,

p
v
2\ 1

N [ 1
;

i/1,N
(¿

i
[ V)2 . (14)

In linear theory, the bulk velocity of the dark matter can
be accurately calculated according to

SV 2T \ )01.2
P
0

=
k~2W 2(Rk)*2(k)

dk
k

, (15)

where W (Rk) is a window function, which we take to be a
top hat of radius R in real space. The approximate factor

works well for all the cosmological models we are)01.2considering here (Peebles 1980).
The integral in ranges over all spatial scalesequation (15)

and so applies to a simulation only in the limit of an inÐnite

volume. In order to compare the simulations with linear
theory, it is necessary to take account of e†ects due to the
Ðnite computational box and of the fact that we have only
one realization. Finite box e†ects are much more signiÐcant
for velocities than for the correlation function since(eq. [6]),
the relative importance of longer waves is enhanced in

by a factor k~2. To compare linear theoryequation (15)
with a speciÐc simulation, the integral in expression (15)
must be replaced by a summation over the modes of the
periodic box, using the appropriate power in each mode as
set up in the initial conditions.

The dashed curve in shows the linear theoryFigure 9
prediction for bulk Ñows at z\ 0, in spheres of radius

for a model with the power spectrum and normal-Rsphere,ization of our qCDM simulation, in the limit of inÐnite
volume. The predicted velocities fall o† smoothly from
about 500 km s~1 at 10 h~1 Mpc to about 200 km s~1 at
100 h~1 Mpc. The dotted curve shows the linear theory
ensemble average value of SV 2T1@2 over realizations of the
qCDM power spectrum in volumes the size of our simula-
tion. The di†erence between this and the dashed curve indi-
cates just how important Ðnite box e†ects are in computing
bulk Ñows. The error bars on the dotted curve show the rms
dispersion among di†erent realizations. For small spheres,
the variation about the mean is approximately Gaussian,
and the error bars may be regarded as 1 p deviations from
the mean. The results from our actual simulation at z\ 0
are plotted as solid circles in the Ðgure, and the linear
theory prediction for evolution from the speciÐc initial con-
ditions of this simulation is shown as the solid curve. The
particular realization that we have simulated turned out to
produce slightly, but not anomalously, low velocities. On
scales above 20 h~1 Mpc, the linear theory prediction

FIG. 9.ÈComparison of the bulk Ñow measured in the qCDM model
(solid circles) with linear theory. The long-dashed curve is the linear theory
result in the limit of an inÐnite box size. The dotted line with error bars
shows the ensemble rms average for a 239.5 h~1 Mpc periodic box. The
error bars give the rms spread between di†erent realizations. The solid line
is the result from linear theory for the realization used in our qCDM
simulation. Linear theory works to excellent approximation when all the
Ðnite box e†ects are taken into account.
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agrees very well with the simulation ; at R\ 10 h~1 Mpc, it
overestimates the actual velocities by 5%.

While linear theory suffices to calculate bulk Ñows on
scales larger than about 10 h~1 Mpc, the velocity dispersion
of particles in spheres is dominated by contributions from
nonlinear scales and must be obtained from the simulations.
Finite box e†ects are not important in this case because the
contributions from wavelengths larger than the simulation
box are small.

The bulk Ñows, SV 2T1@2, calculated from linear theory
and the velocity dispersions in spheres, calculated fromp

v
,

our L \ 239.5 h~1 Mpc simulations are plotted as solid
lines in for our four cosmological models. TheFigure 10
dotted curves around the SV 2T1@2 curve correspond to 90%
conÐdence limits on the bulk velocity for a randomly placed
sphere, calculated by integrating over the appropriate
Raleigh distribution. The dotted curves around the curvep

vindicate the rms scatter of the distribution.p
v

FIG. 10.ÈDark matter bulk Ñows and velocity dispersions in spheres of di†erent radii. The bulk Ñows, computed from linear theory, are shown by the
lower solid line, with 90% conÐdence limits indicated by dotted lines. The rms velocity dispersions, computed from the simulations, are shown by the upper
solid curve, with the rms scatter indicated by the dotted lines. The data points with error bars are observational estimates of galaxy bulk Ñows from etDekel
al. et al. et al. and & Postman as reanalyzed by (see legend in the middle of the Ðgure). The(1998), Courteau (1993), Mould (1993), Lauer (1993), Colless (1995)
predicted velocity Ðelds are very similar in all the models because they are normalized to give the same abundance of rich clusters. The only exceptions are the
predicted bulk Ñows in the SCDM model, which are slightly smaller than in the other models because of its di†erent power spectrum shape. Every model
except SCDM is consistent with the galaxy bulk Ñow data, with the exception of the Lauer & Postman result.



