FoMP: Vectors, Tensors and Fields 2009/2010

Problem Sheet 4: more on matrices, index manipulation and change of basis

4.1 Matrix multiplication may be written as follows in index notation: $(\underline{\underline{M}} \ \underline{\underline{V}})_i = M_{ij}V_j;$ $(\underline{\underline{M}} \ \underline{\underline{N}})_{ij} = M_{ik}N_{kj}.$

(a) Verify the latter relation by performing direct matrix multiplication and by writing out the sum in full, for

$$\underline{\underline{M}} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; \quad \underline{\underline{N}} = \begin{pmatrix} e & f \\ g & h \end{pmatrix}.$$

(b) Use the component definition to show that $[\underline{\underline{A}} (\underline{\underline{B}} \underline{\underline{C}})]_{ij} = A_{ik} B_{k\ell} C_{\ell j}$ and thus prove that matrix multiplication is associative.

(c) The transpose of a matrix has components $(M^T)_{ij} = M_{ji}$. Use this definition to prove that $(\underline{M} \underline{N})^T = \underline{N}^T \underline{M}^T$.

4.2 (i) The transformation from one set of orthonormal basis vectors $\{e_i\}$ into another set $\{e'_i\}$ can be described by matrix coefficients λ_{ij} as follows: $\underline{e'_i} = \lambda_{ij}\underline{e_j}$. Explain what is meant by the term 'orthonormal basis' and show that

$$\lambda_{ij} = \underline{e}'_i \cdot \underline{e}_j$$
 and $\lambda_{ik} \lambda_{jk} = \delta_{ij}$.

Rewrite the last equation using matrix notation.

- (ii) If the transformation λ_{ij} is followed by a further transformation μ_{ij} , show that the overall effect can be described by a single matrix.
- (iii) Derive the components of λ_{ij} for a rotation by an angle θ about the z axis, taking care to describe the direction of rotation. If this is followed by a second rotation by an angle ϕ , show that the resulting transformation matrix correctly describes a single rotation.
- 4.3 Construct a right-handed orthonormal basis in which the first vector \underline{e}_1' is parallel to $\underline{a} = (1, 1, 1)$ and the second \underline{e}_2' is parallel to $\underline{b} = (1, -1, 0)$; and a *left-handed* orthonormal basis in which the first vector \underline{e}_1'' is parallel to $\underline{c} = (4, -3, 12)$ and the third \underline{e}_3'' is parallel to $\underline{d} = (-3, 12, 4)$. {Note that $3^2 + 4^2 + 12^2 = 13^2$.}

Calculate the coefficients λ_{ij} of the transformation matrix from the \underline{e}_i' basis to the \underline{e}_i'' basis (using $\lambda_{ij} = \underline{e}_i'' \cdot \underline{e}_j'$). Verify that its determinant is -1.

[Continued Overleaf]

4.4 Let $\underline{A} = a(\underline{e}_1 + \underline{e}_2)$ and $\underline{B} = b(\underline{e}_2 - \underline{e}_1)$ and let the basis $\{\underline{e}_i'\}$ be related to the basis $\{\underline{e}_i\}$ basis through

$$\underline{\underline{e}}_{1}' = \frac{1}{3} (2\underline{\underline{e}}_{1} + \underline{\underline{e}}_{2} - 2\underline{\underline{e}}_{3})$$

$$\underline{\underline{e}}_{2}' = \frac{1}{3} (2\underline{\underline{e}}_{1} - 2\underline{\underline{e}}_{2} + \underline{\underline{e}}_{3})$$

$$\underline{\underline{e}}_{3}' = \frac{1}{3} (\underline{\underline{e}}_{1} + 2\underline{\underline{e}}_{2} + 2\underline{\underline{e}}_{3})$$

- (i) Construct the transformation matrix; is the transformation proper or improper?
- (ii) Calculate the transformed components of $\underline{A}, \underline{B}$.
- (iii) Calculate the components of $\underline{A} \times \underline{B}$: firstly by using the transformed components of $\underline{A}, \underline{B}$ to calculate the vector product; secondly by calculating the components of $\underline{A} \times \underline{B}$ in the old basis then transforming. Comment on your results.