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What is CCAT?

» Telescope: A 25-m antenna that will operate at wavelengths
as short as 200um

- 10x% the sensitivity of current single dish telescopes

e Location: At very high altitude (5600m) in the Atacama desert
- More than 50% of the time has PWV < 0.7mm

e Synergy: Location enables maximum synergy with ALMA
—> Locates sources for ALMA follow-up

o Instrumentation: Take advantage of vast growth in detector
technologies

- Imaging and spectroscopic cameras



CCAT location and concept

Cerro Chajnantor 5612 m Field-of-view of at least 20’ in
diameter

e

2 )ﬁeW/SW from ASTE; access road constructed by U. Tokyo
ot

Aiming for large-scale
surface error of better
than 12.5um rms
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For more than 50% of the time the weather is “"Band 1” or better!



Project and timeline

e Consortium of US institutes (Cornell, Caltech, JPL, Colorado),
German (Bonn and Cologne) and Canada (inc. Waterloo, UBC)

o CCAT was ranked the highest priority among medium scale,
ground based projects by the US Astro2010 Decadel survey

e Now: Contracts being awarded; detailed designs underway
e 2013: Completion of engineering design phase

e 2013 — 2017: Scheduled construction phase

e 2018: Estimated start of operations

e UK is not a partner (although we were involved in earlier
discussions)



Primary science

Primary science drivers from the CCAT consortium:

e Surveys of star forming galaxies in the early Universe
e Star and planetary system formation
e Cluster astrophysics (Sunyaev-Zeldovich effect)

e Studies of the Kuiper Belt

These necessitate the need for both direct detection cameras
and spectrometers



Extragalactic case

Considerations:

1. Ability to cover very wide areas (>100 sg-deg) to overcome
cosmic variance

2. Few arcsec resolution to overcome confusion, resolve the
FIRB and aid identification of counterparts at other wavelengths

3. Multi-wavelength imaging to identify the highest z candidates

4. Comprehensive spectroscopic follow-up, to measure redshift
and characterise the physical conditions within sources



Galactic case

Considerations:

1. Sensitivity to reach mass limits <0.01 M,

2. Ability to cover large fields of 10’s of sq-degs to sample a range
of different environments

3. Angular resolution of <5"” to resolve clumps out to 1kpc

4. Multi-colour imaging (including 200um) to obtain dust
temperatures and masses

5. Spectroscopic follow-up surveys of molecular lines to probe
dynamics and evolution



CCAT, Herschel and ALMA

Simulated maps of the same patch of sky at 350um based on Herschel number counts
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e At 450um ALMA will have approximately twice the mapping speed of

CCAT per beam

e But with first-light camera and ~1,800 ALMA beams, CCAT’s mapping

speed will be ~1,0

00 higher



Baseline instrumentation

The initial instrument suite will likely consist of:

e Submillimetre-wave camera
e Near-millimetre wave camera (demonstrator at first light?)

e Multi-object direct detection spectrometer (maybe +2 years?)

Transferred and/or future instrumentation:

e Full f-o-v camera ("mega-pixel” array)

e Heterodyne spectrometers/arrays (becoming more needed?)

e Polarimeters?



Submillimetre camera (ATA)

* 40,000 pixel camera with a 25 sg-arcmin f-o-v

e Optimised for 350um (Nyquist sampled pixels), but will work
also at 200, 450, and 620um using a filter wheel

1.1m
Y >
22cm Lyot stop: ~40,000 pixel array: 5’ x 5' FoV
_window  [O=IZC

e Current instrument is
a transmissive design
for compactness and
minimising cost

4 position filter wheel

heat
reﬂe(:ting (eg 200, 350, 450,
filters 620pm)

Cryocoolers




Submillimetre camera (ATA)

e Current thinking is that 40,000 pixels is
a reasonable goal on a 2018 timeframe
(30’ field would need a million pixels...)

e Submm MKID devices are the preferred
detectors — readily scalable to large
arrays and less complex readout
electronics (and less cost!)

