

Statistical Physics: Tutorial 2

John Peacock Institute for Astronomy, Royal Observatory Edinburgh

A: Core problems

1. Grand Potential Define the grand potential, Φ , from the grand canonical partition function and its associated bridge equation. Using the expression for the Gibbs entropy, prove that Φ satisfies

$$\Phi = \langle E \rangle - TS_{\text{Gibbs}} - \mu \langle N \rangle.$$

Now use the Gibbs-Duhem relation to show that a single species 'PVT' system obeys the relation

$$\Phi = -PV.$$

2. Thermodynamics of a model magnet When a particle with spin 1/2 is placed in a magnetic field B, its energy level is split into $\pm \mu B$, corresponding to a magnetic moment μ or $-\mu$ along the direction of the magnetic field. Suppose that a system of N such particles on a lattice is placed in a magnetic field B and is kept at temperature T. In the limit that the individual spins are weakly interacting, find the internal energy, the entropy, the heat capacity and the total magnetic moment M of this system.

Sketch the internal energy and heat capacity, identifying and analysing the low temperature and high temperature regimes.

3. Quantum rotor: classical and quantum limits

$$\epsilon_r = \frac{\hbar^2}{2I}r(r+1)$$
, $r = 0, 1, 2...$

where I is a constant and the level ϵ_r is (2r+1)-fold degenerate.

(a) Write down the canonical partition function of the rotational motion, and obtain manageable approximations for it (i) at low temperatures and (ii) at high ones.

[Hint: to decide on suitable approximations, consider in each limit how many terms matter in the sum. If only one or two terms matter, neglect the rest. If many matter, consider how a sum of many terms (if the summand is slowly varying) can be approximated by an integral.]

(b) Find the mean energy E(T) in each limit and hence obtain expressions for the heat capacity at low and high temperatures.

[Answers: $C_{V,\text{rot}} = 3\hbar^4 I^{-2} k_B^{-1} T^{-2} \exp[-\beta\hbar^2/I] \simeq 0$ for $k_B T \ll \epsilon_1$; $C_{V,\text{rot}} = k_B$ for large T.]

B: Further problems

1. Canonical Distribution of two-state system: heat capacity

(a) A system can be in one of two states, with energy $0, \epsilon$. Find its mean energy as a function of temperature and sketch the result. Sketch also the heat capacity $C_V = (\partial E/\partial T)_V$ and show that it peaks at a given critical temperature. Use dimensional arguments to estimate this temperature and C_V at that point.

(b) A similar system can be in one of four states, with energy $0, \delta, \epsilon, \epsilon + \delta$. By writing the partition function as a product of two factors, show that this can be viewed as two independent subsystems whose heat capacities are additive.

2. Equivalence of ensembles

It is sometimes said that, in the limit of large N, the canonical ensemble becomes equivalent to the microcanonical ensemble. How can this statement be justified? [Hint consider energy fluctuations] Similarly, when does the grand canonical ensemble become equivalent to the canonical ensemble? When might we expect equivalences to break down?

3. Magnetisation fluctuations in general magnetic system

A system of spin 1/2 constituents (e.g. atoms) at a fixed temperature T is subject to an applied magnetic field B. If the net magnetic moment of the system in state i is M_i , in the direction of the field, then the associated total energy is given by

$$E_i = E_i(B=0) - M_i B$$

where $E_i(B = 0)$ represents the mutual interaction of the individual spins in the absence of an external field, and μ_0 is the permeability of free space.

Show that fluctuations of the magnetic moment about its mean value are given by

$$\langle \Delta M^2 \rangle \equiv \langle M^2 \rangle - \langle M \rangle^2 = kT\chi$$

where χ is the isothermal magnetic susceptibility defined by

$$\chi = [\partial \langle M \rangle / \partial B]_T \,.$$

4. Correlation of energy and pressure fluctuations Show that the fluctuations in the pressure and total energy of a fluid in a container of fixed volume V, satisfy the relation

$$\left< \Delta E \, \Delta P \right> = k T^2 \left(\frac{\partial \left< P \right>}{\partial T} \right)_V \, , \label{eq:expansion}$$

provided that the fluid is in thermal equilibrium.

[Hint: You will need to introduce the 'instantaneous pressure' of microstate i,

$$P_i = -\frac{\partial E_i}{\partial V},$$

and use this to calculate $\langle P \rangle$.