The Camera Challenge

Gavin Dalton

RALSpace

Heavy: 2.5T

Long gestation: >2yrs

Long lifetime: >25years

Difficult thermal control

Difficult to handle

Difficult to transport

Requires lots of consumables

> **Produces vast** quantities of output

Difficult to control

> **Precision optics** Coplanar detectors Cryogenic

temperatures

IR Camera Preliminary Design Review

10-11 December 2002

Appleton

Laboratory

Big: 2.5m

CLRC

Page2

The glass is half full! The glass is half empty. ŝ Half full. No! Wait! Half empty !.. No, half... What was the question? Hey! I ordered Aler . The four basic personality types

Science & Technology Facilities Council

Timeline

- System Design Phase (post CoDR): Apr 02
- PDR held December 02
- FDR held January 04
- Camera fully built May 06
 - Moved from assembly area
- Delivery to Paranal Jan 07

- On-sky mid-2008
 - Commissioning of camera + telescope through mid-2009

Basic Parameters

- Field of View 1.67 degrees @ f/3.3 (350mm focal plane)
- 16 2048x2048 Raytheon VIRGO HgCdTe Arrays (840μm-2.5μm sensitive)
- YJHKs baseline filter set (one filter per detector)
- ✤ 3 vacant slots in wheel (Z filter to take one)
- ✤ 4 2048x2048 E2V CCDs for wavefront sensing
- ✤ 2 2048x2048 E2V FT CCDs for autoguiding
- ✤ 7 nested 'dichroic' baffles for stray light control

SPIE – Instrumentation 5492-3424 June 2004

Optical System

Telescope and camera design optimised as a single system

Full system delivers 0.5" images (50% EED). Image distortion < 2% at extreme edge of field

> Science & Technology Facilities Council

SPIE-Instrumentation

24 June 2004

Challenges

- > Cryostat
- ≻~1m vacuum window
- > Focal plane co-planarity ($\pm 25 \mu m$)
- Detector procurement (ITAR)
- >Wavefront sensing (totally new)
- ≻Stray light baffles
- Testing (optical system 7000nm astigmatism)
- ≻Handling (in the lab and to/at the telescope)

Cryostat

- ≻5 sections, 15m of o-rings
- Limited possibilities for suppliers
- Substantial CAD assistance needed from RAL
- Supplier staffing issues (non-work related injuries)
- > Heat shields (use of MLI rejected)
- ≻The 'shrinkage' problem

Handling Issues

Field Corrector

Baffle system

In Camera: 1 flat, 7 nested elliptical dichroic baffles, reject out-of-band thermal through dewar window. On-telescope: double reflective baffle around M2 restricts camera view past secondary, obstruction 1.4m.

Wavefront Sensors/Autoguiders

Filter Wheel

Each tray has 160 separate components...

Cryostat Window

rford Appleton Laboratory STC FACILITY 0.8MJ of stored potential energy due to pressure on the window!

logy

Facilities Council

Focal Plane Layout -> Images

Focal Plane Assembly Details

Detector co-planarity: all pixels within $\pm 25\mu m$ (Thanks Raytheon!)

ATC testing: Detector output not quite as expected... 1024 new Op Amps...

The scattered light puzzle...

Dark image

Science & Technology Facilities Council

The scattered light puzzle...

Dark image

Science & Technology Facilities Council

The scattered light puzzle...

Key to explanation came from chips on the edge of one detector...

-a side effect of 800µm thick substrates... (should have been 20µm)

Laboratory image tests

Two-mirror + corrector injection source to simulate telescope aberrations. Align to generate a spot in the focal plane, then measure the source configuration with Shack-Hartmann test camera. <u>Predicted:measured Z6,Z7, Z11=(7025,-954, 729):(-6957,944,-742nm</u>)

Cross-check Z6 measurements against through-focus (±2mm) spot images: Error in camera optics < 130nm (111.5mm field) or < 240nm (113.5mm field)

Shipped intact and at vacuum...

Cross-channel ferry (roughest night of the year) then 3 days by 747 (just fits). Finally by road from Santiago

Arrived at Paranal and unpacked (still at vacuum).

...not everything arrived in such good shape (3/5 He compressors damaged in transit)

IR Camera in ground floor of VISTA Enclosure

First Light

•Early July 2008

•M1/M2 setup taken from nominal test-camera data

•AGs not set up

•WFS -> M2 not set up

•WFS-> M1not set up

•WFS returning plausible Zernike values

Apply corrections by hand, can estimate correct focus to ~200nm in Z4 by eye (WFS does a lot better).

After about 5 hours of this we stopped to take a picture... (6x30s pawprints in J, dithered 'by hand')

Wavefront Sensors

Pair of pre/post-focal images (LOW order)

Analysis fit to the image-pair

Residuals

Science & Technology Facilities Council

Wavefront Sensors

High Order

25 Zernike terms fitted

(Spherical terms not applied, but no significant level detected)

M2 trefoil (~800nm) seen with test S-H camera recovered well

Can sometimes fail to converge...

Beam-splitter cubes inbetween filter positions can be deployed to 8 pre-determined locations for highorder curvature sensing measurements.

Calibrating M1/M2

Residual Camera Astigmatism

Rotational variation of M1 astig corrections suggest a small camera term, consistent with the laboratory measurements.

-Add a term to the active optics controls to apply this as f(rotator) in open loop.

M2 tilt (field dep. astig)

Always appeared to see worse images in one, but not always the same, corner... Z5 and Z6 measurements initially confusing.

Model as two-component rotating term, and get better data...

echnology uncil

M2 tilt (field dep. astig)

Science & Technology Facilities Council

2 component model with a true field corrector misalignment term and a 'phantom' 2θ term from the gradient of the M1 trefoil correction. –Apply one term open-loop and ignore the other.

Focus Gradient (HOWFS)

Difference between extreme and near-axis positions for each rotator setting

Focus Gradient (HOWFS)

March 2009

Same plot after lateral M1 position adjustment and recalibration of M2 positioning

Further repositioning of M1 in May 2009 corrected this

residual

Final image quality from SV data

VISTA Performance

Throughput: Z 51% Y 45% (Filter) J 53% H 66% Ks 63%

Array striping: controller effect, removed as identical in four arrays/IRACE sub unit

Channel cross-talk: none

Persistence: 1st Mag star residual disapppears completely in < 1min

Total system...

telescope+camera+detectors

Lower left corner

Lower right corner

Upper left corner

Upper Right corner

