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INTRODUCTION

ABSTRACT

We describe an attempt to reconstruct the initial conditions for the formation of
cosmological large-scale structure, under the assumption of gravitational instability in a
Gaussian density field. Information on the power spectrum of the primordial fluctuations
is provided by a variety of autocorrelation and cross-correlation analyses on samples
of different classes of galaxy and galaxy clusters. These results differ from the desired
linear power spectrum because of three modifying effects: bias, non-linear evolution
and redshift-space distortions. We show how the latter two effects can be corrected for
analytically, allowing the linear mass spectrum to be recovered provided that the bias is
independent of scale for a given class of galaxy. We argue that this is a good assumption
for large scales, which is well verified in practice.

We apply this method to eight independent data sets, and obtain excellent agreement
in the estimated linear power spectra for wavelengths A >10h~!Mpc, given the following
conditions. First, the relative bias factors for Abell clusters, radio galaxies, optical galaxies
and IRAS galaxies must be in the ratios b, : by : b, : by =4.5:19 : 1.3 : 1, to within 6
per cent rms. Secondly, the data require a significant degree of redshift-space distortion:
Q% /b, = 1.04+0.2. Thirdly, low values of Q and bias are disfavoured because non-linear
evolution would spoil the agreement in shape between galaxy and cluster power spectra.
The amplitude of the preferred linear power spectrum is only weakly dependent on Q
and agrees well at large wavelengths with the normalization demanded by the COBE
data for a scale-invariant primordial spectrum, provided that Q = 1 and gravity-wave
anisotropies are negligible. In this case, the shape of the spectrum is extremely well
described by a CDM transfer function with an apparent value of the fitting parameter
Qh = 0.25. Tilted models, for which inflation requires a large gravity-wave contribution
to the COBE data, predict too little power at 100-Mpc wavelengths.
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time (or its linear-theory extrapolation to the present). Ob-
servationally, much progress has been made in recent years

The simplest hypothesis for the origin of the large-scale struc-
ture of the Universe is that it is the result of the operation of
gravitational instability on small initial density perturbations.
On grounds of economy, these are often assumed to have
the random-phase character common in noise processes, and
hence to form a Gaussian random field. This has been the
standard picture for structure formation for the half century
since the pioneering studies of Lifshitz, given added motiva-
tion more recently by inflationary theories in which the initial
perturbations are supplied by quantum fluctuations at early
times.

If this picture is correct, the only quantity needed for
a complete statistical description of the cosmological density
field is the power spectrum of the fluctuations at some early

towards the goal of determining the power spectrum, fulfilling
the programme outlined by Peebles (1973). New generations
of deep redshift surveys have allowed the clustering of various
classes of galaxy to be determined up to the contribution from
wavelengths of several hundred Mpc. In parallel, new analysis
techniques have been developed in order to extract the long-
wavelength portion of the power spectrum more sensitively
(e.g. Feldman, Kaiser & Peacock 1994 [FKP] and references
therein).

The intention of this paper is to compare various recent
determinations of galaxy clustering, and to see if there exists a
single consistent picture for the underlying mass fluctuations.
It is an updated version of a previous attempt in this direction
(Peacock 1991), but with several important improvements in
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addition to a great increase in quantity of data. In essence,
there are three filters that cause the observed clustering prop-
erties of galaxies to depart from the desired linear mass power
spectrum.

(i) Non-linear evolution. On smiall scales, perturbation the-
ory fails and the mass power spectrum departs in a complicated
way from a linear extrapolation of the initial conditions.

(i) Redshift-space effects. Because 3D data sets use redshift
as a radial coordinate, the apparent density field that results
is distorted through the existence of peculiar velocities. Even
for perfect data, the redshift-space power spectrum is not the
same as that in real space.

(iti) Bias. The fact that different species of galaxy follow the
mass distribution with different degrees of fidelity is a major
problem in relating observations to theory. To correct for bias
in principle requires a detailed model for how the effect arises.

None of these effects was handled very thoroughly in
previous work. The issue of bias is the most difficult, and is
really only tractable on large scales where the degree of bias
can be assumed constant. It is now possible to have a better
idea of where this approximation is valid, and we discuss
this issue in Section 2. Previously, non-linear distortions were
either ignored or treated by comparing non-linear data with
an evolved N-body model. However, thanks to the insight of
Hamilton et al. (1991; HKLM), it is possible to correct the
data for the effects of non-linearities. We discuss their method
in Section 3 and give a number of generalizations. Redshift-
space distortions have usually been treated by a simple scaling
of amplitude analysed by Kaiser (1987), but this is inapplicable
on small scales. We give an improved analysis in Section 4.

Given a method for treating the practical distortions of
power spectra, there are two possible approaches. There is an
honourable tradition which states that it is better to apply
any corrections to the theory under test, and to compare the
modified model with the raw data. Nevertheless, we shall do
the opposite and estimate the linear spectrum by correcting
the data. This has two advantages: no model is needed, and
the power spectrum can be found empirically; by comparing
the various estimates, we can then see directly if all data
sets are consistent with each other. In Section 5, we assemble
the most recent power-spectrum data and apply the above
tools to deduce the linear power spectrum. This empirical
reconstruction is compared with a variety of a priori models
in Section 6, and the main points of the paper are summarized
in Section 7.

2 GALAXY AND CLUSTER CORRELATIONS IN
GAUSSIAN MODELS

2.1 Evidence for Gaussian fluctuations

Since a good part of the analysis in this paper rests on the
assumption of a Gaussian density field, we should start by
considering the evidence that this is a good approximation.
The evidence has to be gathered on large scales, because
non-linear evolution inevitably induced non-Gaussian statis-
tics on small scales, whatever the initial statistics. The most
direct test was carried out by FKP, who looked at the distri-
bution of power measured for individual modes in a power-
spectrum analysis of the TRAS QDOT redshift survey. For

a Gaussian field, such modes should have power values that
are independently exponentially distributed. This was found
to be the case out to the limit of the statistics — powers of
about 10 times the mean. This is not a complete test of the
Gaussian hypothesis: it is equivalent to asking in real space
whether the one-point density distribution is Gaussian. Further
information is provided by higher-order k-space correlations
which test for independence of the modes. Nevertheless, it is
worth recalling that there have been suggestions that even this
lowest-order test is badly violated. On the basis of a pencil-
beam redshift survey, Broadhurst et al. (1990) and Szalay et
al. (1991) have suggested that there is gross non-Gaussian
behaviour on large scales, based on the existence of strong
quasi-periodic power at a few wavelengths. There is no need
to repeat here the counter-arguments given by Kaiser & Pea-
cock (1991); it should suffice to note that the QDOT sample
is deep enough that it encompasses several of the suggested
periods in a large number of independent directions, yet no
non-Gaussian signature is detected.

Any initial Gaussian nature of the field is completely
erased on very small scales, but on intermediate scales the
field develops a skewness which can be analysed perturbatively
(Peebles 1980). The observed degree of skewness appears to be
in accord with this prediction (Gaztafiaga 1992; Bouchet et al.
1993), which gives further support to the Gaussian hypothesis.
This is not a definitive test, since most bias mechanisms will
induce skewness; what is observed is a mixture of this effect
with primordial skewness, plus the effects of gravitational evo-
lution. Nevertheless, simple Gaussian models without a strong
degree of bias do account for the data well.

