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HStatistical Physics: Tutorial 5

John Peacock

Institute for Astronomy, Royal Observatory Edinburgh

Master equation and stochastic processes

A: Core problems

1. Master equation: 2-state system

(a) Show that the conservation of probability, together with Fermi’s Golden rule, leads to the
quantum master equation,

dpi
dt

=
∑

j

νij(pj − pi),

where pi is the probability of occupying state i, and νij is the transition rate between a pair of
states.

(b) A system of N atoms, each with energy levels E = ±ǫ interacts with a heat bath such that each
atom has a transition rate ν↑ from the lower state to the upper, and ν↓ in the opposite direction.
If there are n+ and n− atoms in the two states, obtain the master equation for n−(t)− n+(t) and
hence derive the relaxation time for the approach of the system to equlibrium.

2. Master equation: matrix approach

An isolated system can occupy three possible states of the same energy. The kinetics are such that
it can jump between states 1 and 2 and between states 2 and 3 but not directly between states 1
and 3. Per unit time, there is a probability ν that the system makes a jump, from the state it is
in, into (each of) the other state(s) it can reach.

(a) Show that the occupation probabilities p = (p1, p2, p3) of the three states obey the master
equation

∂

∂t
p = M · p,

where the transition matrix is

M = ν







−1 1 0
1 −2 1
0 1 −1






.

(b) Confirm that an equilibrium state is p = (1, 1, 1)/3; by considering the eigenvalues of M , prove
this state is unique.

3. Langevin overdamped oscillator

(a) Consider the Langevin equation

ẋ = −µκx+ µf

for an overdamped harmonic particle subject to a random force f . Show that the following is a
solution (describing a particle released from x = 0 at t = 0):

x(t) = µ

∫ t

0
f(t′) exp[−µκ(t− t′)] dt′
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(A proof by substitution is adequate, but it would be better to construct the solution e.g. by using
an integrating factor).

(b) Show further that

〈x2(t)〉 = µ2 exp[−2µκt]

∫ t

0

∫ t

0
F (t′ − t′′) exp[µκ(t′ + t′′)]dt′ dt′′ ,

where F (t′ − t′′) ≡ 〈f(t′)f(t′′)〉. Assuming this quantity to be so sharply peaked about the origin
that it may be approximated as g δ(t′ − t′′) where g =

∫∞
−∞ F (u) du, recover the result that

〈x2(t)〉 =
µg

2κ
(1− exp(−2µκt)) .

Sketch this function.

When κ is small enough that µκt ≪ 1, show that the particle behaves diffusively with 〈x2〉 = µ2gt.
Hence deduce a relation between g and the mobility µ.

Explain why the amount of damping in the system (as set by µ−1) also determines the amount of
noise (as set by g). [the ‘fluctuation dissipation theorem’].

B: Further problems

1. Brownian Motion

The Langevin equation for Brownian motion reads

dv

dt
= −γv + η with 〈η(t)η(t′)〉 = Γδ(t− t′),

where γ is viscous drag coefficient divided by mass. Show that

〈v(t1)v(t2)〉 =

(

v(0)2 −
Γ

2γ

)

e−γ(t1+t2) +
Γ

2γ
e−γ|t1−t2|

and identify Γ = 2γkT .

Obtain the mean-square displacement

〈[x(t)− x(0)]2〉 =
Γt

γ2
−

Γ

γ3

[

1− e−γt
]

+

(

v(0)2

γ2
−

Γ

2γ3

)

[

1− e−γt
]2

and deduce Einstein’s relation D = kT/γ.

2. Generalised random walk and diffusion limit

Consider a particle on a 1D lattice with spacing a. The transition rate between sites depends on
position: νi→j = Di,j/a

2 with Di,j symmetric, and nonzero only for adjacent i and j.

(a) Show that the master equation is

a2 ṗi = Di,i+1(pi+1 − pi)−Di,i−1(pi − pi−1)

and thereby obtain the continuum diffusion equation for spatially varying diffusivity D(x):

ṗ(x) =
∂

∂x

(

D(x)
∂p(x)

∂x

)

.
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(b) An alternative argument is to say that there is a hop rate Di/a
2 at each site i (so that the

particle has the same rate for hops to the left and to the right from site i). Show that this gives

a2 ṗi = Di+1pi+1 −Dipi − (Dipi −Di−1pi−1)

and hence leads to the continuum ‘diffusion equation’

ṗ(x) =
∂2

∂x2
(D(x)p(x)) .

Show that the steady state solution of this equation fails to describe thermal equilibrium with zero
potential, and explain why the hopping argument is flawed.
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