School of Physics & Astronomy

Statistical Physics PHYS11024 (SCQF Level 11)

Monday 18th May, 2020 14:30 - 16:30 (May Diet)

Please read full instructions before commencing writing.

Examination Paper Information

Answer \mathbf{TWO} questions

Special Instructions

- Electronic Calculators must **not** be used during this examination.
- Attach supplied anonymous bar codes to *each* script book used.

Special Items

• School supplied barcodes

Chairman of Examiners: Prof J Dunlop External Examiner: Prof E Copeland

Anonymity of the candidate will be maintained during the marking of this examination.

1. The Gibbs entropy for an assembly with available microstates labelled by j is

$$S = -k_B \sum_j p_j \ln p_j$$

where k_B is Boltzmann's constant.

a) By maximising the Gibbs entropy subject to certain constraints, which you should specify, show how one obtains the grand canonical ensemble given by

$$p_{i,N} = \frac{1}{\mathcal{Z}_{gc}} \exp(-\lambda_E E_{i,N}/k_B - \lambda_N N/k_B)$$

where λ_E , λ_N are Lagrange multipliers, and \mathcal{Z}_{gc} is the grand canonical partition function, which you should define.

b) Show how the Lagrange multipliers may be identified in terms of the temperature T and chemical potential μ as

$$\lambda_E = \frac{1}{T}, \qquad \lambda_N = -\frac{\mu}{T}.$$
 [4]

[7]

[2]

c) Using the formula for the Gibbs entropy, show that the entropy in the grand canonical ensemble S_{gc} is given by

$$S_{gc} = k_B \ln \mathcal{Z}_{gc} + \frac{\overline{E}}{T} - \frac{\mu \overline{N}}{T}$$

where the overline denotes an average within the ensemble.

Show how this relation is equivalent to the bridge equation relating \mathcal{Z}_{gc} to the grand potential Φ , which you should define. [2]

Using the 1st/2nd law of thermodynamics, explain what are the natural variables for Φ . [2]

The density matrix for the grand canonical ensemble is written

$$\rho = \sum_{i,N} p_{i,N} |\psi_{i,N}\rangle \langle \psi_{i,N}|$$

where $|\psi_{i,N}\rangle$ is an eigenstate of the Hamiltonian operator \hat{H} and number operator \hat{N} with eigenvalues E_i and N, respectively.

- d) Explain what are meant by pure and mixed states in quantum mechanics. [2]
- e) Show that

 $\operatorname{Trace}[\rho] = 1 .$ [3]

f) Show that

$$\mathcal{Z}_{gc} = \operatorname{Trace}[e^{-\beta(\hat{H}-\mu\hat{N})}].$$
[3]

- **2.** a) Explain what is meant by a radial distribution function g(r) and give qualitative sketches of its form in an ideal gas, a dense liquid and a solid.
 - b) A plasma with permittivity ϵ contains two freely moving ionic species with opposite charges $q_1 = -q_2$ but with the same overall number densities denoted by $n_1(\infty)$ and $n_2(\infty)$.

Derive the Poisson-Boltzmann equation for the electrostatic potential ϕ around an arbitrary charge q_0 at the origin

$$\nabla^2 \phi(r) = -\sum_{i=1}^2 \frac{q_i n_i(\infty)}{\epsilon} e^{-q_i \phi(r)/kT} - \frac{q_0}{\epsilon} \delta(r) ,$$

where r is the radial distance from the origin. You should explain the terms in this equation, make clear any assumptions required and explain why the theory is mean-field in nature and why it is self-consistent.

c) State the conditions under which one may write the Debye-Hückel equation

$$\nabla^2 \phi(r) = \frac{\phi(r)}{\lambda_D^2} - \frac{q_0}{\epsilon} \delta(r)$$

and give an expression for λ_D .

d) The solution of the Debye-Hückel equation is given by

$$\phi(r) = \frac{q_0}{4\pi\epsilon r} \mathrm{e}^{-r/\lambda_D} \; .$$

(You are **not** required to show this.)

Carefully explain the physical significance of λ_D .

Define the radial distribution functions, g_{12} and g_{11} , for the two species case and sketch the forms predicted by the Debye-Hückel theory. [5]

[6]

[5]

[2]

[7]

3. a) Explain the meaning of the terms in the master equation for a random walker moving on a one-dimensional lattice with sites labelled by *i*:

$$\frac{\partial p_i(t)}{\partial t} = \nu(p_{i-1}(t) + p_{i+1}(t)) - 2\nu p_i(t) .$$
[4]

b) In the case of a finite system i = 0, ..., L, the reflecting boundary conditions corresponding to zero current at the boundaries are

$$\frac{\partial p_1(t)}{\partial t} = \nu(p_2(t) - p_1(t))$$
$$\frac{\partial p_L(t)}{\partial t} = \nu(p_{L-1}(t) - p_L(t)) .$$

Write down the stationary state condition and show that the stationary state for the finite system is an equilibrium state obeying detailed balance.

c) Now consider an infinite system $i = -\infty, \ldots, +\infty$. Show how in a continuum limit, which you should specify, one obtains the diffusion equation for the probability density of a particle

$$\frac{\partial p(x,t)}{\partial t} = D \frac{\partial^2 p(x,t)}{\partial x^2}$$

You should also define the diffusion constant D in terms of the lattice spacing you use to obtain the continuum limit.

d) Confirm that a solution of the diffusion equation, with initial condition that the particle starts at the origin, is the normalised Gaussian

$$p_G(x,t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right) .$$
[4]

e) A particle diffuses in a fluid. At a certain time t_0 the particle has probability density $p_G(x, t_0)$. Treating the problem as one-dimensional, find and sketch the Gibbs entropy S(t) as a function of time for $t > t_0$. You may use the result

$$\int_{-\infty}^{\infty} \mathrm{d}x \ p_G(x,t) x^2 = 2Dt \ ,$$

and you may ignore any time-independent contributions to S.

f) Finally, consider the diffusive current $J = -D \frac{\partial p_G}{\partial x}$. Sketch this current and identify any maxima and minima. [4]

[5]

[4]

[4]

Invigilators Information

Delivered papers 30 minutes prior to start time.

1. Course information

Course title: Course No:	Statistical Physics PHYS11024		
Academic :	Martin Evans	Contact No:	$0131 \ 650 \ 5294$
Secretary:	Denise Couto	Contact No:	0131 650 7218
School:	School of Physics & Astronomy	Contact No:	68-8261 / 51-7525

2. Exam diet / paper information

Date of exam:	Monday 18 th May, 2020 Time of exam:	14:30 - 16:30
Location of exam:	Patersons Land Room G1	
No of exam papers:	102	

3. Invigilators Instructions

Unissued paper returned:		Approved Calculators :	No
Answer on exam paper:		Open Book Exam:	No
Answer on MCQ :	No	Script book per answer:	See rubric
Used exam papers returned:		Dictionary allowed:	No

4. Stationery Requirement

Stationery: 16 pages x 1.

5. Items to be handed out with exam papers

Calculators (from School):	No	Bar Codes (from School):	Yes	
Graph paper (from School:	No	Bibles (from School):	No	
Formula Sheets (from School):			110	

6. Additional Information

• None

Notes: