Exploring the dusty nuclear environments of nearby AGN with JWST/MIRI

Almudena Alonso Herrero CSIC-INTA, Spain

The torus and immediate surroundings

ALMA 432µm view (0.04-0.06" res) of central 2" of NGC1068

- •Torus of dust and molecular gas (7-10pc)
- •Circum-nuclear disk (300pc x 200pc) with on-going/recent SF activity

García-Burillo+2016

Torus dust emission peaks in MIR

Angular res of JWST/MIRI IFU(0.3"-0.5", similar to MIR instruments on 10m class telescopes) of AGN cannot fully resolve these structures! For reference at D=50Mpc, 0.3"=70pc

Open questions about the nuclear regions of AGN

Unification of AGN: Does ONE torus explain it all?
 Implications for z evolution of type1/type2 AGN

Low luminosity AGN and the origin of the torus

- Nuclear SF and connection with torus/AGN properties
- Role of inflows/outflows in feeding the AGN and quenching/ triggering SF

Implications for BH growth and connection to galaxy evolution

 Properties of dust in the nuclear regions of AGN and surrounding host galaxy
 Talk by Daniel Asmus

Infrared emission from clumpy dusty torus

Modelling of unresolved IR emission of AGN allows to derive: * geometric properties of the torus: angular size, physical size * distribution of clouds, optical depth, number of clouds * AGN viewing angle and bolometric luminosity

Hönig & Kishimoto 2010 <u>http://www.sungrazer.org/CAT3D.html</u> and review Hönig (2013)

Examples of fits to unresolved IR emission

AAH+2011, 2013; Martínez-Paredes, AAH+2015; García-Bernete+2015

Geometrical covering factors of local AGN

AAH+2011, 2013; Ramos Almeida+2011; Martínez-Paredes, AAH+2015; Mori+2015

Modelling of unresolved IR 1-28µm emission with JWST will allow to derive torus properties covering:
* range of L_{bol}: LLAGN to QSO (receding torus, disappearance of torus)
* different z's

Molecular gas nuclear disks and relation to torus

Seyferts show **rotating nuclear thick H₂ disks (d~60pc)** with enhanced H₂ emission compared to non-AGN feeding AGN, SF?

However, H₂ at 2.12µm traces warm (T~1000K) gas and only a small fraction of total molecular gas mass.

MIRI will observe mid-IR H_2 transitions which probe the bulk of the molecular gas + comparison with ALMA estimates.

Using the 11.3 μ m PAH feature to probe nuclear SF

Ramos Almeida+2014; AAH+2014

Circumnuclear (r=1kpc) SFR from Spitzer 11.3μm PAH and 24μm

Nuclear (r=50-200pc) SFR from groundbased 11.3µm PAH

SF in nuclear regions of AGN

✤ [Nell]12.8µm contaminated by AGN emission

Nuclear PAH emission might be excited by AGN (talk by Jens Jensen)

NIRSpec + MIRI IFU observations will allow to study AGN/SF excitation of nuclear PAH emission and obtain accurate SFR using a variety of indicators: recombination lines, fine structure lines, stellar populations

Esquej, AAH+2014

Outflows detected in CO(3-2) with ALMA

AGN inflows and outflows are largely unexplored in mid-IR: H₂ lines, fine structure lines

NIRSpec+MIRI IFU (+ALMA) observations of central regions of local AGN will provide an exquisite view into the relation between BH growth and star formation in galaxies

SF: NIRSpec +MIRI (PAHs, emission lines, stellar pops) Outflows: NIRSpec + MIRI (emission lines)

Obscuring Material: MIRI (dust emission) Molecular gas reservoir: MIRI (H₂ lines)

> Inflows: NIRSpec + MIRI (H₂ lines)