A variety of other tests have been suggested, including
the topology of isodensity surfaces (Hamilton, Gott & Wein-
berg 1986; Coles & Plionis 1991; Moore et al. 1992) and the
one-point distribution of the velocity field (Nusser & Dekel
1993; Kofman et al. 1994). It is fair to say that none of these
methods has produced any evidence against primordial Gaus-
sian statistics. However, as usual in statistics, it is necessary to
choose the null hypothesis with care. It is certainly the case
that not all tests are necessarily very powerful; the central limit
theorem means that a variety of non-Gaussian processes may
yield nearly Gaussian behaviour in experiments where limited
resolution averages over different regions of space (Scherrer
1992). Thus some of the more popular models based on topo-
logical singularities (strings, textures etc.) may still be allowed
by existing data (e.g. Gooding et al. 1992). However, it will be
interesting to see such theories confronted with the FKP result,
particularly as such statistics will become more demanding as
data sets increase in size.

For the present, it is enough to note that there is em-
pirical reason to believe that the statistics of the large-scale
density field are close to Gaussian. If this is so, then there are
consequences for the clustering of galaxy systems, as discussed
below. As we will see, these predictions are verified in prac-
tice, which is one further piece of supporting evidence for the
Gaussian picture.

2.2 Bias in galaxy and cluster correlations

In a Gaussian model, the correlations of different classes of
galaxy system can be directly related to the underlying density
field, with the power spectra being proportional on large scales:
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A*(k) = B? A% (k). (1)

'mas

Here and below, we shall use a dimensionless notation for
the power spectrum designed to minimize uncertainties from
differing Fourier conventions. In words, A? is the contribu-
tion to the fractional density variance per bin of Ink; in the
convention of Peebles (1980), this is

de? VvV
dink — @a)p

The justification for the above relation is the assumption,
introduced by Kaiser (1984), Peacock & Heavens (1985) and
Bardeen et al. (1986; BBKS), that the sites of massive objects
such as clusters can be identified at early times as high peaks
in the linear density field. Such a scheme might be termed
Lagrangian bias, and b is called a bias parameter. This is rather
sloppy: biased galaxy formation usually means the situation
where light does not trace mass in the Universe, but clusters
would still be more correlated than the mass even if the galaxy
distribution followed the mass exactly. However, this usage is
too firmly embedded in the literature to make it worth fighting;
we will therefore describe the enhanced correlations of clusters
as bias.

As the density field evolves, the initial statistical clustering
in Lagrangian space is supplemented as dynamics moves ob-
jects from their initial sites. Owing to the equivalence principle,
all objects move in the same way, so that the overall observed
clustering in Eulerian space is

Ak) = 4m k3 |6 )

1+ 5Euler = (1 + 6Lagrange) (1 + 6dynamics)' (3)
In the linear regime, we therefore have
5Lagrange = (b - 1)5dynamics' (4)

Bond & Couchman (1988) showed how this decomposition
could be used to compute exact total correlations, under the
assumption that the dynamical evolution obeyed the Zeldovich
(1970) approximation. Mann, Heavens & Peacock (1993) ap-
plied this method to the calculation of cluster correlations.
In practice, the statistical contribution tends to dominate for
scales larger than the filter size used to define clusters (a few
Mpc); the cluster distribution has not undergone strong dy-
namical evolution, and most clusters are close to their original
sites.

Although the idea of Lagrangian bias was borrowed by
BBKS from its cluster origins and applied as a model for
biased galaxy formation, it may be more fruitful to think of
galaxy bias in a purely Eulerian way, where the density of
galaxies is some function of the final mass density. This has
long been advocated by Einasto and collaborators, with galaxy
formation being suppressed in low-density regions (Einasto,
Joeveer & Saar 1980). More recently, studies of the operation
of dissipation in numerical simulations have produced a more
direct physical justification for relating the galaxy and mass
density fields through a single non-linear function (Cen &
Ostriker 1992).

These contrasting views of the origin of cluster and galaxy
bias lead to rather different approaches when attempting to
use clustering data to infer the mass fluctuations. For clusters,
the statistical bias is dominant, and we may assume that the
clusters reflect mainly the initial conditions. Conversely, it is
reasonable to believe that galaxies come close to tracing the
mass. Many studies have indicated that different classes of

galaxy follow the same ‘skeleton’ of voids, filaments, walls
and clusters, while differing most markedly in regions of high
density (e.g. Babul & Postman 1990; Strauss et al. 1992). This
last effect may not be so important: despite having densities
differing by factors of close to 10 in rich clusters, we shall see
below that IRAS and optical galaxies have bias factors within
about 30 per cent of each other. This is analogous to the
findings of Cen & Ostriker (1992): even though their model
has a highly non-linear dependence of galaxy density on mass
density for high densities, the power spectra are proportional
on most scales, even down to the point where A%(k) ~ 1. In
any case, it is important to keep in mind that we are not
interested in exactly how a given class of galaxy does or does
not follow the density field: a variety of different bias schemes
could give the same galaxy power spectrum, even though the
light distributions would be model dependent.

The above discussion motivates the assumptions that we
shall use below to make estimates of the linear power spectrum.
We shall adopt the extreme approximations that the cluster
distribution contains information only about the linear power
spectrum, whereas the galaxy distribution mainly measures the
non-linear density field:

AL = bA, )
AL = BIAY,. ©)

A further way of understanding this distinction is to consider
the following illustrative model, in which we populate the
Universe with identical spherical protocluster perturbations.
At some critical time, these will turn round and virialize,
producing a large excess of small-scale power in the non-
linear density field. However, at this time, the cluster centres
will still be weakly perturbed: the existence of the small-scale
power is what allows us to say that clusters are present, but
there is no reason to expect this power to manifest itself in
many close pairs of cluster centres. Ultimately, our hypothesis
must submit to the test of numerical simulation, but for the
present it should certainly be closer to the truth to say that
clusters respond to the linear power spectrum, rather than to
the non-linear one.

Although the above bias factors are calculable given a
specific bias model, we shall treat them as unknowns to be
determined from the data. It is clear that the assumption
of constant bias factors cannot be exact, and will certainly
break down at small scales. To some extent, the domain of
validity can be found empirically, by seeing whether it is pos-
sible to make a consistent picture in this way from all the
available data. In practice, we shall use data at wavenum-
bers k <0.6 hMpc™, i.e. wavelengths 4 >10h~'Mpc (as usual,
h = Hy/100kms~'Mpc™!), so we are only dealing with the
large-scale mass distribution.

There is a third way in which the mass power spectrum
may be inferred, which is to use cross-correlation data from
two catalogues, in addition to the respective autocorrelations.
In this case, it is not so obvious whether we measure more
nearly the linear or non-linear correlations. In practice, we
shall use data on large enough scales that the distinction will
not be so important; we therefore assume a relation to linear
theory

A%, = bcboAl. 0]
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This provides a useful consistency test of our assumptions:
the cluster-galaxy cross-correlation should be the geometrical
mean of the separate autocorrelations.