No. 1, 1998 EVOLUTION OF STRUCTURE 35

With the exception of SCDM, the predicted bulk Ñows in
all of our models are remarkably similar. The reason for this
can be traced back to our choice of normalization, which
ensures that all models produce approximately the same
number of rich galaxy clusters. This choice e†ectively
cancels out the dependence of the bulk Ñow velocity on )0as may be seen directly from linear theory. From equation

for a Ðxed shape of the power spec-(15), SV 2T1@2 P p8)00.6trum. On the other hand, our adopted Ñuctuation normal-
ization requires approximately that (see eqs.p8P )0~0.5 [1]
and Since the power spectra of the "CDM, qCDM,[2]).
and OCDM models all have the same shape parameter,
!\ 0.21, the bulk Ñows in these models are very similar.
The lower bulk Ñow velocities predicted in the SCDM
model reÑect the relatively smaller amount of large-scale
power in this model implied by its value of !\ 0.5. The
mean bulk velocity in SCDM is approximately two-thirds
of the value in the other models.

The peculiar velocity dispersion of dark matter particles
in random spheres is also remarkably similar in all of our
models, including SCDM. In this case, signiÐcant contribu-
tions to come from a wide range of scales, includingp

vnonlinear objects as well as regions that are still in the linear
regime. On small scales, rises with increasing spherep

vradius and reaches a plateau at radii of a few tens of mega-
parsecs. The limit as the radius tends to inÐnity is just the
single-particle rms peculiar velocity. For our large simula-
tion boxes, this is 614, 635, 648, and 630 km s~1 for the
SCDM, qCDM, "CDM, and OCDM models, respectively.
The slightly lower value for SCDM again reÑects the
smaller large-scale power in this model compared to the
others. This deÐcit on large scales, however, is compensated
by an excess contribution from smaller scales.

We have plotted in estimates of galaxy bulkFigure 10
Ñow velocities in the local universe taken from the analyses
by et al. et al. et al.Mould (1993), Courteau (1993), Dekel

and & Postman These estimates are(1998), Lauer (1994).
based on di†erent data sets and assumptions, and, apart
from the Lauer & Postman measurement, they are broadly
consistent with one another, although the Mould et al. mea-
surement is somewhat high. The data from the Ðrst three
surveys are broadly consistent with the predictions of all of
our models except SCDM, which produces velocities about
a factor of 2 lower than the data on large scales. None of the
models is consistent with the measurement of Lauer &
Postman, who inferred a bulk Ñow of 764 ^ 160 km s~1 (as
reanalyzed by on a scale of D80 h~1 MpcColless 1995)
from a sample of brightest cluster galaxies. The results in
the Ðgure show that bulk Ñows are insensitive to the value
of when one focuses attention on models that agree with)0the observed cluster abundance. If anything, observed bulk
Ñows constrain the shape of the power spectrum on large-
scales, or, in the case of the Lauer & Postman result, they
conÑict with the entire class of models we are considering.

8.2. Pairwise Velocities
We now consider the lower order moments of the pair-

wise velocity distribution of dark matter particles in our
four cosmological models. SpeciÐcally, we consider the fol-
lowing quantities : the mean radial peculiar velocity ofv21,approach between particle pairs ; the dispersion in thev

A
2 ,

radial velocities of pairs ; and the dispersion in the meanv
M
2 ,

transverse relative velocities of pairs. Following standard
practice, is not centered ; to center one just needs tov

A
2

subtract in quadrature. These quantities are not directlyv21observable, but we also compute the dispersion, theplos2 ,
line-of-sight velocity dispersion (this time centered), deÐned
as

plos2 (r) \ / m(R)pproj2 (R)dl
/ m(R)dl

, (16)

where r is the projected separation, R\ (r2] l2)1@2, and the
integral is taken along the line-of-sight between ^25 h~1
Mpc. The quantity is the line-of-sight centered pairwisepproj2
dispersion, which is given by

pproj2 \ r2v
M
2/2 ] l2(v

A
2 [ v212 )

r2] l2 . (17)

