Fast iterative reconstruction methods in atmospheric tomography

Daniela Saxenhuber¹

joint work with

Ronny Ramlau¹, Matthias Rosensteiner² , Andreas Obereder³

March 26, 2014

¹Industrial Mathematics Institute JKU Linz, Austria
 ²NRC Herzberg
 ³MathConsult GmbH, Austria

- 2 Algorithms for atmospheric tomography
- Quality results on OCTOPUS
- Ongoing work and further ideas

2 Algorithms for atmospheric tomography

- 3 Quality results on OCTOPUS
- Ongoing work and further ideas

Wavefront reconstruction from WFS data s_{αg} for each guide star direction α_g:

$$\Gamma\varphi_{\alpha_g} = s_{\alpha_g}$$

e.g. use CuReD algorithm⁴

2 Atmospheric tomography: Reconstruct a discretized atmosphere $\Phi = (\Phi^{(1)}, \dots, \Phi^{(L)})$ from data φ_{α_g}

$$\mathbf{A} \mathbf{\Phi} = \varphi$$

e.g. via Gradient-based method, Kaczmarz, CG, Backprojection, ...

§ Shape of the deformable mirror: projection of atmosphere Φ onto DM Φ_{DM}

$$\mathbf{P}\boldsymbol{\Phi} = \boldsymbol{\Phi}_{DM}$$

⁴M. Rosensteiner, *Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition.* J. Opt. Soc. Am. A, Vol. 29, Nr. 11 (2012)

Wavefront reconstruction from WFS data s_{α_g} for each guide star direction α_g:

$$\Gamma\varphi_{\alpha_g} = s_{\alpha_g}$$

- e.g. use CuReD algorithm 4
- **3** Atmospheric tomography: Reconstruct a discretized atmosphere $\Phi = (\Phi^{(1)}, \dots, \Phi^{(L)})$ from data φ_{α_g}

$$\mathbf{A} \mathbf{\Phi} = \varphi$$

e.g. via Gradient-based method, Kaczmarz, CG, Backprojection, ...

§ Shape of the deformable mirror: projection of atmosphere Φ onto DM Φ_{DM}

$$\mathbf{P}\boldsymbol{\Phi} = \boldsymbol{\Phi}_{DM}$$

⁴M. Rosensteiner, *Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition.* J. Opt. Soc. Am. A, Vol. 29, Nr. 11 (2012)

3-step approach

WFS measurements s^x and s^y

 $\downarrow \textit{Wavefront Reconst.}$ incoming wavefront

incoming screen

Advantages of the 3-step approach

- very fast algorithm
- uses no matrix-vector-multiplications
- usable for (linearised) SH WFS and Pyramid WFS ⁵
- different algorithms for atmospheric tomography developed
- efficient treatment of the LGS deficiencies tip/tilt indetermination and cone effect in the atmospheric tomography step
- efficient projection step, in particular for MCAO with e.g. 5x5 optimization directions
- all steps are highly parallelizable, CuReD algorithm even pipelineable
- low overall computational complexity: O(n)
- very good quality results for NGS systems and also for small FoV systems with spot elongation

⁵I. Shatokhina et al., *Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.* Appl. Opt., Vol. 52, Nr.12 (2013)

Wavefront reconstruction

• Solve
$$\Gamma \varphi_{\alpha_g} = s_{\alpha_g}$$
, with $[s^x_{\alpha_g} s^y_{\alpha_g}]$

• Shack-Hartmann Wavefront Sensor (SH-WFS) for each guide star direction α_g , $g = 1, \ldots, G + N$

• SH-operator:

$$\begin{split} & \Gamma: H^1(\Omega_D) \to \ \mathbb{R}^{2\#sub} \\ & s^x_{\alpha_g} = \frac{1}{|\Omega_{ij}|} \int_{\Omega_{ij}} \frac{\partial \varphi_{\alpha_g}}{\partial x} \ d(x,y) \,, \\ & s^y_{\alpha_g} = \frac{1}{|\Omega_{ij}|} \int_{\Omega_{ij}} \frac{\partial \varphi_{\alpha_g}}{\partial y} \ d(x,y) \,, \end{split}$$

 $\varphi_{\alpha_g} \dots$ incoming wave-front $\#sub \dots$ number of active sub-apertures

2 Algorithms for atmospheric tomography

3 Quality results on OCTOPUS

Ongoing work and further ideas

Atmospheric tomography

Input:

- reconstructed incoming wavefronts φ_{α_g} on Ω_D (aperture) from LGS $g = 1, \dots, G$ and NGS $g = G + 1, \dots, G + N$ Goal:
 - fast reconstruction of turbulence layers $\Phi^{(l)}$ on Ω_l , $l = 1, \ldots, L$

ill-posed inverse problem \implies requires regularization.