3 NON-LINEAR EVOLUTION OF POWER SPECTRA

To implement the above assumptions requires some way of re-
lating linear and non-linear power spectra; until recently, this
would have required N-body modelling. However, in a mar-
velous piece of alchemy, Hamilton et al. (1991; HKLM) gave
a universal analytical formula for accomplishing the linear «
non-linear mapping. The conceptual basis of their method can
be understood with reference to the spherical collapse model.
For Q =1 (the only case they considered), a spherical clump
virializes at a density contrast of order 100 when the linear
contrast is of order unity. The trick now is to think about the
density contrast in two distinct ways. To make a connection
with the statistics of the density field, the correlation function
&(r) may be taken as giving a typical clump profile. What
matters for collapse is that the integrated overdensity reaches
a critical value, so one should work with the volume-averaged
correlation function &(r). A density contrast of 1 + & can also
be thought of as arising through collapse by a factor (1+6)!/3
in radius, which suggests that a given non-linear correlation
Exi(rn) should be thought of as resulting from linear correla-
tions on a linear scale

o= [1 4 &) rae. (8)

This is one part of the HKLM procedure. The second part,
having translated scales as above, is to conjecture that the
non-linear correlations are a universal function of the linear
ones:

ENL(rNL) = fNL[ZL ()] )

The asymptotics of the function can be deduced readily. For
small arguments x < 1, fy.(x) = x; the spherical collapse ar-
gument suggests fNL(l) ~ 102. Following collapse, &y, depends
on scale factor as a® (stable clustering), whereas & oc a?; the
large-x limit is therefore fy; (x) oc x3/2. HKLM deduced from
numerical experiments that the exact coefficient is

Fa (%) — 11,68 x*2 (10)

and obtained a numerical fit that interpolated between these
two regimes, in a manner that empirically showed negligible
dependence on power spectrum.

To use this method in the present application, we need
two generalizations: we need to make the method work with
power spectra, and we need the analogous results with Q = 1.
In principle, the translation between &(r) and A% (k) is straight-
forward, but it is not so easy to obtain stable numerical results.
One route is to use the relations between &(r) and &(r):

(= 5 [ e 1y
0
_ d[PEml
&) = a7 (12)
followed by the Fourier relations between £(r) and A2(k):
Er) = / A2 (k) smkr dk’ (13)
o k

2y 2K [T sinkr
A (k) = 7/0 E(r) PPl dr. (14)

This approach is not so attractive. To obtain the non-linear
power spectrum from the linear one requires two numerical in-
tegrations, followed by differentiation, followed by one further
integration. It is possible to do a little better by manipulating
the above equations to relate A%(k) and &(r) directly:

Er) = / A% (k) dkk (k3) [sin kr — kr cos kr], (15)
A%(k) = / E(r) ridr (7; [sin kr — kr cos kr], (16)

where the last relation holds provided that (r) — O faster
than r~2 at large r (i.e. a spectrum which asymptotically has
n > —1, a valid assumption for spectra of practical interest).
This looks better, since there are now only two integrations
required, and furthermore efficient methods exist for dealing
with integrations with sin and cos weightings in the integrand.
However, because the window function consists of the differ-
ence of two such terms, life is still not so easy: evaluation
of the two parts of the integral separately gives a result as
a difference of two large numbers, which is thus generally of
low accuracy. The most satisfactory practical procedure seems
to be a mixture of the two possibilities: (i) evaluate a table of
£.(r) values for a given linear power spectrum by evaluating
the oscillatory integral directly; (ii) transform to a table of
Ex(r) values using the HKLM procedure; (iii) fit splines to
the result and differentiate to get &y, (r); (iv) Fourier transform
to get A2, (k). The accuracy of the result can be improved in
the final step by transforming &y (r) — &.(r), which vanishes
rapidly at large r, and then adding A2 (k) to the answer.

The above process is still rather time-consuming and in-
elegant; it would be much better to make the HKLM method
work directly in terms of power spectra, and this is usually
possible. The main idea is that &(r) can often be thought of
as measuring the power at some effective wavenumber: it is
obtained as an integral of the product of A%(k), which is often
a rapidly rising function, and a window function which cuts
off rapidly at high k. The answer can be approximated by
replacing the exact window function by the Gaussian which is
equivalent to second order in k:

£ = Alken), (17)

' 1/(n+3)
o — [([n+211/2) ] Vio 8)
;

where n is the effective power-law index of the power spectrum.
This approximation is within a few per cent of the exact
integration provided that n <0. The effective wavenumber is
insensitive to n, and is within 20 per cent of 2.4/r over the
range —2 < n < 0. In most circumstances, it is therefore an
excellent approximation to use the HKLM formulae directly
to scale wavenumbers and powers:

A (k) = frlA} (k)] (19)
ke =[1+ A%[L(kNL)]_lﬂkNL- (20)

Even better, it is not necessary that the number relating 1/r
and k.g be a constant over the whole spectrum. All that matters
is that the number can be treated as constant over the limited
range ry, to r.. This means that the deviations of the above for-
mulae from the exact transformation of the HKLM procedure
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are only noticeable in cases where the power spectrum deviates
markedly from a smooth monotonic function, or where either
the linear or non-linear spectra are very flat (n <—2). Even this
is not obviously a problem, since the HKLM procedure itself
is not exact and does not work so well for flat spectra, n <—2
(A.S. Hamilton, private communication). Our approximation
is illustrated in Fig. 1, which shows the result of non-linear
evolution on spectra with and without a short-wavelength cut-
off. Whether the HKLM method actually applies to the first
situation is an interesting question which we hope to investi-
gate elsewhere. Other cases where our approximation would
fail include power spectra with the oscillations characteristic of
pure baryon models. However, since the data studied here re-
veal no trace of such sharp features in the power spectrum, we
may use the direct approximation for the non-linear evolution
of the power spectrum with confidence.

It remains to generalize the result from the Q = 1 model
considered by HKLM. This can be done partly analytically.
The argument that leads to the fy.(x) oc x*2 asymptote in
the non-linear transformation is just that linear and non-
linear correlations behave as a*> and @’ respectively following
collapse. If collapse occurs at high redshift, then Q = 1 may be
assumed at that time, and the non-linear correlations still obey
the @’ scaling to low redshift. All that has changed is that the
linear growth is suppressed by some Q-dependent factor g(€2).
It then follows that the large-x asymptote of the non-linear
function is

fr(x) — 1168 [g(@)] 7 %2 2n

According to Carroll, Press & Turner (1992), the growth factor
may be approximated almost exactly by

g(@Q = ;gm [Q;‘,{7 —Q 4+ (1 +Qn/2)1 + Q,,/70)] - )]

where we have distinguished matter (m) and vacuum (v) contri-
butions to the density parameter explicitly. We shall generally
use Q without a subscript to mean Q, hereafter.

To interpolate between the expected non-linear asymptote
and the linear regime, numerical experiments are necessary. We
therefore wrote a PM N-body code, which was used to evolve
a variety of initial spectra to a final state of given Q,, and Q,;
typically 64° particles and a 128° mesh were used. At a later
stage of the investigation, we were able to check our results
with the superior resolution provided by the AP*M code of
Couchman (1991). It was also possible to compare with low-
density cold dark matter (CDM) models published by Davis et
al. (1985) and Kauffmann & White (1992). Our conclusion is
that a near-universal behaviour analogous to that of HKLM
does appear to exist for low-density models, at least for the
linear spectra with power-law indices —2 < n < 0 that we were
able to test. We have produced the following fitting formula
for the generalized fy,. This is designed to match the HKLM
expression almost exactly in the Q = 1 limit, and to describe
the main features of the alterations encountered in low-density
models. The accuracy is approximately 10 per cent in terms
of the deduced linear power A? corresponding to a given A2 ,
over the range 0.3 <g(Q?) <I1.

