

The formation of the first massive black holes via direct collapse of gas

Sadegh Khochfar

with

B. Agarwal, J. Johnson, C. Dalla Vecchia & J.P. Paardekooper

BH Seeds

Credit: D. Eastwood

DCBH Requirements

Atomic cooling halo, T~10⁴ K; metal free; no star; no molecules

Lyman Werner Background

Atomic cooling halo, T~10⁴ K; metal free; no star; no molecules

Main H₂ formation channel

 $\mathrm{H}^- + \mathrm{H} \rightarrow \mathrm{H}^-_2 \rightarrow \mathrm{H}_2 + e^-$

Photo-dissociation via LW radiation with 11.2-13.6 eV and photodetachment with via radiation > 0.75 eV

$$H_2 + h\nu \rightarrow 2H$$

 $H^- + h\nu \rightarrow H + e^-$

The FiBY Project

Reduce 'the mass gap' by following the formation of galaxies from primordial star formation in min-haloes to massive haloes during the first billion years of the Universe

- GADGET version used for the OWLS project (Schaye et al. 2010): SF; metal enrichment; metal line cooling from 11 elements; BH growth and feedback, thermal SN-feedback
- Added molecular networks and cooling from molecules
- Added POPIII formation, evolution, PISN; and yields; seed BHs
- Added dust from PISN, AGB & SNII; thermal sputtering
- Inclusion of Lyman-Werner background
- Self-shielding against radiation
- Coupled to radiative transfer scheme SIMPLEX (Paardekooper et al, 2013,2015)

The First Billion Years Simulation

Theoretical Modeling of Cosmic Structures Max Planck Research Group Max Planck Institute for Extraterrestrial Physics

http://www.mpe.mpg.de/tmox/

 $V = (8 M pc)^{3}$ $N = 2 \times 1368^3$ $m_{gas} = 890 M_{\odot} h^{-1}$ $m_{DM} = 4375 M_{\odot} h^{-1}$

SFR Main Sequence

Khochfar+16, in prep.

Lyman Werner Background

Main H₂ formation channel

$$\mathrm{H}^- + \mathrm{H} \rightarrow \mathrm{H}^-_2 \rightarrow \mathrm{H}_2 + \mathrm{e}^-$$

Photo-dissociation via LW radiation with 11.2-13.6 eV and photodetachment with via radiation > 0.75 eV

$$H_2 + h\nu \rightarrow 2H$$

 $H^- + h\nu \rightarrow H + e^-$

Include local self-shielding (Draine & Bertoldi 1996, Wolcott-Green et al 2011)

Johnson, Dalla Vecchia & SK 2013

JLW Levels

 $J_{21}[10^{-21} \text{erg s}^{-1} \text{cm}^{-2} \text{Hz}^{-1} \text{sr}^{-1}]$

Johnson, Dalla Vecchia & SK 2013

Formation Sites

⊘♦ ○

Formation Sites

Atomic cooling halo
 Ist progession
 Metal free
 No star
 J₂₁>30

Agarwal et al 2014

Properties of Neighbours

Agarwal et al 2014

Number density of potential DCBH sites: $\Phi \sim 1 {
m Mpc}^{-3}$

Obese Black Hole Galaxies (OBGs)

Van den Bosch et al 2013

Observational signature Emission Lines

Johnson,SK+11

Observational signature Emission Lines Ratio of Hell to H-alpha

Johnson,SK+11

POPIII stars have typically HeII/H-alpha fluxes < 2

Escape fraction

Johnson,SK+11

CR7

$\frac{L_{\rm HeII}}{L_{\rm Ly\alpha}} \sim 10^{43.26} \rm erg/s$ $\frac{L_{\rm Ly\alpha}}{10^{43.93}} \rm erg/s$

Sobral+15

• B is fit with a 700 Myr old stellar population, with an exponentially decreasing ¹ SFR from $z \approx 23-6.6$, such that at z = 6.6 it has a SFR of $\sim 2 \text{ M}_{\odot}/\text{yr}$ and $M_* = 2 \times 10^{10} \text{ M}_{\odot}$

• C is fit with a 300 Myr old stellar population, with an exponentially decreasing SFR starting at $z \approx 9-6$, such that at z = 6.6 it has a SFR of $\sim 1 \text{ M}_{\odot}/\text{yr}$ and $M_* = 7 \times 10^8 \text{ M}_{\odot}$

 $M_{\bullet} \sim 4.4 \times 10^6 \mathrm{M}_{\odot}$

Agarwal et al 2016

The right conditions to form a DCBH?

Agarwal et al 2016

Summary

- Local LW radiation is more important than global background
- DCBHs form close to one galaxy with distance < 15 Kpc that dominants the LW radiation, and merge with it later.
- Number densities are <1 Mpc⁻³ at z~6
- DCBHs start as OBGs and move toward the local M_{BH}-M_{bulge} relation via mergers
- DCBH should have Hell/H-alpha fluxes > 2 while growing
- The escape fraction form DCBHs is low < 0.1
- CR7 could host a DCBH based on the SFHs of system B+C