

Simulating the Large Synoptic Survey Telescope

Andrew Connolly University of Washington

What are the science questions of the next decade?

Finding the unusual

Billion sources a night Nova, supernova, GRBs Instantaneous discovery

Finding moving sources

Asteroids and comets Proper motions of stars

Mapping the Milky Way

Tidal streams Galactic structure

Dark energy and dark matter

Gravitational lensing Slight distortion in shape Trace the nature of dark energy

How do they map to computational challenges?

Finding the unusual

Anomaly detection Dimensionality reduction Cross-matching data

Finding moving sources

Tracking algorithms Kalman filters

Mapping the Milky Way

Density estimation Clustering (n-tuples)

Dark energy and dark matter

Computer vision Weak Classifiers High-D Model fitting

Science is driven by precision and issues of complexity:

1. Complex models of the universe

What is the density distribution and how does it evolve What processes describe star formation and evolution

2. Complex data streams

Observations provide a noisy representation of the sky

3. Complex scaling of the science

Scaling science to the petabyte era Learning how to do science without needing a CS degree

The LSST drives this complexity

- 6-band Survey: *ugrizy* 320–1080 nm
- Frequent revisits
 - 2x15s, 25 AB mag/visit
- Sky area covered
 >20,000 deg², 0.2 arcsec/pixel
- Each 9.6 sq.deg FOV revisited
 - ~1000 times
- 10-Year Duration
 - Yields 27.7 AB magnitude @ 5σ
- Photometric precision
 - 0.01 mag absolute; 0.005 mag repeatability

LSST Optical Design

- *f*/1.23
- < 0.20 arcsec FWHM images in six bands: 0.3 - 1 μm
- 3.5 ° FOV \rightarrow Etendue = 319 m²deg²

The LSST Focal Plane - 64 cm in Diameter

TOWER

- CCDs + front end electronics
- 180K operation
- An autonomous, fully-testable
- 144 Mpixel camera

One System, Two Continents, Four Sites

Overall Data Management Pipeline Organization

How do we prepare for and optimize a survey?

New philosophy of development through high fidelity simulations

Components:

Survey strategy Source catalogs Images Processing End-to-end processing

Algorithms:

Source detection and image subtraction Classification Linkage of moving sources Scalability

Broad range of sources

Galaxies (de Lucia et al)

Cosmology from n-body simulations 10⁶ sources/ sq deg (r<28) Morphology, AGN, lenses, variability

Stars (Juric et al)

Galactic structure model Main sequence, giants, dwarfs Cepheids, flare stars, micro-lensing Proper motion, parallax

Asteroids (Grav et al)

Solar system model 10 million main belt KBO, TNO, Trojans....

Variability in the universe

Modeling the distribution of dust

3D dust distributions Amores & Lepine (2005) Scaled to SFD at 100 kpc Generated on the fly

Distance is 1 kpc, compare to SFD98 maps

"Observing" the LSST simulation

Reference catalogs

SQL queries return the properties of stars, galaxies (at a common time and airmass)

Observing sequences

Operations simulator provides lists of pointings with positions, filter, time, airmass, atmosphere...

Customized views

Different physics and populations can be selected (Solar System sources or the effect of aberration) and for large areas and volumes

From points to pixels (and back)

Generating images

From a parameterized view above the atmosphere to the distortions from the atmosphere, telescope and camera

Turbulent atmosphere

Modeled as a series of frozen screens moving at 20m/s, refracting light based on the wavelength, cloud scattering and atmosphere.

The impact of optics

Telescope model

Three mirror modified Paul-Baker design Fast ray-trace algorithm Perturb the surfaces (1300) to determine the impact of control system Conversion of photons to electrons

Following the photon flow...

John Peterson 2010

A full end-to-end system

189 CCDs
16 amplifiers per CCD
10¹⁰ photons

2.5 hrs per CCD

Science at the scale of the LSST With the same cadence and similar systematics Catalogs, images and scalable science

Producing a Simulator Run

Generating runs

600,000 CPU hrs (DC3b), 2.5 millions hours for next data challenge Google Exacycle program

Optimizing production

Utilize grids (OSG, Teragrid), clusters, Condor (Purdue) CPU and GPU Runs tracked with pipeQA interface

Users and Contributors

Contributions of Physics

Science Collaborations (variability, solar system model, astrometry test cases, AGN, lensing, SNe, LSB galaxies)

Requests for Simulations

MOPS, Stellar Pops SC, Weak Lensing SC, Strong Lensing SC, Transients and SNe SC, Astrometry

Requests from outside of LSST (New Horizons missions)

Data Management and end-to-end testing

449 visits, ~60 sq degrees, 142 day time span g(59 visits), r(134), i(160), z(70), y(26) filters

Measuring the shape of hardware response

Narrow-band flat fields

Correct for wavelengthdependent effects (shape of hardware throughput) Filter non-uniformity, coating changes with age .. Larger spatial scales Monthly time scales

Photometric effect of a shift in filter wavelength

Self-calibration test results

Validation Process (review Nov 2011)

Data flow and consistency

Unit tests and pipeQA Validation of photometry

Source Physics

Comparison to observations Light curves from science collaborations

Optics and Camera

Comparison with Zemax Fast diffraction approximation

Atmosphere

Comparisons of PSF and image motion with PS and Subaru

Modeling diffractive effects with photons

Likeness 1977, Freniere 1993

Develop in concert with the analysis framework (build the complexity to match the analysis)

Science requirements are complex, relying on multidimensional distributions that are not easy to model as a "mean and variance". Simulations can provide the flow down from the requirements.

Validate, validate, validate...

Simulations enable the evaluation of the performance of complex systems in a manner astrophysics has not previously embraced

Combined with observational data sets simulations should be able to reduce the commissioning time for the next generation of telescopes

End-to-end simulations, tied to science requirements, will enable better (and quicker) science from the LSST

With thanks to:

Garret Jernigan John Peterson Simon Krughoff **Rob Gibson Robert Lupton Phil Marshall Mario Juric** Lynne Jones **Dave Monet Steve Kahn** the LSST Collaboration