N 1/p
14+0.28x + (4x)* ] , 3

1 + ([Ax]*g3(Q)/[11.68x/2])8

where the parameters are 4 = 0.84[g(Q)]1°?, o = 2/[g(Q)], and
B = 2g(Q). This fit says that the transition region between the

Fraolx) = x [
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Figure 1. The non-linear evolution of power spectra according to
the HKLM method, and the approximate direct alternative presented
here. The dashed lines show the input linear power spectra, the solid
lines show the result of numerically integrating the HKLM method
and the one-step solution is shown dotted. Panel (a) shows a variety of
COBE -normalized CDM models (with Qh = 0.2, 0.3, 0.4, 0.5); while
(b) shows Qh=0.5 CDM filtered with different Gaussian windows
(Ry = 0.25, 0.5, 0.75, 1 h~! Mpc), approximating the effect of warm
dark matter. As expected, our method fails at very high k, where the
linear CDM spectra become very flat and the linear WDM spectra
cutoff, but is otherwise excellent. Note that the effect of the WDM
cutoff is only felt at very large k: WDM is not the explanation for the
shape of the power spectrum around k = 0.1h.
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linear and non-linear regimes is dominated by an fy; oc x'**
power law, which becomes very steep for low-density models.
This steepening has long been familiar from N-body models,
and the apparent power-law nature of the spectrum can been
used as an argument against low-density models. We shall end
up making a rather similar argument here.
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Figure 2. The generalization of the HKLM function relating non-
linear power to linear power (or &, as in the original method). The
lowest curve is the original HKLM function for Q = 1; low densities
give a greater non-linear response. We show the fitting formula for
open models only, but what matters in general is just the Q-dependent
linear growth suppression factor.

It is useful to have an analytical expression for the inverse
function, and the following agrees with the exact inverse of
our formula to within a typical maximum error of a few per
cent over the range of interest:

(24)

ful) =y [1 + By " [g3(9)/11.68]2/3)“] 1/5,

14025y + (By)’

where B = 0.96[g(Q)]*Y, y = 1.03 — 0.39[g(Q)]°°, and § =
5[g(@)]%3. A plot of the Q-dependent non-linear function is
shown in Fig. 2. We show only models with zero vacuum en-
ergy, since the above reasoning shows that all that matters is
the linear growth-suppression factor g(Q2). Note that, for spa-
tially flat vacuum-dominated models, the growth suppression
is rather more modest (roughly g(Q) = Q%?) than in models
with zero vacuum energy (roughly g(Q) = Q°7). Our results
(and those of HKLM) apply only to initial conditions with
Gaussian statistics. It is an interesting question to what ex-
tent the method will also apply to non-Gaussian models, and
we hope to investigate this elsewhere. Some idea of the likely
degree of universality may be gained from the non-Gaussian
models studied by Weinberg & Cole (1992). They found that
the non-linear power spectrum was very similar for a range
of initial models, with the exception only of those that were
strongly skew-negative. It therefore seems likely that mildly
non-Gaussian models such as cosmic strings should be treated
correctly by the method we have given.

We now have the required means of deducing the initial
conditions that correspond to a given observed non-linear
mass spectrum. As an example, we show in Fig. 3 the initial
conditions required to create the canonical correlation function
E@r) = (r/ro)'3; ie. A’(k) = (k/k.)'®, where k. = 1.058/r,. For
low-density models, the initial conditions require an enormous
‘bite’ to be taken out of the spectrum for k between k. and
several times k.. The reconstructed spectrum tends to be very
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Figure 3. The inverse of the generalized HKLM procedure, as applied
to a power-law power spectrum (shown dotted) A%(k) = (k/kc)'® (in
correlation-function terms, ro = 0.945/k;). Open models with Q = 1,
0.5, 0.3, 0.2, 0.1 are considered. Note that the effects of non-linearities
in this case are rather small for high densities, but for low densities
the required linear initial conditions are very flat for k >k.. This flat
case is one where our approximate inversion of the HKLM procedure
will not be perfect (cf. Fig. 1); nevertheless, any errors will be small
in comparison with the systematic feature in the power spectrum
required around A% ~ 1. It clearly requires something of a conspiracy
to achieve a scale-free non-linear spectrum in a low-density model.

c

flat and close to A%(k) = 1 over a large range of wavenumber.
Conversely, for Q = 1 the effects of non-linearities are not very
severe in this case until we reach A%(k) >10. These differences
will be important when we come to linearize the observed data.

4 REDSHIFT-SPACE DISTORTIONS

With the exception of surveys where angular data are depro-
jected to obtain an estimate of the spatial power spectrum,
three-dimensional clustering data generally involve redshift
surveys where the radii are distorted by peculiar velocities.
There are two effects to consider. On large scales, a linear
analysis should be valid and we have the anisotropic effect
noted by Kaiser (1987):

&k = boi (L+ fi?/b), (25)

where p is the cosine of the angle between the wavevector
and the line of sight. The function f(Q) ~ Q% is the well-
known velocity-suppression factor due to Peebles, which is in
practice a function of Q, only, with negligible dependence on
the vacuum density (Lahav et al. 1991). The anisotropy arises
because mass flows from low-density regions on to high-density
sheets, and the apparent density contrast of the pattern is thus
enhanced in redshift space if the sheets lie near the plane of
the sky. If we average this anisotropic effect by integrating
over a uniform distribution of u, the net boost to the power
spectrum is
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On small scales, this is not valid. The main effect here
is to reduce power through the radial smearing due to viri-
alized motions and the associated ‘finger-of-God’ effect. This
is hard to treat exactly because of the small-scale velocity
correlations. A simplified model was introduced by Peacock
(1992) in which the small-scale velocity field is taken to be an
incoherent Gaussian scatter with 1D rms dispersion o. This
turns out to be quite a reasonable approximation, because the
observed pairwise velocity dispersion is a very slow function
of separation, and is all the better if the redshift data are
afflicted by significant measurement errors (which should be
included in o). This model is just a radial convolution, and so
the k-space effect is

Sk — O, expl—Kk*uta?/2). (27
This effect in isolation gives an average isotropic factor of

B - (3, L L 8)
2 ko
and produces only mild damping (one power of k at large k).
Some workers (e.g. Fisher et al. 1992; Kofman, Gnedin
& Bahcall 1993) have combined the above two effects simply
by multiplying the two power correction factors to achieve a
total distortion. However, this is not correct: both terms are
anisotropic in k space and they interfere before averaging:
(A2B?) # (A2){B?). For the present paper, it is also interesting
to consider the case of cross-correlation where each of two
catalogues gives a different measure of the same underlying
density field. The model for the effect in k space of cross-
correlation is then the product of two separate factors of the
above form:

166 = bubz I82(1 + f12/b)(1 + f12/b2)
x expl—k*2(a? + 03)/2]. (29)

The overall effect is obtained by averaging over p, and looks
more complicated than it really is:

|8k]> — b1z |k* G(y, 1, 02), (30)
where
y' =Ko} +03)/2 (31)
o= f(Q)/b, (32)
G(y’ o1, 0‘2) =
erf
\/TE ysy [Boryoa + 2(oy + 02)y* + 4y°]
2
- e—%(y“_y) lnoa (3 + 2y%) + 21 + a2)y*]. (33)

This simplifies a little in the case of autocorrelations, where
indices 1 and 2 are equivalent. The interesting aspect of this
formula is that the linear boost is lost at large k, where the
result is independent of Q (as is obvious from the anisotropic
form: the main contribution at large k comes from small
). The true damping at large k is thus more severe than
would be obtained by multiplying the power corrections prior
to angular averaging. The simulations of Gramann, Cen &
Bahcall (1993) show a good level of agreement with the above
formula in the autocorrelation case. The result is reassuringly
insensitive to the assumed form for the small-scale velocity

distribution function; if we take an exponential instead of a
Gaussian, we find the same result at small k:

G(y, oy, 00) 2 (1 pute alaz)

+_
_(l+a1+a2 +M) yZ, (34)

3 5
3 5 7
and the large-y limit becomes G — n/(2%2y) instead of G —
n'/?/(2y).