This quantity is somewhat closer to measurements acces-
sible in galaxy redshift surveys ; it is a much weaker function
of apparent separation than andv

A
2 v

M
2 .

shows and as a function of pairFigure 11 v21, v
A
, v

M
, plosseparation in our models. Also drawn on each panel is the

Hubble line, given by where H is HubbleÏsvHubb\ [Hr,
constant, and r is pair separation in physical units. Pairs at
Ðxed physical separation lie on this line. In the stable clus-
tering regime must follow The(Peebles 1980), v21 vHubb.distance at which the mass correlation function equals
unity, the correlation length, is marked by an arrow.

The mean pairwise radial velocities, vanish at thev21,
smallest separations resolved in our simulations. In the low-

models, where the growth of structure is freezing out at)0low redshift, follows the Hubble line up to scales D300v21h~1 kpc. This indicates that structures on these scales have
almost completely relaxed, and the clustering is stable. In
the )\ 1 models there is still a net radial inÑow on these
scales, although the inÑow timescale is longer than the
Hubble time and very much longer than the local dynami-
cal time of pairs at these separations [where
m(r) \ 80 [ 200] ; the latter is, in turn, much shorter than
the Hubble time. The pairwise radial velocity in these
models reaches a peak inside the correlation length (marked
by the arrow), around 2È3 h~1 Mpc. This indicates the
typical scale of virializing structures at z\ 0 in the )\ 1
models. At larger radial separations intersects thev21Hubble line and, at very large separations, it decays to zero,
in accordance with the principle of large-scale isotropy and
homogeneity.

For the same reasons, one expects the ratio to tendv
M
2/v

A
2

to at large separations. The measured ratios atJ2 \ 1.414
a separation of 80 h~1 Mpc are 1.38, 1.34, 1.36, and 1.37 for
SCDM, qCDM, "CDM, and OCDM. At scales of a few
h~1 Mpc, where radial infall is at its most important, the
ratio in the SCDM model is about 1.23 (after centering). At
smaller scales still, the relative motions inside virialized
structures again become closer to isotropy, in agreement
with results from high-resolution simulations of dark halos

et al. On very small scales,(Tormen 1996 ; Thomas 1997).
two-body e†ects contribute to the isotropization of the
orbits.

As was the case with the mean bulk Ñows and velocity
dispersions in random spheres discussed in the° 8.1,
moments of the pairwise velocity distribution are very
similar in the di†erent cosmologies. As before, this simi-
larity is a direct consequence of our adopted normalization.
The largest di†erences occur between the OCDM and
qCDM models on small scalesÈa di†erence of about 200
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FIG. 11.ÈPairwise velocity statistics. In each panel, the dotted curve is the mean inward radial velocity, the short dashed line is the dispersion in thev21 ;
pairwise radial peculiar velocities, the long dashed line is the dispersion in the relative pairwise tangential peculiar velocities, the solid line isv

A
; v

M
;

the line-of-sight dispersion, and the dot-dashed line is the Hubble line given by where H is HubbleÏs constant, and r is physical separation.plos ; vHubb \[Hr,
The dispersion, is uncentered ; to center, subtract in quadrature. The data points are taken from et al. and show the pairwise velocityv

A
, v21 Jing (1997)

dispersion, estimated for the Las Campanas redshift survey. These points should be compared to the line-of-sight dispersions for the models. See the textp12,for discussion of the error bars used on these points.

km s~1 in Qualitatively, the trends seen inplos. Figure 11
agree with the analytical calculation of et al.Mo (1996),
who Ðnd that pairwise velocities in open models are slightly
larger than in " models, and these, in turn, are larger than
in )\ 1 models.

