

Statistical Physics: Tutorial 8

John Peacock Institute for Astronomy, Royal Observatory Edinburgh

Ising Model; Landau Theory; Universality

A: Core problems

1. Critical exponents from the Ising mean-field theory

(a) If we denote the order parameter (or magnetisation per spin) by m, show that the mean-field solution of the Ising model can be written as

$$m = \tanh\left[\frac{m}{1+t} + b
ight],$$

where $t = (T - T_c)/T_c$ is the reduced temperature and b = h/kT is the reduced external magnetic field. By considering *m* for temperature close to T_c and for zero external field, show that the associated critical exponent (power-law dependence of *m* on *t*) takes the value $\beta = 1/2$ [you may assume that $\tanh x \simeq x - x^3/3 + O(x^5)$].

(b) Obtain an expression for the mean energy \overline{E} of the Ising model when the applied field is zero, using the simplest mean-field approximation. Hence show that the heat capacity C_h has the behaviour:

$$\begin{aligned} C_h &= 0, & \text{for} \quad T > T_c; \\ &= 3Nk/2, & \text{for} \quad T < T_c. \end{aligned}$$

Comment on the nature of the singularity at T_c . Is there a critical exponent α for C_h ?

(c) By considering the behaviour of the order parameter at temperatures just above T_c , show that the critical exponent γ , associated with the temperature dependence of the isothermal magnetic susceptibility, takes the value $\gamma = 1$ according to mean-field theory.

(d) Consider the effect of an externally applied magnetic field at $T = T_c$, and show that m scales as the 1/3 power of the field at this temperature.

2. Free energy of the Ising model

(a) Show that the mean-field Ising model has a free energy function per spin

$$f(m) = -\frac{zJ}{2}m^2 - hm + kT\left[\left(\frac{1+m}{2}\right)\ln\left(\frac{1+m}{2}\right) + \left(\frac{1-m}{2}\right)\ln\left(\frac{1-m}{2}\right)\right].$$

(b) Show that minimising f(m) leads to the Weiss mean-field equation for the magnetisation.

3. Ising model representation of binary alloy

The simplest model of a binary allow envisages a system consisting of N/2 atoms of species A and N/2 atoms of species B, distributed over sites forming a body centred cubic lattice. The energy of interaction of neighbouring pairs of atoms is ϵ_{AA} , ϵ_{AB} or ϵ_{BB} according to the pair involved. Show that the canonical partition function is that of the Ising model in zero field and with interaction parameter $J = -(1/4) (\epsilon_{AA} + \epsilon_{BB} - 2\epsilon_{AB})$.

4. Order parameter of an antiferromagnet

The simplest representation of an antiferromagnet is afforded by the Ising model with a nearest neighbour interaction parameter J that is *negative*.

(a) By considering a one-dimensional system identify the two possible ground states and hence the two phases that one might expect to coexist at low enough temperatures. Find a suitable order parameter that differentiates between the two low temperature phases and is zero in the high temperature disordered phase.

(b) Generalise to a three-dimensional system.

B: Further problems

1. The lattice gas Check the claim in the notes that the energy of the lattice gas model in the grand canonical ensemble,

$$E'(\{c\}) = \epsilon \sum_{\langle ij \rangle} c_i c_j - \mu \sum_i c_i ,$$

is transformed to that of the Ising model:

$$E'(\{s\}) = -J \sum_{\langle ij \rangle} S_i S_j - h \sum_i S_i + \frac{\epsilon z - 4\mu}{8} \mathcal{N},$$

where \mathcal{N} is the number of sites, by means of the change of variable

$$S_i = 2c_i - 1 = \pm 1$$
; $-J = \frac{\epsilon}{4}$; $-h = \frac{\epsilon z - 2\mu}{4}$

2. Transfer matrix solution of the 1D Ising model

Show that the canonical partition function of the one-dimensional Ising model (with periodic boundary conditions) may be written as

$$Z_c = \sum_{S_1 = \pm 1} \sum_{S_2 = \pm 1} \dots \sum_{S_N = \pm 1} T(S_1, S_2) T(S_2, S_3) \dots T(S_N, S_1),$$

where

$$T(S_i, S_{i+1}) = \exp\left[\beta J S_i S_{i+1} + \frac{\beta h}{2} (S_i + S_{i+1})\right].$$

Hence show that

$$Z_c = \lambda_+^N + \lambda_-^N \simeq \lambda_+^N \,,$$

where λ_{\pm} are the eigenvalues, which you should determine, of the transfer matrix T:

$$\hat{T} = \begin{pmatrix} T(1,1) & T(1,-1) \\ T(-1,1) & T(-1,-1) \\ \end{pmatrix}$$

Show that the magnetisation is zero for h = 0 at all temperatures T and find an expression for the mean energy at low temperature.

3. Critical exponents in Landau theory

Check and complete the Landau theory calculations, given in lectures, for the critical exponents β, γ, δ and α of the Ising model. For the last of these you will need to prove the result $c_h = -T \left(\partial^2 f / \partial T^2 \right)_h$.