School of Physics & Astronomy

Statistical Physics

PHYS11024 (SCQF Level 11)

Friday 6th May, 2022 13:00 - 15:00 (May Diet)

Please read full instructions before commencing writing.

Examination Paper Information

Answer **TWO** questions

Special Instructions

- Only authorised Electronic Calculators may be used during this examination.
- Attach supplied anonymous barcodes to each script book used.

Special Items

• School supplied barcodes

Chairman of Examiners: Prof J Dunlop External Examiner: Prof D Litim

Anonymity of the candidate will be maintained during the marking of this examination.

Printed: Thursday 25th April, 2024 PHYS11024

- 1. (a) Explain how the canonical and grand canonical ensembles are obtained by maximising the Gibbs entropy subject to certain constraints, which you should specify.
- [5]

(b) The grand potential is defined as

$$\Phi = F - \mu N$$

where F is the Helmholtz free energy, μ is the chemical potential and N is the particle number.

Use the combined 1st/2nd law of thermodynamics to explain in what sense T, V and μ are natural variables for Φ . Give expressions for the entropy S, the pressure P, and particle number N as derivatives of Φ .

[6]

(c) The canonical partition function for an ideal gas of N particles of mass m in volume V is given by

$$Z_c = \frac{\left[V/\lambda^3\right]^N}{N!}$$

where $\lambda = h/(2\pi m k_B T)^{1/2}$ and k_B is Boltzmann's constant. (You are not required to show this.)

Using this expression for Z_c , show that the grand canonical partition function for the ideal gas is given by

 $\mathcal{Z}_{gc} = \exp\left[\frac{Vz}{\lambda^3}\right] ,$

where

$$z = e^{\mu/(k_B T)} . ag{2}$$

(i) Use the above expression for \mathcal{Z}_{gc} to obtain an expression for the grand potential

[1]

Hence, using your expressions from part (b), show that in the grand canonical ensemble:

(ii) the average number of particles is

$$\overline{N} = \frac{V e^{\mu/(k_B T)}}{\lambda^3} \; ; \tag{1}$$

(iii) the entropy is given by

$$S = k_B \overline{N} \left[\frac{5}{2} - \ln \left(\rho \lambda^3 \right) \right] ;$$
 [3]

(iv) and the pressure is given by

$$P = \rho k_B T \,, \tag{1}$$

where the density is $\rho = \overline{N}/V$.

Statistical Physics (PHYS11024)

(e) A certain non-ideal fluid has grand canonical partition function

$$\mathcal{Z}_{gc} = \exp\left[\frac{V}{\lambda^3}(z+cz^2)\right] ,$$

where c is a constant and z is as given in (c).

(i) Show that

$$\rho \lambda^3 = z + 2cz^2 \,. \tag{2}$$

(ii) By making an expansion of z in powers of the density,

$$z = a\rho + b\rho^2 + \dots ,$$

find the second virial coefficient \mathcal{B}_2 for this fluid.

[4]

2. An ionic solution with permittivity ϵ contains two freely moving ionic species with opposite charges $q_1 = +q$, $q_2 = -q$, but with the same overall number densities denoted by $n_1(\infty)$ and $n_2(\infty)$.

First consider a fixed point charge $-\theta$ at the origin.

(a) Derive the Poisson-Boltzmann equation for the electrostatic potential $\phi(\underline{r})$

$$\nabla^2 \phi(\underline{r}) = -\sum_{i=1,2} \frac{n_i(\infty)q_i}{\epsilon} e^{-\beta q_i \phi(\underline{r})} + \frac{\theta}{\epsilon} \delta(\underline{r})$$
 (1)

where $\beta = 1/(kT)$ and k is Boltzmann's constant. You should state clearly any assumptions required and explain why the theory is 'self-consistent' and in what sense it is a mean-field theory.

(b) Show that equation (1) reduces to the Debye-Hückel equation

$$\nabla^2 \phi(\underline{r}) = \frac{\phi(\underline{r})}{\lambda_D^2} + \frac{\theta}{\epsilon} \delta(\underline{r}) \,,$$

under conditions which you should state, and give an expression for λ_D .

- (c) (i) Explain why ϕ depends only on the radial distance r from the origin. [1]
 - (ii) Show that, away from the origin, the solution of the Debye-Hückel equation for the electrostatic potential is of the form

$$\phi(r) = \frac{A}{r} e^{-r/\lambda_D} + \frac{B}{r} e^{+r/\lambda_D} . \tag{2}$$

Hint: You may assume the form of the Laplacian operator acting on a spherically symmetric function $\phi(r)$, where r is the radial co-ordinate:

$$\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) .$$

Now consider, instead of the point charge at the origin, a charged sphere of radius a, held fixed in the solution, with its centre at the origin. The sphere has surface charge density $-\sigma$, where $\sigma > 0$.

- (d) Use the boundary conditions at the surface of the sphere and at infinity to determine the constants A and B in the expression (2) in part (c), and hence obtain an expression for $\phi(r)$.
- (e) Give an expression for the net charge density, $\rho(r)$, and make an annotated sketch of $\rho(r)$.
- (f) By taking the radius of the sphere to zero, obtain $\phi(r)$ for a point charge $-\theta$ at the origin. [3]

[4]

[3]

[7]

[3]

3. A particle of mass m falls under gravity in a viscous medium. The motion is governed by a Langevin equation of the form

$$m\frac{\mathrm{d}^2 z(t)}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}z(t)}{\mathrm{d}t} = f(t) + mg$$

where z(t), the vertical co-ordinate of the particle, is measured downwards and f(t) is a random variable.

(a) Explain the meaning of the terms in the above equation and explain why f(t) can be taken to obey

$$\langle f(t) \rangle = 0 \quad \langle f(t)f(t') \rangle = \Gamma \delta(t - t')$$

where Γ is a constant and the angle brackets denote an average.

(b) If the particle begins from rest at z=0 at t=0, show that the solution of the Langevin equation is

$$z(t) = \frac{1}{m} \int_0^t dt' \int_0^{t'} dt'' e^{-(t'-t'')/\tau} [f(t'') + mg],$$

giving the expression for τ in terms of m and γ .

- (c) (i) Find an expression for $\langle z(t) \rangle$. [3]
 - (ii) Show that your solution for part (c)(i) behaves for 'early' times like that of a freely falling particle, and behaves for 'late' times like that of a particle falling with a terminal speed. You should specify the criteria that determine 'early' and 'late' times.
- (d) Defining $\Delta z(t) = z(t) \langle z(t) \rangle$, show that

$$\langle (\Delta z(t))^2 \rangle = \frac{\Gamma \tau^2}{m^2} \left[t - \tau (1 - e^{-t/\tau}) - \frac{\tau}{2} (1 - e^{-t/\tau})^2 \right].$$
 [5]

[4]

[6]

[3]

(e) Compute the leading behaviour of $\frac{\langle (\Delta z(t))^2 \rangle^{1/2}}{\langle z(t) \rangle}$ in the early and late time limits. [4]