
STATISTICAL PHYSICS 18/19

Quantum Statistical Mechanics Tutorial Sheet 3

The questions that follow on this and succeeding sheets are an integral part of this course. The
code beside each question has the following significance:

• K: key question – explores core material

• R: review question – an invitation to consolidate

• C: challenge question – going beyond the basic framework of the course

• S: standard question – general fitness training!

3.1 Particle Number Fluctuations for Fermions [s]

(a) For a single fermion state in the grand canonical ensemble, show that

〈(∆nj)2〉 = n̄j(1− n̄j)

where n̄j is the mean occupancy.

Hint: You only need to use the exclusion principle not the explict form of n̄j.

How is the fact that 〈(∆nj)2〉 is not in general small compared to n̄j to be reconciled with
the sharp values of macroscopic observables?

(b) For a gas of noninteracting particles in the grand canonical ensemble, show that

〈(∆N)2〉 =
∑
j

〈(∆nj)2〉

(you will need to invoke that nj and nk are uncorrelated in the GCE for j 6= k). Hence
show that for noninteracting Fermions

〈(∆N)2〉 =
∫
g(ε) f(1− f) dε

follows from (a) where f(ε, µ) is the F-D distribution and g(ε) is the density of states.

(c) Show that for low temperatures f(1− f) is sharply peaked at ε = µ, and hence that

〈∆N2〉 ' kBTg(εF ) where εF = µ(T = 0)

[You may use without proof the result that
∫∞
−∞

ex dx
(ex+1)2

= 1.]

3.2 Entropy of the Ideal Fermi Gas [C]

The Grand Potential for an ideal Fermi is given by

Φ = −kT
∑
j

ln [1 + exp β(µ− εj)]

Show that for Fermions
Φ = kT

∑
j

ln(1− pj) ,



where pj = f(εj) is the probability of occupation of the state j. Hence show that the
entropy of a Fermi gas can be written in the form

S = −k
∑
j

[pj ln pj + (1− pj) ln(1− pj)]

You will need to use S = −
(
∂Φ

∂T

)
µ,V

and some patience to obtain the result!

Comment upon the result for the entropy from the standpoint of missing information.

3.3 Geometric Series [r] In problems we often make use of the geometric series in the form

∞∑
n=0

e−αn =
1

1− e−α
, for e−α < 1 .

Show that this form can be used to derive the results

∞∑
n=0

n e−αn =
e−α

(1− e−α)2

∞∑
n=0

n2 e−αn =
e−α

(1− e−α)2
+ 2

e−2α

(1− e−α)3
.

3.4 Particle Number Fluctuations for Bosons [s] Use the results of the previous question
to show that for Bosons in the Grand Canonical Ensemble the variance in occupancy for a
given one-particle state j obeys

〈∆n2
j〉 = n̄j(n̄j + 1)

where n̄j is the mean occupancy. Hence show that the existence of a Bose Condensate
causes there to be macroscopic fluctuations in the particle number N of the system.

3.5 Properties of the Density Matrix [s] In lectures we introduced the idea of a density
matrix. For the canonical ensemble the density matrix may be written in braket notation
as

ρ =
∑
i

pi|i〉〈i|

where pi are classical probabilities for the energy eigenstates {|i〉} are

a) Show that the components of the density matrix in the energy eigenbasis are given by

ρij = piδij

b) Show that
Tr[ρ] = 1

and
Tr[ρ2] ≤ 1

When does Tr[ρ2] = 1?

c) The von Neumann entropy is given by

S = −kTr [ρ ln ρ] .



Show that the von Neumann entropy reduces to the Gibbs-Shannon entropy. You will need
to show

ρn =
∑
i

pni |i〉〈i|

and use the expansion

ln ρ = ln[1 + (ρ− 1)] =
∞∑
n=1

(−1)n+1(ρ− 1)n

n

3.6 Bosons in Harmonic Potentials [s/c] Consider a gas of N weakly interacting bosons
trapped in 3d harmonic potential (by a magnetic trap for example).

Vtrap =
1

2
mw2(x2 + y2 + z2)

a) Explain why the single particle quantum states have energies

ε = h̄w(nx + ny + nz + 3/2)

b) Calculate the total number of quantum states with energies less that ε and from this
deduce that the density of states g(ε) is

g(ε) ' ε2

2(h̄w)3
for large ε

Hint: This is the difficult bit since ε is a function of n rather than just the magnitude n.
You need to convince yourself that a surface of constant energy is a plane in n-space and
the number of states with energy less than ε is given by the volume of a tetrahedron.
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