FoMP: Vectors, Tensors and Fields 2009/2010

Problem Sheet 2: vector geometry and vector angular momentum

- 2.1 Show that the perpendicular distance of the point with position vector \underline{d} from the plane $\underline{r} \cdot \underline{a} = b$ is $|b \underline{d} \cdot \underline{a}|/a$.
- 2.2 Solve the following equations for \underline{r} , and give a geometrical interpretation to your result: $\underline{a} \cdot \underline{r} = \ell$; $\underline{b} \times \underline{r} = \underline{c}$, where $\underline{a} \cdot \underline{b} \neq 0$.
- 2.3 Show that the solution of the vector equation

$$k\underline{r} + (\underline{r} \times \underline{a}) = \underline{b} ,$$

where $k \neq 0$, is

(i)

$$\underline{r}(k^2 + a^2) = (\underline{a} \times \underline{b}) + k\underline{b} + \frac{(\underline{a} \cdot \underline{b})\underline{a}}{k} .$$

[Hint: Take vector and scalar products of the original equation with a]

2.4

A system of particles is subject to rotation described by an angular velocity vector $\underline{\omega}$. Draw a diagram to show that the velocity vector of a particle at position \underline{r} is $\underline{v} = \underline{\omega} \times \underline{r}$, and show that this rotational velocity is perpendicular to the radius vector.

- (ii) Any given velocity vector can be decomposed into rotational and radial components: write down expressions for these two components.
- (iii) A particle rotates with period T in a circle of radius R in the x-y plane, with the centre of the circle at (x, y) = (X, 0). Write down an explicit expression for $\underline{r}(t)$; hence obtain the velocity $\underline{v}(t)$. What is the rotational component of the velocity vector?