e Per-detector NEFDs at 350um of
around 20 mly (1-o, 1 sec)

 Being led by Cornell, JPL and Colorado
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Near-millimetre camera

e 50,000 pixel dual-band camera with a 400-sg-arcmin f-o-v

e 18k pixels for 750um to 4k at 2mm with varying pixel sizes

 Focal plane layout is split into tiles
— with H tiles having 4096 pixels L H H L
whilst L tiles 256

L H H L
e 18k pixels for 750um to 4k at
2mm with varying pixel sizes L L L L
D >
20 arcmin

L = low-resolution tile
H = high-resolution tile



Near-millimetre camera

e Current thinking is that a tile is ~75mm across — compatible
with 4" wafer processing

e Antenna coupled bolometers with MKID
detectors (although TES not yet ruled
out)

o Per-detector NEFDs at 850um of around
7 mly (1-0, 1 sec)

e Being led by Caltech based on MUSIC
“demonstrator” (to be tested on CSO

development of multi-pixel

ea rly neXt yea r'?) %rétlfggﬁ)-coupled MKIDs (courtesy:



Sensitivity (per pixel)
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Mapping performance
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e In terms of large-area mapping speed out-performs everything except space
(Herschel) by factors of 1000+



Imaging cameras summary

What does this give us?

e Point source sensitivities close to ALMA and more than 10x
better than SCUBA-2

* Mapping speeds some 1000-5000x faster than ALMA and
SCUBA-2 to the same S/N

e Spectral coverage over 9 bands from 200um to 2mm
e 4” angular resolution at 350um (up to 10” at 1mm)

e Confusion limits more than 10x lower than Herschel/SPIRE and
a few times lower than JCMT/SCUBA-2



Wide area galaxy surveys

What kind of survey is scientifically interesting?

* Let’'s say we need half-a-million galaxies over a range of
redshifts to fully characterise the submm galaxy population

e Expect ~50,000 sources per square degree (350um) based on
10-beam/source confusion limit, so need 10 sqg-deg survey to the
C-L.

e Needs ~1 hour/pixel to reach 3-o C-L of 0.3mJy (350um)

» 1400 hours survey or just over 100 nights to achieve (based on
12-hr night)

Is CCAT the only facility that can do this?



Galactic surveys

What is the parameter space for galactic
surveys with CCAT?

e Let’s say capitalise on the lower C-L and
mass sensitivity by carrying out an ultra-
deep survey of local clouds to 0.01 M,

e Assume same area of GBS (24 sg-deg to
3-0 of ~10mJy at 850) but go down to C-
L of 0.7mJy — about 14x deeper...

e 70 hours survey (6 nights) would be
needed (c.f. ~300 hours for imaging part
of GBS)

Is CCAT the only facility that can do this?
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CCAT survey parameter space as
function of mass limit for 0.04, 0.08 and
0.15 solar mass core. Red line is 3-0
detection limit for JCMT Gould Belt
survey (adapted from plot by M.
Thompson)



Direct detection spectrometer

e Low order grating spectrometer being investigated to maximise
point-source sensitivity (based on ZEUS-2 “free space” design)

e Other options available including FTS and Fabry-Perot designs as
well as more advanced “spectrometer-on-a-chip” concepts

e Likely 4 bands between 200 and 620um ADR\; ’Ll
Detector = ;! Grit‘mg
Packago; / ';Q-:', ’,T*\‘:w-
e Spectral resolution A/AA ~ 1000 S {,w’ .
optimised for detection of soic plate /b A\ il Voion
extragalactic lines Vacuum st | TR

» Bandwidth of 40GHz with U 0" e
equivalent T,. < 40K (SSB) e

ZEUS-2 system design



Direct detection spectrometer

10 x 24
e Natural spatial multiplexing 215um
is achieved using 2-D arrays aney N cor-6)
of detectors E/ N
» ZEUS-2 will use NIST TES i | PcoE)
arrays (at least to start with) f
[CI] 9 x40
609um . ::,. 400um
\‘(" : array
e Cornell led design (ZEUS-2 5x12 T "
on CSO at 400pm in early 625um
2012 and APEX later in 2012) "% ¢ spectral
) A v