It is difficult to compare the predicted dark matter pair-
wise velocities with galaxy measurements for a variety of
reasons. First, the velocity dispersion of the dark matter
distribution in the simulations includes a contribution from
the internal dispersion of virialized halos. Second, there is

some evidence that the velocity dispersion of dark halos in
simulations may be biased low relative to the dark matter
velocity dispersion even after allowing for contamination
from virialized halos & Couchman an(Carlberg 1989),
e†ect that et al. argue is due to dynamicalCarlberg (1990)
friction (see also et al. (The velocities of theZurek 1994).
dark matter halos in our simulations will be analyzed in a
future paper by et al. Finally, biases in theFrenk 1998.)
spatial distribution of galaxies may introduce further biases
in the pairwise velocity statistics of the galaxies relative to
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the dark matter et al.(Fisher 1994 ; Weinberg 1995 ; Evrard,
Summers, & Davis 1994).

Observationally, the velocity dispersion of galaxy pairs is
determined by Ðtting a model under certain assumptions
regarding the two-point correlation function and the spatial
dependence of the infall velocity and dispersion &(Davis
Peebles These assumptions do not necessarily match1983).
the simulation data. More importantly, as et al.Marzke

and et al. have argued, pairwise velocity(1995) Mo (1996)
statistics are not robust when determined from relatively
small redshift surveys since these statistics contain signiÐ-
cant contributions from galaxy pairs in rare, massive clus-
ters. This is not a problem in our simulations, which sample
a volume of 13.8] 106 (h~1 Mpc)3, but it is a problem in
the present generation of redshift surveys with the possible
exception of the Las Campanas Redshift Survey (Shectman
et al. hereafter LCRS). Estimates of the pairwise veloc-1996,
ity dispersion in the obtained by et al.LCRS, Jing (1997),
are shown as data points in The containsFigure 11. LCRS
quite a number of rich clusters and appears to give consis-
tent estimates when split into northern and southern sub-
samples. The error bars plotted in the Ðgure are the sum in
quadrature of the errors obtained directly from the data by

et al. plus the 1 p uncertainties found fromJing (1997)
applying the same estimator to mock catalogues con-
structed from N-body simulations by these authors. The

velocities are substantially larger than most previousLCRS
determinations. The dispersion remains approximately con-
stant over the range 0.15È10 h~1 Mpc, reaching an ampli-
tude of 570 ^ 80 km s~1 at 1 h~1 Mpc.

The data may be compared with the line-of-sightLCRS
dispersions plotted for each of our simulations in Figure 11.
At pair separations h~1 Mpc, all of our models areZ 2
consistent with the data, although the low-) models lie
somewhat low. At smaller separations, all model curves rise
above the data. This di†erence in behavior may be due, in
part, to the di†erent methods for estimating the dispersion
in the simulations and the data, but it very likely reÑects
also the biases present in the simulations mentioned earlier.
Interestingly, the )\ 1 models are closer to the data on
small scales than the low-) models, which implies that sub-
stantially stronger velocity biases are required in low-)
models to bring them into agreement with the data.

9. DISCUSSION AND CONCLUSIONS

We have used a suite of high-resolution N-body simula-
tions to investigate the clustering evolution of dark matter
in four di†erent cold dark matter cosmologies. Our simula-
tions followed approximately 17 million particles. Most of
our analysis is based on simulations of very large cosmo-
logical volumes (239.5 h~1 Mpc)3, but we also analyzed

simulations of somewhat smaller volumes and correspond-
ingly higher mass resolution. The large volumes and parti-
cle numbers, together with a relatively small gravitational
softening (D30 h~1 kpc), allow us to calculate the clustering
and kinematical properties of the dark matter with unprece-
dented accuracy. For example, we are able to determine the
mass autocorrelation function over nearly three decades in
pair separation with better accuracy than in previous simu-
lations and also with higher precision than is attainable
with existing or planned surveys of galaxies. Our model
mass correlation functions are well Ðt by an analytic model
of the type proposed by et al. but with theHamilton (1991)
form and parameters proposed by & DoddsPeacock

This model may therefore be used to extend some of(1996).
the results of our analysis to cosmologies with di†erent
parameter values to those assumed in our simulations.

