Problem Sheet 3: suffix notation, summation convention and change of basis

3.1 Simplify the following expressions, where δ_{ij} is the Kronecker delta symbol. The summation convention is implied.

(i) $A_i \,\delta_{ij}$; (ii) $A_i \,B_j \,\delta_{ij}$; (iii) $\delta_{ij} \,\delta_{jk}$; (iv) $\delta_{ij} \,\delta_{jk} \,\delta_{k\ell}$; (v) $A_i \,B_j \,C_k \,D_\ell \,\delta_{ij} \,\delta_{k\ell}$

- 3.2 A set of right-handed orthonormal basis vectors obeys the relation $\underline{e}_i \times \underline{e}_j = \epsilon_{ijk} \underline{e}_k$: show that this definition is consistent with the usual xyz coordinate system, and in particular that the basis vectors obey a cyclic pattern $\underline{e}_1 \times \underline{e}_2 = \underline{e}_3$ etc.
 - (a) Hence derive the components of the vector product: $(\underline{A} \times \underline{B})_k = \epsilon_{ijk} A_i B_j$.
 - (b) Hence re-express the scalar triple product: $\underline{C} \cdot (\underline{A} \times \underline{B}) = \epsilon_{ijk} A_i B_j C_k$.
- 3.3 Verify that the definition det $M \equiv M_{1p}M_{2q}M_{3r} \epsilon_{pqr}$ correctly gives the determinant of \underline{M} , an arbitrary 3×3 matrix (remember to assume the summation convention).
- 3.4 The two sets of basis vectors $\{\underline{e}_i\}$ and $\{\underline{e}_i'\}$ are both right-handed orthonormal triads such that \underline{e}_1' is in the direction of $(\underline{e}_1 + 2\underline{e}_3)$ and \underline{e}_2' is in the direction of $(2\underline{e}_1 + \underline{e}_2 \underline{e}_3)$.
 - (i) Construct the correctly normalised basis vectors $\underline{e}_1', \underline{e}_2', \underline{e}_3'$.
 - (ii) Write down the transformation matrix $\underline{\lambda}$ from the basis $\{\underline{e}_i\}$ to the basis $\{\underline{e}_i'\}$.
 - (iii) The vector \underline{A} has components (1, 2, 3) in the original basis; the vector \underline{B} has components (1, 2, 3) in the *new* basis. For each vector, deduce components in both bases, and hence show directly that $\underline{A} \cdot \underline{B}$ is unchanged by the transformation.