Multi-object spectrometer

e To be competitive with ALMA, CCAT needs a multi-object
capability

e For example, if configure ZEUS-2 into one band (350/450um)
then useable f-o-v is ~20 beams (long slit)
Top View Side View

_. Patrol Region

e Could configure with 10 _

beams USing d Cluasi-OpticaI _5 P e R“‘“iﬁ Opecal Pat
light pipe arrangement at the &, ruaiesr //
front end (other options / Q:ﬁﬁ otaton =
possible) ~ 7

/TS Feed — __v
e Patrol regions over the focal
plane assigned to particular Quasi-opical ight pipe arrangement
arrays of detectors



Spectroscopic sensitivity

o CCAT is less sensitive 10781 /[\ . 16 Herschel SPIRE
than ALMA per spectral = —— IR b
resolution element : 1017 AN == i
| . s e I A
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. = 3 = - s
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* Multi-object 5 0% s
capability is the only
way to give CCAT an , d
advantage 102! [Cll]: L=2e9 L,, Q,=0.7, h=71
Wavelength (um)




Spectroscopic applications

Why do we need a multi-object capability?

e Speed in obtaining spectroscopic red-shifts

> capitalises on broad bandwidth to observe red-shifted spacings
between CO lines (e.g. like the Z-spec instrument)

e Spectral line surveys to new sensitivity levels e.g.

» CI line ratios = strong constraints on temperature
> 13CO(6-5) = strong constraints on CO opacity

» NII = probes cooling of ionised gas

» 158um CII - dominant coolant of neutral ISM



Spectral line surveys

e Example wide-field
survey across the
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Could have smaller, less complex separate instruments
covering each of the three bands? — What really drives the
complexity of submm MOS designs?
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e Based on 8 x 8 channel
SuperCAM for the HHT
operating at 870um

e Current 64-channel is two
orders of magnitude faster
than single-pixel receivers

» Key project is to obtain a
fully-sampled survey of the
GP in 12CO(3-2) and 13CO(3-
2) over 500 sg-degs
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Courtesy: Chris Walker



Heterodyne camera

Kilo-Pixel Heterodyne Camera for CCAT: KCAM

From Tertiary
P Stacked,16x8 arrays

&> CCAT Focal Plane MMIC IF modules

o On-board IF processor » Stacked pixel
2 Solid-State LOs (~5mW) [eelg{e=s]a

>2 GHz/per pixel
L] perp
Cryo-Coolers

Horn

5 mm

16 x 32 ‘
Mixer Array Permanent ||
3 Magnets [
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) "FeutAntanng Delay Line Spectrometer
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Courtesy: H. Moseley

Absorber

e u-spec design uses delay lines to give phase delay for R~1000 spectroscopy
» Can be fabricated on a single 10cm wafer and can produce diffraction-limited images

across the focal plane
» Synthetic grating operates in high order (~10) and compact filter banks (right) separate

the orders and direct them to individual detectors



Some possible (random) questions...

e Should 350um be the workhorse wavelength? Does the case for
200um (is there a strong one?) drive the dish surface or is it a bonus?

e How many sources do we need for extragalactic science goals? Drives
the f-o-v and sensitivity of the submm camera.

e Is mapping galactic SF regions with 4" angular resolution in the era
post Herschel (and after 3-4 years of full ALMA) useful?

e Case for spectroscopy? Case may be strong but technical feasibility of
a MOS with >20 channels? Grating versus FTS — still not a clear choice?

e Would an image slicing IFU be better in crowded (galactic) fields be
more use? (has to have a big f-o-v though and diffraction effects?!...)

» Galactic plane surveys not worthwhile since all science has (or will
have) been done?! But note much lower confusion — heterodyne array?