In practice, the relevant value of ¢ to choose is approx-
imately 1/+/2 times the pairwise dispersion ¢ seen in galaxy
redshift surveys. According to the most recent compilation of
velocity results by Mo, Jing & Borner (1993b), this corresponds
to the figure (adopted hereafter) of

¢~ 300 kms™. (35)

To this, we should add in quadrature any errors in measured
velocities. The relatively low value of this dispersion is of
course a significant problem for some high-density models.
Gramann et al. (1993) argue that redshift-space power spectra
of CDM models fit observation very well, mainly because the
predicted pairwise dispersion is so high in these models. As we
shall see below, such an unrealistically large dispersion would
spoil the agreement between data sets in real and in redshift
space.

5 POWER-SPECTRUM RECONSTRUCTION
5.1 Data

We now apply the above tools to some of the more recent
results on the clustering power spectrum. We shall consider
eight distinct sets of data, which fall into several distinct classes.

(i) Real-space clustering of galaxies. Baugh & Efstathiou
(1993) have applied a deprojection procedure to the angular
clustering of the APM galaxy survey to infer the non-linear
power spectrum of optically selected galaxies without redshift-
space distortions. This paper considers the large-scale power
spectrum, and we have thus used the APM data at k <
1hMpc! only. To allow comparison with other data sets, we
have also set a lower limit of k > 0.015hMpc~!.

(i) Redshift-space clustering of galaxies. We consider three
data sets: FKP for IRAS galaxies (the QDOT sample); Love-
day et al. (1992) for the Stromlo/APM survey; Vogeley et al.
(1992) for the CfA survey. The last paper quotes results for
two separate subsets; we have adopted a straight mean of the
two sets of data. We have not used the IRAS data of Fisher et
al. (1993), which are systematically lower than those of FKP.
As discussed by FKP, this seems most likely to be a local
sampling effect. In any case, it is the deeper QDOT sample
used by FKP which also appears in cross-correlation analyses
(see iv below).

(ili) Redshift-space clustering of groups and clusters of
galaxies. We use the power spectrum for R > 1 Abell clusters
from Peacock & West (1992) and also radio galaxies from Pea-
cock & Nicholson (1991), on the assumption that the strongly
enhanced clustering of these latter objects may be attributed
to their location in moderately rich environments.

(iv) We also use the cross-correlation between IRAS galax-
ies and Abell clusters or radio galaxies from Mo, Peacock &
Xia (1993a).
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Figure 4. The raw power-spectrum data used in this analysis. All data with the exception of the APM power spectrum are in redshift space. The
two lines shown for reference are the transforms of the canonical real-space correlation functions for optical and IRAS galaxies (ro = 5 and

3.78 h~! Mpc and slopes of 1.8 and 1.57 respectively).

Not all of the above data are available directly in power-
spectrum form. In cases where what is published is a cell
variance or a measure of £(r), we have used the notion of
an effective wavenumber, as discussed above and in Peacock
(1991). The treatment of errors requires some discussion. Only
FKP give a full realistic error covariance matrix for their
data; the other data sets give errors ranging from Poisson
estimates to field-to-field errors, but with no discussion of
the independence of the measurements at different k. For
consistency, we have therefore used a fraction of the FKP
data, spaced widely enough to be roughly independent. Any
imprecision in this procedure, plus unrecognized systematics,
will become apparent when the various data sets are compared
with each other.

The raw power-spectrum data are plotted in Fig. 4. There
is a wide range of power measured, ranging over perhaps
a factor 20 between the real-space APM galaxies and the
rich Abell clusters. We now have to see to what extent these
measurements are all consistent with one Gaussian power
spectrum for mass fluctuations.

5.2 Implications for bias and Q

The reconstruction analysis has available eight data sets con-
taining 91 distinct k—A? pairs. The modelling has available five
free parameters in the form of Q and the four bias parameters
for Abell clusters, radio galaxies, optical galaxies and IRAS
galaxies (ba, by, bo, b;). We optimized the model by making
independent determinations of A?(k) for each data set and

then comparing them. This was done in practice by dividing
the range 0.01 < k < 0.1 hMpc~! into 20 bins, and evaluating
a weighted mean power and a y? for each bin. The likelihood
of the model is given in terms of the summed y? values:

P oc exp —y*/2. (36)

At this stage, the question arises of whether the errors are
realistic, which may be judged from whether the overall y?
matches the number of degrees of freedom: in fact, it does
not. A procedure that ensures the required match is to add
some constant rms error € in quadrature to the existing errors.
In practice,

€ =23 per cent (37)

is required for the best-fitting model. Such a fudge is unsat-
isfactory and indicates a failure of understanding of the data
errors. However, there are grounds for suspecting that some
of the published errors are too low, so € is not a surprisingly
large correction. There may be excessive democracy here, in
that the formally most accurate data sets are penalized most
strongly by this procedure. On the other hand, these may be the
ones most likely to ‘detect’ small residual systematics; it seems
conservative to distribute the blame for any small disagree-
ment uniformly. One might also query whether this correction
should be applied at all k; for many models, the disagreement
is worst at high k. We shall stick with the simplest procedure,
since the quoted errors are usually much larger at low k.

Of our free parameters, only two are really important: Q
and a measure of the overall level of fluctuations. We take the
IRAS bias parameter to play this latter role. Once these two
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Figure 5. Contours of relative likelihood based on the degree of
agreement of the various estimates of linear power spectra. At each
(Q, by) point, the other bias factors have been optimized. We distinguish
the cases Q, = 0 (open) and Qy, + Qy, = 1 (flat). Contours are plotted
at what would be the 50, 90, 95, 99, 99.5 per cent confidence levels in
a two-dimensional Gaussian (i.e. Aln Z = 0.69, 2.3, 3.0, 4.6, 5.3).

are specified, the other bias parameters are well determined
— principally from the data at small k, where we are in the
linear regime. The best-fitting values depend only very slightly
on the two controlling parameters, and for all allowed models
are close to

by :bg :bo :b;=45:19:13:1, (38)

to within 6 per cent rms. We now show likelihood plots for the
remaining two parameters, Q and b;. Contours of likelihood
are displayed in Fig. 5, distinguishing the cases Q, = 0 (open)
and Q, + Q, = 1 (flat). Two main features are visible on
these plots: the data appear to demand a significant degree of
redshift-space distortion, with the optimal model having

=10402 (39)

in both cases (rms error). Models satisfying this constraint in
which both Q and b, are large are allowed, corresponding to
models well in the linear regime. However, low-bias models
appear to be less favoured: for low Q, the best models have
b, ~ 0.8. For the case of flat models, there is a certain bi-
modality, with the preferred values of b; for Q = 0.1 being 0.8
and 0.25. However, the heavily antibiased branch of solutions
can probably be excluded on other grounds, and we ignore
it hereafter. At the 90 per cent confidence level, this analysis
requires Q > 0.14. The various reconstructions of the linear
power spectrum for the case Q = b; = 1 are shown superim-
posed in Fig. 6, and display an impressive degree of agreement.
This argues very strongly that what we measure with galaxy
clustering has a direct relation to mass fluctuations, rather
than the large-scale clustering pattern being an optical illusion
caused by non-uniform galaxy-formation efficiency (Bower et
al. 1993). If this were the case, the spectrum inferred from clus-
ters should have a very different shape at large scales, contrary
to observation.

