FoMP: Vectors, Tensors and Fields 2009/2010

Problem Sheet 5: tensors and their transformations

5.1 By considering the transformation matrices that describe two successive rotations through angles θ , ϕ , about, for example, the \underline{e}_3 axis, establish the identities

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$
$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)$$

Show that the same relations are obtained more simply by representing a unit 2D vector by the complex number $\exp(i\theta) = \cos\theta + i\sin\theta$.

- 5.2 (i) The transformation from one set of basis vectors $\{e_i\}$ into another set $\{e'_i\}$ can be described by matrix coefficients λ_{ij} . If both old and new basis vectors are othonormal, prove that the transformation matrix must be an orthogonal matrix.
 - (ii) Write down the equation describing how the components of a second-rank tensor change under the above transformation. Show that the quantities T_{ii} and $T_{ij}T_{ji}$ behave as scalars under the transformation. Suggest one further scalar quantity that can be made out of the components of the tensor.
- 5.3 The moment of inertia of a uniform circular disc of mass M and radius a about a perpendicular axis through its centre is $\frac{1}{2}Ma^2$.
 - (i) If \underline{e}_3 is normal to the disc, argue by symmetry that the inertia tensor at the centre O is $\underline{I}(O) = \frac{1}{4}Ma^2 \operatorname{diag}(1, 1, 2)$.
 - (ii) Use the parallel axis theorem to find $I_{ij}(P)$, where P is a point on the perimeter of the disc [e.g. at (a, 0, 0)].
 - (iii) If the disc is spinning with angular velocity $\underline{\omega}$ about an axis through its centre, inclined at an angle θ to the normal [e.g. $\underline{\omega} = \omega(\sin \theta, 0, \cos \theta)$], the angular momentum $\underline{L}(O)$ about O has components $L_i(O) = I_{ij} \omega_j$. Find $\underline{L}(O)$ and deduce that it is not, in general, parallel to $\underline{\omega}$.
 - (iv) By evaluating $\underline{L}(O) \times \underline{\omega}$, find an expression for $\sin \phi$, where ϕ is the angle between L(O) and ω . Sketch ϕ for θ from 0° to 90°.
- 5.4 In a certain basis the conductivity tensor of a material has measured components

$$G_{ij} = g \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Find an electric field direction which produces no current and show that in any direction orthogonal to this the current flows equally easily.

[Hint: In effect, this question asks you to find a vector \underline{E} such that $G_{ij}E_j = 0$ and to show that for any vector \underline{F} , satisfying $\underline{E} \cdot \underline{F} = 0$, $G_{ij}F_j = \lambda F_i$. You should find $\lambda = 2g$.]