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HStatistical Physics: Tutorial 3

John Peacock

Institute for Astronomy, Royal Observatory Edinburgh

A: Core problems: An exercise in generalised black-body radiation

1. Chemical potential A box of volume V has walls at temperature T that can emit and absorb
particles of massm, which occupy the box without interacting amongst themselves. The equilibrium
population of particles inside the box will adjust the numbers of particles so as to minimise the free
energy, F . Hence deduce that the chemical potential, µ, vanishes in equilibrium, so that there is
no distinction between the partition function, Z, and the grand partition function, ZG.

2. Momentum-space integrals Hence show that the number density and energy density of quanta
can be written as

N ≡
N

V
=

4πg

h3

∫

n(p) p2 dp; U ≡
E

V
=

4πg

h3

∫

n(p) ǫ(p) p2 dp,

where n(p) is the occupation number and ǫ(p) is the energy of a single-particle state of momentum
p. What is the general form of ǫ(p) according to special relativity? Show that it has the limits
ǫ = mc2 + p2/2m when the momentum is small (pc ≪ mc2), and ǫ = pc in the opposite limit.

3. Partition function Because Z =
∑

n1

∑

n2
· · · exp[−(n1ǫ1 + n2ǫ2 + · · ·)/kT ], show that the par-

tition function is a product over states: Z =
∏

j Zj , where Zj =
∑

nj
exp[−njǫ)j/kT ] is a single-

state-partition function. Evaluate this single-state function for fermions and bosons. For the latter,
you will need a geometric series:

∞
∑

n=0

e−αn =
1

1− e−α
⇒

∞
∑

n=0

n e−αn =
e−α

(1− e−α)2
.

Prove these results, and thus obtain 〈n〉 for bosons and for fermions. Hence show that at high
temperatures, kT ≫ mc2, we have N ∝ T 3 and U ∝ T 4.

4. Pressure The partition function gives the free energy, via F = −kT lnZ. Hence show that

P = −
F

V
=

4πgkT

h3

∫

ln
[

(1± exp[−ǫ(p)/kT ])±1
]

p2 dp.

Integrate by parts to convert this to

P =
4πg

h3

∫

n(p)
p2c2

3ǫ(p)
p2 dp.

Hence show that P = U/3 in the high-temperature ultrarelativistic limit (kT ≫ mc2). In the
opposite low-temperature limit, show that this recovers the classical expressions for a perfect gas:
P = NkT and P = Nm〈v2〉/3.

5. Entropy Show that the alternative expressions S = (E − F )/T and S = − ∂F/∂T |V give the
same result in this case. In the ultrarelativistic limit, show that this is S = 4E/3T , and that this
is proportional to the total number of particles.
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B: Further problems

1. Particle number fluctuations for fermions

(a) For a single fermion state in the grand canonical ensemble, show that

〈(∆nj)
2〉 = n̄j(1− n̄j)

where n̄j is the mean occupancy (Hint: you only need to use the exclusion principle not the explicit
form of n̄j).

How is the fact that 〈(∆nj)
2〉 is not in general small compared to n̄j to be reconciled with the sharp

values of macroscopic observables?

(b) For a gas of noninteracting particles in the grand canonical ensemble, show that

〈(∆N)2〉 =
∑

j

〈(∆nj)
2〉

(you will need to invoke that nj and nk are uncorrelated in the GCE for j 6= k). Hence show that
for noninteracting Fermions

〈(∆N)2〉 =
∫

g(ǫ) f(1− f) dǫ

follows from (a) where f(ǫ, µ) is the F-D distribution and g(ǫ) is the density of states.

(c) Show that for low temperatures f(1− f) is sharply peaked at ǫ = µ, and hence that

〈∆N2〉 ≃ kTg(ǫF) where ǫF = µ(T = 0)

[You may use without proof the result that
∫

∞

−∞

ex dx
(ex+1)2

= 1.]

2. Particle number fluctuations for Bosons Show that for Bosons in the Grand Canonical En-
semble the variance in occupancy for a given one-particle state j obeys

〈(∆nj)
2〉 = n̄j(n̄j + 1)

where n̄j is the mean occupancy. Hence show that the existence of a Bose Condensate causes there
to be macroscopic fluctuations in the particle number N of the system.

3. Entropy of the ideal Fermi gas

The Grand Potential for an ideal Fermi gas is given by

Φ = −kT
∑

j

ln [1 + expβ(µ− ǫj)]

Show that for Fermions
Φ = kT

∑

j

ln(1− pj) ,

where pj = f(ǫj) is the probability of occupation of the state j. Hence show that the entropy of a
Fermi gas can be written in the form

S = −k
∑

j

[pj ln pj + (1− pj) ln(1− pj)]

You will need to use S = −

(

∂Φ

∂T

)

µ,V

and some patience to obtain the result.

Comment upon the result for the entropy from the standpoint of hidden information.

2



4. Bosons in Harmonic Potentials Consider a gas of N weakly interacting bosons trapped in a 3D
harmonic potential (by a magnetic trap for example).

Vtrap =
1

2
mw2(x2 + y2 + z2)

(a) Explain why the single particle quantum states have energies

ǫ = h̄w(nx + ny + nz + 3/2)

(b) Calculate the total number of quantum states with energies less that ǫ and from this deduce
that the density of states g(ǫ) is

g(ǫ) ≃
ǫ2

2(h̄w)3
for large ǫ

Hint: This is the difficult bit since ǫ is a function of n rather than just the magnitude n. You need
to convince yourself that a surface of constant energy is a plane in n-space and the number of states
with energy less than ǫ is given by the volume of a pyramid.

5. Properties of the Density Matrix In lectures we introduced the idea of a density matrix. For
the canonical ensemble the density matrix may be written in bra-ket notation as

ρ =
∑

i

pi|i〉〈i|

where pi are classical probabilities for the energy eigenstates {|i〉}.

(a) Show that the components of the density matrix in the energy eigenbasis are given by

ρij = piδij

(b) Show that
Tr[ρ] = 1

and
Tr[ρ2] ≤ 1

When does Tr[ρ2] = 1?

(c) The von Neumann entropy is given by

S = −kTr [ρ ln ρ] .

Show that the von Neumann entropy reduces to the Gibbs-Shannon entropy. You will need to show

ρn =
∑

i

pni |i〉〈i|

and use the expansion

ln ρ = ln[1 + (ρ− 1)] =
∞
∑

n=1

(−1)n+1(ρ− 1)n

n

3