The detection of redshift-space distortions is based largely
on the inclusion of the APM survey, since it is the only real-
space measurement used here. If this data set is removed from
the analysis, small values of Q%¢/b, are no longer excluded.
An upper limit at Q%/b;, <2 can still be set; this comes
primarily from the cross-correlation data. In real space, the
cross-correlation should be the geometric mean of the two
autocorrelation results. Because of the different effects of the
redshift-space mapping, however, this is no longer true when
redshift-space distortions become large. The observed cross-
correlations thus set a limit to how strong the distortion can
be. Some independent confidence in the detection of non-zero
distortion can be gained from the work of Saunders, Rowan-
Robinson & Lawrence (1992). They deduced the real-space
correlation function for IRAS galaxies: £(r) = (r/ro)™", with
ro = 3.78 £ 0.14 h~'Mpc and y = 1.57 & 0.03. If we convert
this to a power spectrum, it lies lower than the QDOT results
of FKP by a factor 1.61 + 0.26 over the range 0.05h < k <
0.15h Mpc~!. This corresponds to Q% /b, = 0.75 + 0.25, in
good agreement with the figure deduced above, and provides
independent evidence for the detection of significant redshift-
space distortion. This lower degree of real-space clustering is
also in agreement with our ratio of 1.3 between optical and
IRAS bias factors. The Saunders et al. figure for ry predicts
ro = 5.3h'Mpc for optically selected galaxies in real space,
which is very close to the canonical value. IRAS galaxies
have a slightly smaller value of y, but this only produces an
important change in relative power on scales rather smaller
than those probed here.

The conclusion that models with Q*/b, ~ 1 and low Q
are not allowed stems from the effect of non-linearities: the true
level of mass fluctuations in such models would be very high.
Moreover, a decrease of Q increases the effect of non-linearities,
as discussed above; this trend is less marked for the flat models,
which is why low densities are not so strongly excluded in that
case. It is easy to see how this conclusion arises by referring
to Fig. 6. This shows that the linear power spectra inferred
from galaxy and cluster data agree down to k ~ 0.3 hMpc~!,
where A? ~ 1 in the best-fitting case. If we assume a higher
normalization, the effect of non-linearities in this case is to add
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Figure 6. The power-spectrum data from Fig. 4, individually linearized assuming Q = b; = 1. There is an excellent degree of agreement, particularly

in the detection of a break around k = 0.03h.

power, so the linear reconstruction from galaxy data would
become very flat at high k (cf. Fig. 3). However, this would
disagree with the cluster data, which would still indicate a
steep power spectrum, since we have assumed that the clusters
give the linear result directly. This is a general problem with
highly evolved models: since non-linearities change the shape
of the power spectrum at A? ~ 1, and especially so for low
densities, it requires something of a conspiracy for the non-
linear power spectrum to be a featureless power law (see Gott
& Rees 1975). However, on the present assumptions, extreme
non-linear evolution should steepen the galaxy correlations
faster than those for clusters, and yet they empirically have
much the same slope. The easiest way of understanding this
is to say that the degree of non-linearity is only mild. This
is certainly an issue which merits further investigation, and a
detailed simulation of cluster formation in a highly non-linear
low-density model would be most valuable. In the meantime,
it is interesting to note that the constraints we have drawn
here on density and bias are very similar to those obtained in
a completely independent way by the POTENT group in their
analysis of the peculiar-velocity field (Dekel et al. 1993).

Table 1 gives the final data for the mean reconstructed
power spectrum, for the case Q = b, = 1. The data have
been averaged in bins of width 0.1 in log,,(wavenumber) and
the errors quoted are standard errors. These numbers are
plotted in Fig. 7, and will be compared with models in the
next section; as will be shown there, the data are consistent
with a smooth and featureless power spectrum, despite the
small size of the errors. One of the pleasant features of our
result is that the power spectrum is only weakly dependent on

model parameters. For Q = 1, the power is not so sensitive
to b, because in redshift space (the majority of the data) we
measure

A o (1 + %[f/b] ¥ é[f/b]z) . (40)

The overall power correction factor thus scales only as b'%/7
for b close to unity. This can be used to rescale our ‘standard’
result to some other desired value of b, given Q = 1. For low
densities, an empirical formula for the scaling of the linear
mass spectrum in the present analysis is

A? oc Q703 1)

It is convenient to be able to compare the results here
with another common measure of the amplitude of linear
mass fluctuations. This is og: the linear-theory rms density
contrast when averaged over spheres of radius 8 A~! Mpc:

/ Az(k) k (kR)6 — [sin kR — kR cos kR]. (42)

The squared window function weighting the power spectrum
is very close to a Gaussian W? = exp[—k*R?/5], and so o% is
just A%(k) at some effective wavenumber:

ok = A(kg), (43)

e 1721775 (44)
R 3 R’

where n is the effective power-law index of the power spectrum.
As before, this approximation is within a few per cent of

the exact integration provided that n <0. On the scales of
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Table 1. The linear power-spectrum data, assuming Q = b; = 1. To
scale the data to other values of these parameters, see Section 5.2.

k/hMpc~!  A2(k) +

0.014 0.0010  0.0003
0.018 0.0013  0.0008
0.022 0.0032  0.0009
0.028 0.0087  0.0023
0.035 0.0196  0.0037
0.045 0.0312  0.004
0.056 0.052 0.008
0.071 0.107 0.011
0.089 0.146 0.017
0.112 0.211 0.027
0.141 0.33 0.033
0.178 043 0.051
0.224 0.73 0.095
0.282 1.14 0.13
0.355 1.63 0.27
0.447 1.61 041

interest, the effective index is close to —1.5 and so the effective
wavenumber for og is kK = 0.20. Using the above scalings, we
get

a5 = 0.75 Q7O8, 45)

with a formal rms uncertainty of 13 per cent.

The significance of 8 »~! Mpc as a normalization scale is
that o3 is of order unity and thus its value can be probed by
observations of weakly non-linear structures such as galaxy
clusters. White, Efstathiou & Frenk (1993) discuss this con-
straint, and deduce o3 = 0.57 Q%% for spatially flat models
(although the scaling should be very similar for open models),
to within a tolerance of roughly +10 per cent. The precise
meaning of their uncertainty is hard to quantify, but it seems
intended to give hard limits, rather than an rms. The agreement
with our results is very good; the Q dependence is steeper, but
the disagreement in o is only a factor 1.4 even for Q = 0.2.

6 POWER-SPECTRUM DATA AND MODELS
6.1 CDM-like models

It is interesting to ask if the power spectrum contains any
features, or whether it is consistent with a single smooth curve.
In fact, a variety of simple models describe the data from Table
1 very well within the errors. Consider the fitting formula used
by Peacock (1991), which is just a break between two power
laws:

(k/ko)*
wpy = L Uf /ki)a_ﬂ. (46)
This works well, with
ko =0.29+0.01 hMpc~!, 47)
ki =0.039 +0.002 hMpc~, (48)
a = 1.50+0.03, (49)
B =4040.5. (50)

A value of f = 4 corresponds to a scale-invariant spectrum at
large wavelengths.

