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Statistical Physics: Tutorial 5 AS

John Peacock
Institute for Astronomy, Royal Observatory Edinburgh

Master equation and stochastic processes

A: Core problems

1. Master equation: 2-state system

(a) Show that the conservation of probability, together with Fermi’s Golden rule, leads to the
quantum master equation,

dp;
E = ZVij(pj _pi)>
J

where p; is the probability of occupying state i, and v;; is the transition rate between a pair of
states.

(b) A system of N atoms, each with energy levels E = +e¢ interacts with a heat bath such that each
atom has a transition rate vy from the lower state to the upper, and v| in the opposite direction.
If there are ny and n_ atoms in the two states, obtain the master equation for n_(t) — n4(t) and
hence derive the relaxation time for the approach of the system to equlibrium.

2. Master equation: matrix approach

An isolated system can occupy three possible states of the same energy. The kinetics are such that
it can jump between states 1 and 2 and between states 2 and 3 but not directly between states 1
and 3. Per unit time, there is a probability v that the system makes a jump, from the state it is
in, into (each of) the other state(s) it can reach.

(a) Show that the occupation probabilities p = (pi1,p2,ps) of the three states obey the master
equation

0
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where the transition matrix is

(b) Confirm that an equilibrium state is p = (1, 1,1)/3; by considering the eigenvalues of M, prove
this state is unique.

3. Langevin overdamped oscillator
(a) Consider the Langevin equation
&= —pke + pf

for an overdamped harmonic particle subject to a random force f. Show that the following is a
solution (describing a particle released from = = 0 at ¢ = 0):

o0) = [ &) explopuntt — )] df
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(A proof by substitution is adequate, but it would be better to construct the solution e.g. by using
an integrating factor).

(b) Show further that

(z%(t)) = p? exp|—2urt] /O t /O t Ft' —t")explus(t’ +t")dt’ dt”,

where F(t' —t") = (f(¢)f(¢")). Assuming this quantity to be so sharply peaked about the origin
that it may be approximated as g d(t' —¢”) where g = [ F(u) du, recover the result that

(2(1)) = 52 (1 - exp(~2unt).

Sketch this function.

When « is small enough that pst < 1, show that the particle behaves diffusively with (x?) = p2gt.
Hence deduce a relation between g and the mobility .

Explain why the amount of damping in the system (as set by p~!) also determines the amount of
noise (as set by g). [the ‘fluctuation dissipation theorem’].

B: Further problems

. Brownian Motion

The Langevin equation for Brownian motion reads

% =—qv+n with (p(t)n(t")) =Ts(t - 1),

where vy is viscous drag coefficient divided by mass. Show that
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and identify I' = 2vkT.
Obtain the mean-square displacement
rt T _ v(0)2 T 2
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and deduce Einstein’s relation D = kT'/~.

. Generalised random walk and diffusion limit

Consider a particle on a 1D lattice with spacing a. The transition rate between sites depends on
position: v;; = D; ;/ a® with D; ; symmetric, and nonzero only for adjacent 7 and j.

(a) Show that the master equation is
a®pi = Diiy1(piv1 — pi) — Diic1(pi — pic1)

and thereby obtain the continuum diffusion equation for spatially varying diffusivity D(x):

i) = o (D0 22).




(b) An alternative argument is to say that there is a hop rate D;/a® at each site i (so that the
particle has the same rate for hops to the left and to the right from site ). Show that this gives

a® pi = Diy1piy1 — Dipi — (Dipi — Di—1pi1)
and hence leads to the continuum ‘diffusion equation’
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§) = s (D)D),

Show that the steady state solution of this equation fails to describe thermal equilibrium with zero
potential, and explain why the hopping argument is flawed.