Data model

Light propagation through turbulence:

$$\begin{split} \mathbf{A}_{\boldsymbol{\alpha}_{g}} &: \quad \bigotimes_{l=1}^{L} L^{2}(\boldsymbol{\Omega}_{l}) \to L^{2}(\boldsymbol{\Omega}_{D}), g = 1, \dots, G + N \\ \mathbf{A}_{\boldsymbol{\alpha}_{g}} \boldsymbol{\Phi} &:= \quad \sum_{l=1}^{L} \Phi^{(l)}(c_{l}\mathbf{r} + h_{l}\boldsymbol{\alpha}_{g}) = \varphi_{\boldsymbol{\alpha}_{g}}(\mathbf{r}), \, \mathbf{r} \in \boldsymbol{\Omega}_{D}. \end{split}$$

 L^2 -adjoint : $\gamma_l \ \ldots \ c_n^2$ -profile at h_l

$$\mathbf{A}_{\boldsymbol{\alpha}_{g}}^{*}(\boldsymbol{\Psi}) = \left[\gamma_{l}\boldsymbol{\Psi}\left(\frac{1}{c_{l}}(\mathbf{r}-\alpha_{g}h_{l})\right)\chi_{\Omega_{D}(\alpha_{g}h_{l})}\left(\frac{1}{c_{l}}\mathbf{r}\right)\right)\right]_{l=1,\ldots,L}^{T}$$

 $c_l := \left\{ \begin{array}{ll} 1\,, & \mbox{for NGS} \\ 1-\frac{h_l}{h_{LGS}}, & \mbox{for LGS} \end{array} \right.$

 h_{LGS} ... LGS height $\sim 90 {\rm km}$

Tip/tilt Indetermination

• remove wrong tip/tilt from incoming LGS wavefronts

• Tip/tilt removal operator

$$\mathbf{\Pi} = (\underbrace{\Pi, \dots, \Pi}_{G \times}, \underbrace{Id, \dots, Id}_{N \times})$$

• $\Pi \varphi_{\alpha_g}(r) = \varphi_{\alpha_g}(r) - x \cdot t^x - y \cdot t^y$

Gradient tilt:

Zernike tilt:

$$\begin{split} t^x &= \frac{1}{|\Omega_D|} \int_{\Omega_D} \frac{\partial}{\partial x} \varphi_{\alpha_g}(x, y) d(x, y) \qquad t^x &= \frac{1}{c |\Omega_D|} \int_{\Omega_D} x \cdot \varphi_{\alpha_g}(x, y) d(x, y) \\ t^y &= \frac{1}{|\Omega_D|} \int_{\Omega_D} \frac{\partial}{\partial y} \varphi_{\alpha_g}(x, y) d(x, y) \qquad t^y &= \frac{1}{c |\Omega_D|} \int_{\Omega_D} y \cdot \varphi_{\alpha_g}(x, y) d(x, y) \end{split}$$

Tip/Tilt reconstruction with tip/tilt sensor data⁶

- LGS measurements contain no tip/tilt information
- additional tip/tilt measurements \mathbf{t}_{eta_i} from natural guide stars

$$\mathbf{N}_{eta_i} \mathbf{\Phi} \quad = \quad \mathbf{t}_{eta_i} = \left(egin{array}{c} t^x_{eta_i} \ t^y_{eta_i} \end{array}
ight) \in \mathbb{R}^2 \;, i=1,\cdots,N.$$

Gradient tilt:

Zernike tilt:

 $\mathbf{N}_{eta_i}:igodot_{l=1}^L H^1(\mathbf{\Omega}_l) o \mathbb{R}^2$ and

 $\mathbf{N}_{\beta_i}^* : \mathbb{R}^2 \to \bigotimes_{l=1}^L H^1(\mathbf{\Omega}_l)$

costly solution of PDE \rightarrow use L^2 -adjoint $\mathbf{A}^*_{\beta_i}$ as an approximation

 $\mathbf{N}_{eta_{l}}:igodot_{l=1}^{L}L^{2}(\mathbf{\Omega}_{l})
ightarrow \mathbb{R}^{2}$, cheap adjoint:

$$\mathbf{N}_{eta_i}^* : \mathbb{R}^2 o \bigotimes_{l=1}^L L^2(\mathbf{\Omega}_l) \text{ with}$$