A more physical alternative is the CDM power spectrum,
which is A%(k) oc k"3 T2. We shall use the BBKS approxima-
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Figure 7. The linearized data of Fig. 6, averaged over bins of width

0.1 in logo k. This plot assumes Q = b; = 1; for lower densities the
power increases slightly, as described in the text.

tion for the transfer function:
T, = In(1 4 2.34q)
2.34q
x[1 4 3.89q + (14.1q)* + (5469)° + (6.719)*17V*,  (51)

where ¢ = k/[Qh> Mpc™']. Since observable wavenumbers
are in units of AMpc™, the shape parameter is the apparent
value of Qh. This scaling applies for models with zero baryon
content, but there is an empirical scaling that can account for
the effect of baryons, and which deserves to be more widely
known. Fig. 8 shows a compilation of CDM transfer functions
taken from Holtzman (1989). When plotted against k/Qh?,
there is a strong dependence on baryon density: high baryon
content mimics low CDM density. If we instead use the scaling

Tie(k) = Taus(k/[Qh* exp(—2Q))), (52)

then all the curves lie on top of one another to a few per cent
tolerance. We shall henceforth use the term ‘Qh’ to refer to the
BBKS fitting parameter, on the understanding that it means
the combination Qhexp(—2Q;z). Our results will hence differ
slightly from those of Efstathiou, Bond & White (1992), who
defined a parameter I" which is almost Qh. Unfortunately, they
scaled to a ‘standard’ CDM model with Q; = 0.03, with the
result that I" = 1.06Qh.

Fitting of the CDM model to our data also results in a
satisfactory y? and requires the parameters

Qh = 0.255+0.017 + 0.32(1/n — 1), (53)

in agreement with many previous arguments suggesting that a
low-density model is needed. The fit of this and other models is
illustrated in Fig. 9. For any reasonable values of h and baryon
density, a high-density CDM model is not viable. Even a high
degree of ‘tilt’ in the primordial spectrum (Cen et al. 1992)
does not help reach the required Qh ~ 0.75. The alternatives
are to retain the CDM model, but assume that some piece of
unknown physics has produced a transfer function that looks
like a low-density model, or to adopt a low density, or to go for
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Figure 8. A set of CDM transfer functions, using the fitting formulae of
BBKS for zero baryon content, and those of Holtzman (1989) for Qg =
0.01, 0.03, 0.05, 0.1. Models with h = 1 are shown as solid lines, h = 0.5
are dotted. When plotted (panel a) against k/Qh?, the varying baryon
content causes variations in the curves, with higher Qp producing
greater suppression of power. However, this can be scaled away (panel
b) by plotting against the combination k/[Qh? exp(—2Qz)]. In these
terms, the CDM transfer function has a universal shape, which can be
described by the zero-baryon formula of BBKS. The scaling becomes
noticeably imperfect for Qp >0.3, but is very good for the models
plotted here.

something else entirely. As far as low densities are concerned,
note that the popular choice of Q = 0.2 (e.g. Kauffmann &
White 1992) will overshoot and yield too low values of Qh.
More viable alternatives with high density are either mixed
dark matter (MDM: Holtzman 1989; van Dalen & Schaefer
1992; Taylor & Rowan-Robinson 1992; Davis, Summers &
Schlegel 1992; Klypin et al. 1993; Pogosyan & Starobinsky
1993), or non-Gaussian pictures such as cosmic strings +
hot dark matter, where the lack of a detailed prediction for
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Figure 9. The averaged linear power-spectrum data of Fig. 7, com-
pared to various CDM models. These assume scale-invariant initial
conditions, with the same large-wavelength normalization. Different
values of the fitting parameter Qh = 0.5, 0.45, ...0.25, 0.2 are shown;
power is an increasing function of Qh, so that the ‘standard’ Qh = 0.5
model has the highest power, whereas Qh = 0.2 has the lowest. The
best-fitting model has Qh = 0.25 and a normalization which is 1.5¢
higher than COBE if Q = 1 and gravity-wave anisotropies are negli-
gible (e = 3.25 x 1079).

the power spectrum helps ensure that the model is not yet
excluded (Albrecht & Stebbins 1992). Mixed dark matter seems
rather ad hoc, but may be less so if it is possible to produce
both hot and cold components from a single particle, with
a Bose condensate playing the role of the cold component
(Madsen 1992; Kaiser, Malaney & Starkman 1993). However,
the shape of the MDM spectrum is not very close to the
spectrum deduced here: it bends much more sharply, and
is very flat on small scales. At the quasi-linear scale k =
02h Mpc_‘, the local power-law index for the MDM model is
about n = —2.2, as opposed to our empirical value n ~ —1.5.
If the good fit of a low-density CDM transfer function is
taken literally, then perhaps this is a hint that the epoch of
matter-radiation equality needs to be delayed. An approximate
doubling of the number of relativistic degrees of freedom
would suffice — but this would do undesirable violence to
primordial nucleosynthesis: any such boost would have to be
provided by a particle that decays after nucleosynthesis. The
apparent value of Qh depends on the mass and lifetime of the
particle roughly as

thapparent =Qh [1 + (mkeVTyears)2/3]_l/2 (54)

(Bardeen, Bond & Efstathiou 1987; Bond & Efstathiou 1991),
so a range of masses is possible. Apart from making the
observed large-scale structure, such a model yields a small-
scale enhancement of power which could lead to early galaxy
formation. Whether the required particle physics is at all plau-
sible remains to be seen, but the model is arguably the most
attractive of those currently available.

An important general lesson to be drawn from this section
is the lack of large-amplitude features in the power spectrum.
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This is a strong indication that collisionless matter is deeply
implicated in forming large-scale structure. Purely baryonic
models contain large bumps in the power spectrum around
the Jeans length prior to recombination (k ~ 0.03 Qh> Mpc™),
whether the initial conditions are isocurvature or adiabatic
(e.g. section 25 of Peebles 1993). It is hard to see how such
features can be reconciled with the data.

6.2 Peculiar velocities

The mass power spectrum has a direct application in predicting
the cosmological peculiar-velocity field. The 3D rms velocity
for clumps averaged over some window is

o2 = H>f(Q)? / A?(k) % W2, (55)

so we can use the power spectrum to make a direct prediction
of this quantity, which is shown in Fig. 10 for the case of
spheres of varying radii. The velocity power spectrum (oc
k~2A%(k)) peaks around the break in the power spectrum at k ~
0.03 hMpc™!, and so the predicted velocities decline rapidly for
spheres which filter out this scale.

For Q = 1, the predicted velocities are very reasonable. If
we model the Local Group as a sphere of radius 5h~! Mpc,
the 3D rms is 680 kms™!, as against the observed 600 kms™!
one-point local measurement (the answer is very insensitive to
the size used to define the Local Group). Fig. 10 also shows
the deduced velocities from the POTENT group (Bertschinger
et al. 1990) for spheres of radius 40 and 60 h~!Mpc, which
also agree well. However, the predictions are completely in-
consistent with the velocity of 842 kms™! for the local sphere
out to 150 h~'Mpc claimed by Lauer & Postman (1993). The
predicted 3D rms for this scale is only 140 kms™!. Even if we
allow that their weighting scheme might reduce the effective
radius of their sphere (they weight each radial shell equally),
there remains a qualitative discrepancy. If this result were
to be confirmed, it would probably indicate a large feature
in the power spectrum on scales beyond those probed here
(k <0.01 hMpc™h).

The empirical power spectrum deduced here thus seems
to agree extremely well with large-scale velocity data. The
crucial test for Q = 1 models, however, has often been the
small-scale velocity dispersion. The preferred low-Qh model
predicts a pairwise dispersion at 1 h~! Mpc separation of about
o) = 550 kms~! (Mann 1993), which is interestingly close to
more recent observational data (Mo et al. 1993b).