Two of the four variants of the CDM cosmology that we
have investigated are motivated by various lines of astrono-
mical evidence that suggest a low cosmological density
parameter, and a spectral shape parameter,)0^ 0.3,
!\ 0.21 ; we study both a Ñat model with a non-zero
cosmological constant ("CDM) and an open model
(OCDM). The remaining two models both have )\ 1, but
one has the standard power spectrum (SCDM), and the
other has !\ 0.21 (qCDM). In all cases, we have chosen to
normalize the primordial Ñuctuation spectrum so that the
present abundance of rich clusters is approximately repro-
duced in all the models. We regard this choice as preferable
to the often used alternative of normalizing to the ampli-
tude of the COBE microwave background anisotropies.
With standard assumptions (a Harrison-Zeldovich primor-
dial spectrum and no contribution to the anisotropy from
tensor modes), the cluster normalization is close to the
COBE normalization for the "CDM and qCDM models,
but it is signiÐcantly higher for the OCDM and signiÐcantly
lower for the SCDM model. With our choice of normal-
ization, the overall appearance of all models is determined
primarily by their values with the result that the twop8high-density models look very similar, while the two low-
density models show more structure but resemble each
other closely.

Our main results concern the detailed properties of the
spatial distribution and velocity Ðelds of the dark matter at
z\ 0. We now discuss our results and display them con-
cisely in In all of the models, the shape of theTable 2.
two-point correlation function, m(r), and power spectrum,
*2(k), of the dark matter di†er signiÐcantly from those of
the observed galaxy distribution. In particular, they fail to
reproduce the accurate power law which the APM survey
(and others before that ; cf. & Peebles exhibitsGroth 1977)
over nearly 4 orders of magnitude in amplitude. At small,

TABLE 2

SUMMARY OF RESULTS

Modela Cluster Abundance COBE Normalization Constant Bias Small-Scale Bias/Antibias Vbulkb Pairwise Velocities

SCDM . . . . . . Yes No No Bias Low Slightly high
qCDM . . . . . . . Yes Yes Yes Bias OK Slightly high
"CDM . . . . . . Yes Yes No Antibias OK High
OCDM . . . . . . Yes Noc No Antibias OK High

a See for the deÐnitions of the models.Table 1
b When compared to the data plotted in with the exception of the & Postman measurement. All of our models are stronglyFig. 10, Lauer (1994)

inconsistent with the latter.
c A model with in the range 0.4È0.5 and a slightly lower value of h agrees with both the cluster abundance and COBE-DMR constraints.)0
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but still well-resolved pair separations, all of our model
correlation functions become shallower, while at interme-
diate separations, they all have an inÑection point.
Uniquely among the models we have explored, qCDM has a
mean correlation slope that is approximately correct over
the bulk of the observable range, but even in this case there
are substantial discrepancies on scales smaller than D0.2
h~1 Mpc. Thus, for any of these models to provide an
acceptable representation of reality, the distribution of gal-
axies would need to be biased relative to the mass in a
nontrivial, scale-dependent fashion. Whatever the processes
involved in biasing the galaxy distribution may be, they
must conspire to iron out the features in the dark matter
correlation function.

We deÐne a ““ bias function ÏÏ as the square root of the
ratio of the galaxy to the mass autocorrelation functions.
Our simulations, together with the galaxy autocorrelation
function measured from the APM survey by Baugh (1996),
give the bias as a function of scale accurately for the four
models we have investigated. We Ðnd that our two )\ 1
models require a bias greater than unity everywhere. In the
SCDM case, the bias grows from D1 at D1 h~1 Mpc to
D1.5 at D8 h~1 Mpc and rises sharply beyond that. In the
qCDM model, the bias is approximately constant, at
b ^ 1.5, between D0.2 and D20 h~1 Mpc.

By design, our models have a power spectrumlow-)0that approximates that of the APM galaxy survey on large
scales. However, even in this case, the match is not perfect,
and some amount of bias may still be required at separa-
tions greater than 10 h~1 Mpc. Furthermore, these models
have the undesirable feature that the mass correlation func-
tion rises above the APM galaxy correlation function at
pair separations smaller than D5 h~1 Mpc. On these scales,
an ““ antibias ÏÏ is required for these models to match the
observed galaxy clustering. Galaxy mergers in high-density
regions may plausibly suppress small-scale correlations, but
it remains to be seen whether an antibias of the required
magnitude is achievable in practice. Antibiasing may be
difficult to reconcile with observed cluster mass-to-light
ratios. In standard virial analyses of clusters, a value of is)0derived from the measured mass-to-light ratio by assuming
that the galaxies cluster just like the mass. With this
assumption et al. for example, inferredCarlberg (1997),

from the Canadian Network for Obser-)0\ 0.19^ 0.06
vationalCosmology (CNOC) sample of intermediate redshift
clusters. If galaxies were actually antibiased, this estimate of

would need to be corrected downward. However,)0models with lower values of require higher values of)0 p8,and even stronger antibias, in order to reproduce the
observed abundance of clusters.