 $\mathbf{N}_{eta_i}^* \mathbf{t}_{eta_i}(\mathbf{r}) = \left(\begin{pmatrix} t_{eta_i}^x \\ t_{eta_i}^y \end{pmatrix} \cdot (\mathbf{r} - eta_i h_l)
ight)_{l=1}^L$

⁶R. Ramlau, A. Obereder, R. Rosensteiner and D. Saxenhuber, *Efficient iterative tip/tilt reconstruction for atmospheric tomography*. Inverse Probl. Sci. En. (2014)

Kaczmarz method⁷

$$\mathsf{Solve} \qquad \qquad \mathbf{A}_{\boldsymbol{\alpha}_g} \boldsymbol{\Phi} = \varphi_{\boldsymbol{\alpha}_g}\,, \qquad \mathsf{for} \ \ g = 1, \dots, G + N$$

Algorithm 1 Kaczmarz iteration for LTAO and MOAO

 $\begin{array}{l} \text{Choose } \Phi_0 \\ \text{for } i=1,\ldots \, \text{do} \\ \Phi_{i,0}=\Phi_{i-1} \\ \text{for } n=1,\ldots,N \, \text{do} \\ \Phi_{i,n}=\Phi_{i,n-1}+\tau_{i,n}\cdot \mathbf{A}^*_{\beta_n}\left(\varphi_{\beta_n}-\mathbf{A}_{\beta_n}\Phi_{i,n-1}\right) \\ \text{end for} \\ \text{for } g=G+1,\ldots,G+N \, \text{do} \\ \Phi_{i,g}=\Phi_{i,g-1}+\tau_{i,g}\cdot \mathbf{A}^*_{\alpha_g}\Pi\left(\varphi_{\alpha_g}-\mathbf{A}_{\alpha_g}\Phi_{i,g-1}\right) \\ \text{end for} \\ \Phi_i=\Phi_{i,G+N} \\ \text{end for} \end{array}$

Computational complexity: $\sim ((G + N) \cdot (18 \cdot L - 14) + 2 \cdot G) \cdot n$

⁷R. Ramlau and M. Rosensteiner, *An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration*. Inverse Problems, Vol.28, Nr. 9 (2012)

Kaczmarz method⁷ with tip/tilt sensor data

$$\begin{array}{lll} {\rm Solve} & {\bf A}_{{\boldsymbol \alpha}_g} \Phi = \varphi_{{\boldsymbol \alpha}_g}\,, \qquad {\rm for} \ g=1,\ldots,G\\ & {\bf N}_{{\boldsymbol \beta}_n} \Phi = {\bf t}_{{\boldsymbol \beta}_n}\,, \qquad {\rm for} \ n=1,\ldots,N \end{array}$$

Algorithm 2 Kaczmarz iteration for LTAO and MOAO

 $\begin{array}{l} \text{Choose } \boldsymbol{\Phi}_{0} \\ \text{for } i = 1, \dots \, \text{do} \\ \boldsymbol{\Phi}_{i,0} = \boldsymbol{\Phi}_{i-1} \\ \text{for } n = 1, \dots, N \, \text{do} \\ \boldsymbol{\Phi}_{i,n} = \boldsymbol{\Phi}_{i,n-1} + \tau_{i,n} \cdot \mathbf{N}^{*}_{\beta_{n}} \left(\mathbf{t}_{\beta_{n}} - \mathbf{N}_{\beta_{n}} \boldsymbol{\Phi}_{i,G+n-1} \right) \\ \text{end for} \\ \text{for } g = G + 1, \dots, G + N \, \text{do} \\ \boldsymbol{\Phi}_{i,g} = \boldsymbol{\Phi}_{i,g-1} + \tau_{i,g} \cdot \mathbf{A}^{*}_{\boldsymbol{\alpha}_{g}} \Pi \left(\varphi_{\alpha_{g}} - \mathbf{A}_{\alpha_{g}} \boldsymbol{\Phi}_{i,g-1} \right) \\ \text{end for} \\ \boldsymbol{\Phi}_{i} = \boldsymbol{\Phi}_{i,G+N} \\ \text{end for} \end{array}$

ightarrow same strategy for other methods with tip/tilt sensor data

⁷R. Ramlau and M. Rosensteiner, *An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration*. Inverse Problems, Vol.28, Nr. 9 (2012)

Gradient-based method for LTAO and MOAO

Solve
$$\mathbf{A} \Phi = \begin{pmatrix} \mathbf{A}_{\alpha_1} \\ \vdots \\ \mathbf{A}_{\alpha_{G+N}} \end{pmatrix} \Phi = \begin{pmatrix} \varphi_{\alpha_1} \\ \vdots \\ \varphi_{\alpha_{G+N}} \end{pmatrix} = \varphi$$
.