6.3 CMB anisotropies

We now relate the measurement of mass fluctuations on scales
of several hundred Mpc to those implied on larger scales from
the measurement of cosmic microwave background (CMB)
fluctuations by the COBE team (Smoot et al. 1992). This is
a subject which has advanced rapidly since the original de-
tection, with a more widespread appreciation of the possible
contribution of gravitational waves to the anisotropy (follow-
ing the original insight of Starobinsky 1985). We therefore
distinguish explicitly between scalar and tensor contributions
to the CMB fluctuations by using appropriate subscripts. The
former category are those described by the Sachs—Wollfe effect,
and are gravitational potential fluctuations that relate directly

1000

500

3D o,/km st
200

100

50

10 100
R/h™'Mpc

Figure 10. The predicted 3D rms velocity of spheres as a function of
radius, assuming Q = 1. This is based on the two-power-law fitting
formula for the power spectrum. For low densities the velocities are
reduced, but by less than the normal Q% factor, because the inferred
mass fluctuations rise in that case (see text). The plotted points are the
Local Group motion assigned to a radius of 5h~'Mpc, and motion
of larger spheres taken from the POTENT group (Bertschinger et al.
1990). Although the Local Group motion is very well determined, it
is assigned a fractional error of 671/2 to allow for fluctuations in the
3D rms velocity seen by different observers.

to mass fluctuations. For a Gaussian beam of FWHM 2.35¢,
the correlation function of the microwave sky is

Cs(0) = % Z(zf + 1) W2 C, Ps(cos 6), (56)
3

where P, are Legendre polynomials, and W, = exp(—¢252/2).
The coefficients C, are

dk

k 2
where j, are spherical Bessel functions (see Peebles 1982). The
length Ry is the present comoving horizon size

C,=16mn

X[ ki2e/ Ho)00) 2 kRe)
) 0 J¢ H

P (57

2c

Ry = oH, (open) (58)
2c

> o, (flat) (59)

(Vittorio & Silk 1991) and the function g(Q) is the linear
growth suppression factor relative to Q = 1, as discussed ear-
lier. These formulae strictly apply only to spatially flat models,
since the notion of a scale-free spectrum is imprecise in an
open model. Nevertheless, since the curvature radius subtends
an angle of Q/[2(1—)!/?], normalization to COBE in an open
model should not be a very bad approximation until we reach
Q <0.2. We shall therefore ignore this uncertainty in what
follows. We also ignore corrections to the first few multipoles
which arise through the time dependence of the gravitational
potential in flat vacuum-dominated models (Kofman et al.
1993).
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In the case of the COBE measurements, the simplest
and most robust datum is just the sky variance convolved
to 10° FWHM, ie. Cs(0) in the above expression with ¢ =
4°25. This can be converted into an integral over the power
spectrum multiplied by a window function that is a sum over
Bessel functions. In practice, it is convenient to have a simpler
expression for the window, and it turns out that this can be
achieved to almost perfect accuracy by using a small-angle
approximation:

Cs(0) = @ 4(kl2e/ Hol)~ A2(k) W2 (kRy) X 60
d)-m/([dol) (k) W= (kRy) == (60)

W2 (y) = [1—j50) = 3701 F(ve)/ (vo), (61)

where F(x) is Dawson’s integral. The terms involving Bessel
functions correspond to the subtraction of monopole and
dipole terms. The window function is relatively sharply peaked
and so the COBE variance essentially picks out the power at
a given scale. For the case of ¢ = 0.0742 (FWHM of 10°), the
result is very well fitted by

Cs(0) = 1.665 g%;) [4(ks[2¢/Hol) ™ A% (ks)], (62)
ksRy = 7.29 +2.19(n — 1). (63)

The observed value is C/2(0) = 1.10+0.18 x 1075 (Smoot et al.
1992). For scale-invariant spectra, this corresponds to an rms
quadrupole of Qs = 15.0+2.5 uK. For Q = 1, this translates
to a normalization of € = 2.6 + 0.4 x 107> in the notation of
Peacock (1991). How well does this amplitude match on to the
clustering observed at 100-Mpc wavelengths? If we stick to
asymptotically scale-invariant spectra, the agreement is very
good. The CDM fit shown in Fig. 9 requires

€=2325+0.18 x 107°. (64)

This is slightly higher than the COBE measurement, but well
within experimental error. If the large-scale normalization is
forced to be € = 2.6 x 1075, the best-fitting CDM shape
changes to Qh = 0.31. In fact, a more detailed analysis of
the COBE data by Wright et al. (1994) yields a preferred
amplitude somewhat higher than the above simple calculation,
and in extremely good agreement with the fit derived from
Fig. 9.

For a more general comparison, it is convenient to define
a reference datum at the largest scale where our data are still
accurate. From Table 1, we take this to be A?(k = 0.028h) =
0.0087 + 0.0023. At this point, there is still some curvature in
the power spectrum: the Qh = 0.25 transfer function is T =
0.61 and the effective transfer function defined by the two-
power-law formula is T) = 0.80. We shall adopt a compromise
T,=0.70 and hence deduce

A%(k = 0.028h) = 0.018 + 0.0023 (65)

as our best estimate of the true level of any primordial power-
law fluctuations on these scales (subject to scalings as above if
Q # 1). We can now use our earlier discussion of the COBE
data to predict this small-scale fluctuation, ignoring for the
moment any gravity-wave contribution. The answer is

A?(k = 0.028h) = 0.014 exp[3.2(n — 1)] Q™% (open) (66)
= 0014 exp[32(n — )] Q¢ (flat). 67)

Thus, if we adopt Q = 1, there is a very good agreement with
scale-invariance: n = 1.08 4 0.04. Conversely, tilted models do

not match large and small scales very well: for n = 0.7, the
predicted power near 100 Mpc is too small by a factor 3.
Things get worse if gravity waves are included: a prediction
of many inflationary models is that

¢
c
(e.g. Liddle & Lyth 1992; Lidsey & Coles 1992; Lucchin,
Matarrese & Mollerach 1992; Souradeep & Sahni 1992), which
decreases the predicted small-scale power by a further factor
2.8 for n = 0.7, making a total mismatch of a factor 8. It is
inconceivable that our analysis of the 100-Mpc-scale power
could be in error by this amount. Thus, although tilted models
may be attractive in removing the one-degree ‘bump’ in the
predicted microwave sky (Crittenden et al. 1993) and allowing
consistency with intermediate-scale CMB experiments, it seems
implausible that this can be the correct solution, at least if
Q = 1. To allow a tilted model with n = 0.7, we need Q ~ 0.06
and 0.3 respectively in the open and flat cases.

~ 6(1 —n) (63)

7 SUMMARY

We have analysed a compilation of recent measures of galaxy
clustering, under the assumption of underlying Gaussian mass
fluctuations. We have presented new methods for dealing an-
alytically with the modifying effects of non-linear evolution
and redshift-space distortions, and their effect on the power
spectrum. Application of these methods to the data leads to a
consistent determination of the linear mass spectrum, with the
following properties.

(i) The relative bias factors for Abell clusters, radio galaxies,
optical galaxies and IRAS galaxies must be in the ratios
bs :bg :bo :by=45:19:13 :1, to within 6 per cent rms.

(i) The data require a significant degree of redshift-space
distortion: Q%6 /b, = 1.0 +£0.2.

(i) Low values of Q and bias are disfavoured because non-
linear evolution would spoil the agreement in shape between
galaxy and cluster power spectra. Both this and the previous
conclusion are in good agreement with independent studies
based on peculiar-velocity fields.

(iv) The linear power spectrum is smooth and featureless,
and is well described by a zero-baryon CDM model with
Qh =0.25.

(v) The amplitude of 100-Mpc power matches well to that
inferred from COBE provided that the primordial spectrum
was close to scale-invariant. Tilted models that postulate a
dominant gravity-wave CMB component are difficult to rec-
oncile with our data.
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