The Local Group as a Time Machine

Dan Weisz UC Berkeley

6 July 2016 JWST@ROE

High Angular Resolution Imaging needed to overcome crowding

Optical Color-Magnitude Diagrams

Science from Resolved Stars

Distance Ladder and Local Value of H₀

RR Lyrae: e.g., Beaton+ 2016 Cepheids: e.g., Riess+ 2016 TRGB: e.g., Tully+ 2013

Extinction and Attenuation

~20 pc resolution Extinction Map of M31: Dalcanton+ 2016 Galactic Attenuation Curve: R_v =3.3, 0.2 dex scatter: Schlafly+ 2016

Stellar IMF

IMF Slope > 1 M_{\odot} in M31 Steeper than Kroupa/Salpeter: Weisz+ 2015 IMF Slope < 1M_{\odot} systematically varies in dwarf galaxies: Geha+ 2013

Stellar Archaeology: Near-Field, Far-Field Connection

Optical Color-Magnitude Diagrams

Stellar Age Information from CMDs

From CMDs to SFHs

CMDs are the sum of simple stellar populations.

Measured SFHs are "non-parametric".

1000s of parameters (age, metallicity, etc.), fully probabilistic

Example Star Formation History

D ~ 800 kpc M* ~ 10⁸ M_o Z ~ 0.08 Z_o

Example Star Formation History

Depth of CMDs in Local Group Dwarfs

Milky Way 'Ultra-Faint' Dwarfs

Brown+ 2014

M31 Satellites

F814W

"Isolated" or "Field" Dwarfs

e.g., Gallart+ 2015

HST programs led by Gallart, Cole, Weisz, ...

Diversity in Low-Mass Galaxy SFHs

3

Skillman+ 2014

SFHs + Population Synthesis models $\rightarrow M_{UV}(z)$

Weisz+ 2014; Boylan-Kolchin+ 2015

Weisz+ 2014; Boylan-Kolchin+ 2015

But...

Weisz+ 2014; Boylan-Kolchin+ 2015

steep faint-end slopes from high-z over-predict faint LG galaxy counts

Weisz+ 2014; Boylan-Kolchin+ 2014, 2015

How many MW satellites should we see based on the high-z UVLF?

How many MW satellites should we see based on the high-z UVLF?

The Local Group in Cosmological Context

Size of Local Group at z=0 (~2.4 Mpc)

MBK+ 2016; image from Illustris simulation (Vogelsberger+ 2014)

Boylan-Kolchin+ 2016

Boylan-Kolchin+ 2016

co-moving size of Hubble UDF (3.1' x 3.1')

early LG size evolution papers Gunn & Gott 1972 Katz & White 1993

For most of the history of the Universe, the progenitors of the Local Group cover a larger area on the sky than the Hubble UDF

size of Hubble UDF (JWST will be similar size)

For most of the history of the Universe, the progenitors of the Local Group cover a larger area on the sky than the Hubble UDF

Boylan-Kolchin+ 2016

Boylan-Kolchin+ 2016

From optical to near-IR CMDs

From optical to near-IR CMDs

Resolving the Local Volume with JWST

Summary

Resolved Stellar Populations in nearby dwarf galaxies are complimentary to deep-field HST/JWST observations

LG has similar size to HUDF / JWUDF for much of cosmic time Extend sample to fainter mags than HUDF / JWUDF

HST has provided SFHs for ~40/100 LG galaxies with

M★(z=0) ~ 10³ - 10⁹ M⊙ M★(z~7/8) ~ 10³ - 10⁹ M⊙ M_{UV}(z~7/8) ~ -16 to 0

Some tensions

Discrepancies between high-z UVLF slope and low-z number counts Galaxy simulations predict widely varying low-mass galaxy properties

HST: SFHs for ~100 galaxies within ~1 Mpc (7 Mpc at z~7) **JWST:** SFHs for 200+ galaxies within ~3 Mpc (XXX Mpc at z~7)

Far-Field + Near-Field: UV Luminosity Function at z~2

Reddy & Stidel 2009

Alavi+ 2014

Weisz, Johnson, & Conroy 2014

Far-Field + Near-Field: Evolution of the UVLF at Select Redshifts

Weisz, Johnson, & Conroy 2014

Redshift Evolution of Faint End UV Slope

Weisz, Johnson, & Conroy 2014