FoMP: Vectors, Tensors and Fields 2009/2010

Problem Sheet 7: gradient and divergence

- 7.1 Describe the level surfaces and calculate the gradient $\underline{\nabla}f$ for the following real scalar fields.
 - (i) $f(\underline{r}) = x + 2y 3z$
 - (ii) $f(\underline{r}) = (x^2 + y^2)^{-1}$
 - (iii) $f(\underline{r}) = \cos^{-1}(x^2 + y^2 z)$

Hint: for parts (ii) and (iii) you will have to use the chain rule $\underline{\nabla}F(\phi) = \frac{dF}{d\phi}\underline{\nabla}\phi$. For part (iii) try considering $\cos f$.

For the first two fields only, calculate the divergence of $\underline{\nabla} f$.

- 7.2 Consider the function $f(\underline{r}) = xy + z^2$. (a) At the point $\underline{P} = (3, 2, 1)$ calculate the gradient $\underline{\nabla}f$; (b) give the equation of the plane that is tangent to the level surface at this point; (c) compute the directional derivative at this point in the direction of the vector $2\underline{e}_1 \underline{e}_3$; (d) Find the stationary points of f subject to the constraint of considering only points that lie in the plane that passes through \underline{P} and is perpendicular to the radius vector at that point (hint: use a Lagrange multiplier).
- 7.3 The temperature of points in space is given by $T(\underline{r}) = x^2 + y^2 z$. A mosquito located at (1, 1, 2) desires to fly in such a direction that it *cool* as quickly as possible. In which direction should it set out?

Another mosquito is flying at a speed of $5ms^{-1}$ in the direction of the vector (4, 4, -2). What is its rate of increase of temperature as it passes through the point (1, 1, 2)?

7.4 Calculate ∇f for the following forms of the scalar field $f(\underline{r})$, defined in terms of the position vector \underline{r} and its magnitude r. The vector \underline{a} is a constant. Use the chain rule where you can and also the result that $\nabla(fg) = (\nabla f)g + f\nabla g$.

(i)	$f(\underline{r}) = \underline{a} \cdot \underline{r}$	(v)	$f(\underline{r}) = \underline{r} - \underline{a} ^{-1}$
(ii)	$f(\underline{r}) = (\underline{a} \cdot \underline{r})^n$	(vi)	$f(\underline{r}) = (\underline{a} \times \underline{r})^2$
(iii)	$f(\underline{r}) = \underline{r} - \underline{a} ^2$	(vii)	$f(\underline{r}) = 3(\underline{a} \cdot \underline{r})^2 - a^2 r^2$
(iv)	$f(\underline{r}) = \underline{r} - \underline{a} $	(viii)	$f(\underline{r}) = (\underline{a} \cdot \underline{r})/r^2$

Hint for (vi): use the triple product identities to find f in terms of expressions for which you have already calculated the gradient.

Describe the level surfaces for each of the above fields. (Hint for last three: choose $\underline{a} = a\underline{e}_3$)