STATISTICAL PHYSICS

Ising Model, Landau Theory, Universality

The questions that follow on this and succeeding sheets are an integral part of this course. The code beside each question has the following significance:

- K: key question - explores core material
- R: review question - an invitation to consolidate
- C: challenge question - going beyond the basic framework of the course
- S: standard question - general fitness training!

7.1 Order parameter of an antiferromagnet [s]

The simplest representation of an antiferromagnet is afforded by the Ising model with a nearest neighbour interaction parameter J which is negative.
(i) By considering a one-dimensional system identify the two possible ground states and hence the two phases which one might expect to coexist at low enough temperatures. Find a suitable order parameter which differentiates between the two low temperature phases and is 0 in the high temperature disordered phase
(ii) Generalise to a three-dimensional system

7.2 Ising Model Representation of Binary Alloy [s]

The simplest model of a binary allow envisages an assembly consisting of $N / 2$ atoms of species A and $N / 2$ atoms of species B , distributed over sites forming a body centred cubic lattice. The energy of interaction of neighbouring pairs of atoms is $\epsilon_{A A}, \epsilon_{A B}$ or $\epsilon_{B B}$ according to the pair involved. Show that the canonical partition function is that of the Ising model in zero field and with interaction parameter

$$
J=-\frac{1}{4}\left(\epsilon_{A A}+\epsilon_{B B}-2 \epsilon_{A B}\right)
$$

7.3 Mean-Field Theory of Ising Model Revisited [s]

(i) Review the derivation given in lectures of a mean field free energy function per spin

$$
f(m)=-\frac{z J}{2} m^{2}-h m+k T\left[\left(\frac{1+m}{2}\right) \ln \left(\frac{1+m}{2}\right)+\left(\frac{1-m}{2}\right) \ln \left(\frac{1-m}{2}\right)\right]
$$

(ii) Show that minimising $f(m)$ leads to the Weiss mean-field equation for the magnetisation
(iii) Expand $f(m)$ in powers of m keeping terms up to order m^{4}. You will need the expansion

$$
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

7.4 Landau Theory [r/s]

Check and complete the Landau theory calculations, given in lectures, for the critical exponents β, γ, δ and α of the Ising model. For the latter you will need to first show the result $c_{h}=-T\left(\partial^{2} f / \partial T^{2}\right)_{h}$.