Approach without noise models:

Least-squares functional:

$$J(\mathbf{\Phi}) = \|\mathbf{A}\mathbf{\Phi} - \varphi\|_{[L^2(\mathbf{\Omega}_D)]^{G+N}}^2 \to \min$$
.

Approach with noise models:

Tikohonov functional:

$$J(\mathbf{\Phi}) = \|\mathbf{A}\mathbf{\Phi} - \varphi\|_{\overline{C_n}^{-1}}^2 + \alpha_{\Phi} \|\mathbf{\Phi}\|_{C_{\Phi}^{-1}}^2 \to \min .$$

 $C_{\Phi}\ldots$ statistics of atmosphere, $\overline{C_{\eta}}\ldots$ noise on phases due to spot elongation

• Statistics of the atmosphere: turbulence model implemented using DWT

 $(
ightarrow ext{ see talk M.Yudytskiy})$ $C_{\Phi} = egin{pmatrix} C_{\Phi^{(1)}} & 0 \ & \ddots \ & 0 \ & C_{\Phi^{(L)}} \end{pmatrix}$

• Noise statistics due to spot elongation:

- only for LGS
- noisy SH sensor data $s_{\alpha_g}^{\delta} = s_{\alpha_g} + C_{\alpha_g}^{1/2} \eta$, with η white noise.
- Noise model for incoming wavefronts:

$$\begin{array}{lll} \varphi_{\alpha_g}^{\delta} & = & \Gamma^{\dagger}(s_{\alpha_g} + C_{\alpha_g}^{1/2}\eta) \,, \, \text{with } \Gamma \,\, \text{the SH-operator.} \\ \operatorname{cov}(\varphi_{\alpha_g}) & = & (\Gamma^{\dagger}C_{\alpha_g}^{1/2})(\Gamma^{\dagger}C_{\alpha_g}^{1/2})^T = \Gamma^{\dagger}C_{\alpha_g}(\Gamma^{\dagger})^T =: \overline{C_{\alpha_g}} \\ \overline{C_{\eta}} & := & \operatorname{diag}(\overline{C_{\alpha_1}}, \dots, \overline{C_{\alpha_G}}, \underbrace{\sigma^2 I, \dots, \sigma^2 I}_{N \,\, \text{times}}) \end{array}$$

 $\bullet\,$ noise variance of GS σ^2 can also be chosen differently for each GS

Approach with noise models

$$J(\Phi) = \|\mathbf{A}\Phi - \varphi\|_{\overline{C_{\eta}}^{-1}}^{2} + \alpha_{\Phi} \|\Phi\|_{C_{\Phi}^{-1}}^{2} \to \min,$$

$$J'(\Phi) = -2\mathbf{A}^{*}\mathbf{\Pi}\overline{C_{\eta}}^{-1}\mathbf{\Pi}(\varphi - \mathbf{A}\Phi) + 2\alpha_{\Phi}C_{\phi}^{-1}\Phi =: -\mathbf{d}$$

$$= -2\left(\sum_{g=1}^{G}\mathbf{A}_{\alpha_{g}}^{*}\Pi\overline{C_{\alpha_{g}}}^{-1}\Pi(\varphi_{\alpha_{g}} - \mathbf{A}_{\alpha_{g}}\Phi) + \sum_{g=G+1}^{G+N}\mathbf{A}_{\alpha_{g}}^{*}(\varphi_{\alpha_{g}} - \mathbf{A}_{\alpha_{g}}\Phi) - \alpha_{\Phi}C_{\phi}^{-1}\Phi\right)$$

Gradient–based iteration with (heuristic) stepsize τ :

$$\begin{split} \Phi_{j+1} &= \Phi_j + \tau_j \cdot \gamma \cdot * \mathbf{d}_j \\ \tau_j &= \min_{t \in [0,\infty)} J(\Phi_j + t \mathbf{d}_j) \\ &= \frac{\frac{1}{2} \langle \mathbf{d}_j, \mathbf{d}_j \rangle}{\langle \mathbf{\Pi} \overline{C_{\eta}}^{-1} \mathbf{\Pi} \mathbf{A} \mathbf{d}_j, \mathbf{A} \mathbf{d}_j \rangle_{[L^2(\Omega_D)]^{G+N}} + \alpha_{\Phi} \langle C_{\Phi}^{-1} \mathbf{d}_j, \mathbf{d}_j \rangle} \end{split}$$