Our simulations allow us to calculate accurately the
velocity Ðelds of the dark matter over a wide range of scales.
These are very similar in all of our models, whether they be

characterized as bulk Ñows, single-particle, or pairwise
velocity dispersions. This similarity in the velocity Ðelds is a
direct consequence of our adopted normalization and runs
contrary to the common belief that the amplitude of the
observed galaxy velocity Ðelds can be used to constrain the
value of A residual dependence of the velocity Ðeld on)0.the shape of the power spectrum causes the velocities in the
SCDM model to be somewhat lower than in the other
models, but among the latter there is no discernible di†er-
ence. For example, the one-dimensional velocity dispersion
of the dark matter is approximately 600 km s~1 in all the
models, and the line-of-sight pairwise velocity dispersions
fall in the range 700È900 km s~1. The Ðrst of these numbers
is reminiscent of the peculiar velocity of the Local Group,
while the second is consistent with, although on the high
side of, a recent determination from the Las Campanas
redshift survey at a pair separation of D1 h~1 Mpc et(Jing
al. On smaller scales, our simulations, particularly1997).
our models, predict higher pairwise velocity disper-low-)0sions than inferred from this survey, which indicates that a
substantial velocity bias is required to bring the models into
agreement with the data. Bulk Ñows on large scales are
most accurately calculated using linear theory. Our models
all predict somewhat smaller values than those estimated
from recent surveys of the local universe et al.(Mould 1993 ;

et al. et al. but, with the excep-Courteau 1993 ; Dekel 1998),
tion of SCDM, they are consistent with these data. None of
the models reproduces the large bulk Ñows inferred by

& PostmanLauer (1994).
High-resolution simulations like those presented here

allow very accurate measurements of the clustering dis-
tribution of dark matter. Further progress in this subject
will rely on the ability to address the outstanding issue that
limits the comparison of these models with observations :
the connection between the distribution of mass and the
distribution of galaxies. This will require a realistic treat-
ment of the evolution of the baryonic component of the
universe.
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ing several signiÐcant improvements to the manuscript and
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APPENDIX

Derivation of Equation (5)

The two-point correlation function is related to the power spectrum by

m(r) \
P

P(k) exp (ik Æ r)d3k , (A1)

where the bold italic font implies that the quantity is a three-dimensional vector.
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In deriving a correction to the linear correlation function for a periodic box, we must make an assumption for how the
power selected for each discrete mode of the periodic box is related to the power density of the same mode in the continuous
power spectrum. As discussed in we draw the power for each mode from an exponential distribution with the mean° 3.1,
power set by the power density of the mode in the continuous power spectrum. Thus, the ensemble-average linear correlation
function of the periodic boxes, is given bym

s
(r),

m
s
(r) \

A2n
L
B3

;
b/(0,0,0)

=
P
A2nb

L
B

exp (2nib Æ r/L ) , (A2)

where L is the simulation box size, and the sum over b is a sum over all integer triples. The correction we derive is a systematic
correction that applies to an ensemble of simulations.

We make use of the Poisson summation formula which, for a function /(x), states that

;
b/(0,0,0)

=
/(2nb) \ 1

(2n)3 ;
n/(0,0,0)

= P
/(t) exp (in Æ t)d3t , (A3)

subject to certain conditions on the function /(x) which hold for the case of interest here (see & Hilbert p. 76).Courant 1953,
Substituting the right-hand side of into the Poisson summation formula, we obtainequation (A2)

m
s
(r)\ ;

n/(0,0,0)

= P
P(k) exp [ik Æ (r [ L n)]d3k . (A4)

From we can rewrite this asequation (A1),

m
s
(r) \ m(r)] ;

nE(0,0,0)

= m(r [ L n) . (A5)

Applying this to the evolved linear power spectrum, which is isotropic, we arrive at the correction term, to theequation (5),
correlation function for the periodic box :

*m(r) \ ;
nE(0,0,0)

= [ mlin( o r ] L n o ) . (A6)
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