Algorithm 3 Gradient-based method for LTAO and MOAO

```
Choose \Phi_0.
for i = 1, \ldots do
     \Phi_i = \Phi_{i-1}.
     for q = 1, \ldots, G do
           \begin{array}{l} {\rm residual}_g = \ [ \ \overline{C_{\pmb{\alpha}_g}}^{-1}\Pi \ ] \ (\varphi_{\alpha_g} - \mathbf{A}_{\pmb{\alpha}_g} \Phi_i) \\ {\rm gradient}_g = (\mathbf{A}_{\pmb{\alpha}_g})^*\Pi \ {\rm residual}_g \end{array}
                                                                                                                                 [if noise models included]
           \mathbf{r}_i = \mathbf{r}_i + L \cdot \mathbf{residual}_q
           g_i = g_i + gradient_a
     end for
     for q = G + 1, ..., G + N do
            residual<sub>q</sub> = \varphi_{\alpha_q} - \mathbf{A}_{\alpha_q} \mathbf{\Phi}_i
           gradient<sub>q</sub> = (\mathbf{A}_{\alpha_a})^* residual<sub>q</sub>
           \mathbf{r}_i = \mathbf{r}_i + L \cdot \mathbf{residual}_a
           g_i = g_i + gradient_a
     end for
     [\mathbf{g}_i = \mathbf{g}_i - \alpha_{\Phi} \cdot C_{\Phi}^{-1} \cdot \mathbf{g}_i]
                                                                                                                               [if noise models included]
     stepsize = (\mathbf{g}_i^T \cdot \mathbf{g}_i)/(\mathbf{r}_i^T \cdot \mathbf{r}_i [+ \alpha_{\Phi} \cdot g_i^T \cdot C_{\Phi}^{-1} g_i]) [if noise models included]
     \Phi_i = \Phi_i + \text{stepsize} \cdot \gamma \cdot g_i
end for
```

Computational Complexity: $\sim ((G + N) \cdot (17 \cdot L - 13) + 2 \cdot G + (3 \cdot L + 2)) \cdot n$

2 Algorithms for atmospheric tomography

Ongoing work and further ideas

MOAO quality results on OCTOPUS

Test case setting:

- telescope diameter: 42m
- 9 Shack-Hartmann WFSs (84 × 84)
- 6 LGS (diam 7.5 arcmin), 3 NGS (diam 10 arcmin)
- 1 ground DM, direction of interest: zenith
- ESO Standard atmosphere, $r_0 = 12.9 \text{cm}$

Reconstruction:

- 9 reconstruction layers
- input gain (for LGS and NGS separately) / output gain possible
- open loop control

MOAO reference case results

- tip/tilt indetermination and cone effect considered
- no noise due to spot elongation assumed
- Gradient method on least squares functional
- no noise models needed
- reference results: FRIM (by ESO)

0.0				
-pu 0.45		4		
× ui lu 0.4		-		
euns 0.35		-		
е (
<u> </u>	¥ /	Gradient G-tilt		
	¥	Gradient Z-tilt		
0.25				
0.20	10 ¹	10 ²		
Detected photone/Subsporture/frame				

Detected photons/Subaperture/frame

	G-tilt	gain	Z-tilt	gain
500ph	30it	1.0	20it	1.0
100ph	30it	0.7	15it	0.8
20ph	30it	0.4	15it	0.4
10ph	20it	0.3	15it	0.3
5ph	20it	0.2	15it	0.3

MOAO with spot elongation

- Gradient method without noise models:
 - good in highflux
 - no comparable quality in lowflux regime reached
- Gradient method with noise models: ongoing work for lowflux regime
- small improvements using Z-tilt

2 Algorithms for atmospheric tomography

- 3 Quality results on OCTOPUS
- Ongoing work and further ideas

Exploit flexibility of 3-step approach

Idea: Combine

Wavelet wavefront reconstructor (\rightarrow talk M. Yudytsdkiy) and Gradient-based method for atmospheric tomography

- MOAO ELONG 100ph (reference: 28.3)
 CuReD + Gradient method w/o noise models: 21.53
 ↓
 Wavelet wf reconstr. + Gradient method w/o noise models: 24.37
- MOAO ELONG 5ph (reference 9.88)
 CuReD + Gradient method w/o noise models: 5.8
 ↓

Wavelet wf reconstr. + Gradient method w/o noise models: 7.52

- 3-step approach instead of MVM
- Kaczmarz and Gradient-based method for atmospheric tomography
- including tip/tilt indetermination, cone effect, spot elongation
- fast, well parallelizable, flexibly combinable methods
- Quality results on OCTOPUS for MOAO system

Thank you for your attention!

Ser la

E

H.