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Synopsis
This is a course on statistical physics, which aims to understand the bulk properties of physical
systems in terms of the dynamics of their microscopic constituents. In part (1) we review the
fundamental assumptions of statistical mechanics, focusing on the definition of entropy and its
relation to our information about a system. In part (2) we consider time dependent kinetic theory,
attempting to understand how entropy can display a monotonic arrow of time in the presence
of time-reversible microphysics. In part (3) we consider the statistical mechanics of interacting
particles and develop important approximation schemes. In part (4) we examine phase transitions
and their unifying phenomenology. We study in detail a simple, microscopic model: the Ising
model. We then consider a general theoretical framework known as Landau Theory.

Textbooks
These notes are intended to be self-contained, but there are many excellent textbooks on the
subject. The following are especially recommended for background reading:

• Waldram, J.R. (CUP) The theory of thermodynamics. Very clear on the fundamentals of
the Gibbs approach and the arrow of time.

• Huang, K. (Wiley) Statistical Mechanics A graduate-level text replete with detail, though
perhaps at too high a level for some.

• Huang, K. (CRC Press) Introduction to Statistical Physics, 2nd Edition A simplified version
of Huang’s graduate text, aimed at undergraduates, and with a gain in clarity. Avoid the
first edition, which suffered from misprints.

• Kennett, M. (CUP) Essential Statistical Physics. A good match to the course material,
though missing Debye–Hückel theory.

• Chandler, D. (OUP) Introduction to Modern Statistical Mechanics. Close to the course in
level and content, but aimed at Physical Chemists so has some differences in notation.

• Pathria, R.K. & Beale, P.D. (Academic Press) Statistical Mechanics. Graduate-level text-
book useful for background.

These notes are based in part on material from Martin Evans, who delivered the course prior to
2022/23. There will be some changes with respect to previous years, but most past exam questions
should still be relevant. Note however that the summer exam moved to a format of all compulsory
questions in 2023.
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1 Overview

Statistical physics literally means the physics of random processes, where we deal with physical
properties that cannot be predicted exactly. Quantum mechanics is the prime example of intrinsic
randomness in physics, but the term usually refers to attempts to understand the behaviour of
macroscopic systems in terms of a finite number of microscopic constituents. Thus we
seek to understand the experimental properties of matter in terms of processes occurring at the
atomic level. Many aspects of this problem can be treated purely classically, even though atoms
are quantum objects. The techniques of this field are very general, and can be applied equally
well to broader examples such as traffic flow or economics.

The prime concern of this course will naturally be with thermodynamics, since our microscopic
understanding of heat is as the random motion of atoms or molecules. We can usefully distinguish
two aspects of the subject:

(1) Statistical mechanics, which means attempting to understand classical ther-

modynamics, meaning the properties of matter in thermal equilibrium.

(2) Kinetic theory, meaning the transition between different states, extending classical
thermodynamics to the non-equilibrium case.

The principal challenge in statistical mechanics is entropy. Compared to more straight-
forward macroscopic properties of matter, such as total energy, the question of how to compute
the entropy from microscopic fundamentals turns out to be difficult and subtle. These difficulties
are tied up with the arrow of time. Classical thermodynamics presents us with the second

law, in which entropy for an isolated system can only increase with time. This happens despite
the underlying microphysics being invariant under time reversal, so that a video of any physical
process that is run backwards should represent another valid process.

This paradox emerged well over a century ago, as a result of the work of the Austrian physicist
Ludwig Boltzmann (1844-1906), so surely any difficult questions must have been settled long ago?
But remarkably, there continues to be a vigorous debate over the arrow of time even today. So be
warned: different textbooks approach the subject in different and even inconsistent ways. These
lectures will attempt to expose the issues and suggest a resolution; but you will need to be prepared
to make up your own mind. Achieving clarity here is not aided by the historical baggage that
comes with the subject, which is well-equipped with unhelpful terminology and jargon.

This situation is reminiscent of quantum mechanics, where there is still much discussion
about the process of measurement and the origin of randomness; we will touch on some of these
issues. But the quantum world has also set out a helpful philosophy: shut up and calculate

(David Mermin, 1989). This applies equally well to statistical physics, where worrying about
deep philosophical issues generates a powerful set of tools, which can be used for important
calculations. The latter part of the course therefore concentrates on applications of practical
interest, particularly the thermodynamics of imperfect gases and the important general area of
phase transitions.

1.1 Elements of classical thermodynamics

Equilibrium and reversibility We start by revising some of the key elements of classical
thermodynamics, as set out in JH Thermal Physics. This subject discusses systems in thermal

equilibrium, characterised by a temperature, T . The meaning of this number is that two
systems of the same T will be in equilibrium with each other – i.e. no heat will tend to flow if
they are placed in thermal contact (the zeroth law of thermodynamics). But many physical
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processes of interest do not involve equilibrium, so how do we apply thermodynamics to such
cases? In practice, we can set up non-equilibrium systems that are inhomogeneous mixtures of
different equilibrium systems, e.g. a box of gas where the left and right halves are set at different
temperatures. As we know, such a mixture will settle down to a single temperature, and the
challenge is to follow what happens during this transition. A key tool in doing so is the concept
of a reversible change, in which the system and its surrounding can be brought back to
their starting point. It is usually convenient to imagine such changes proceeding through a set
of intermediate equilibrium stages, i.e. a set of infinitesimal changes. So in our example of a
two-temperature gas, we will let a small amount of heat pass slowly from one side of the box to
the other, so that each side has plenty of time to reach equilibrium at a new temperature before
any more heat flows. This is not to say that all infinitesimal changes will be reversible, but the
concept of a infinitesimal reversible change is a key element of thermodynamics.

Functions of state Beyond the temperature, a physical system will be characterised by other
bulk properties, termed thermodynamic coordinates: e.g. internal energy, pressure and
volume for a gas. An important concept is that these coordinates are functions of state, so
that their values reflect how the system is, rather than history of how it reached that point. This
is almost a circular definition, since what we mean by the state is in practice a vector in thermo-
dynamic state space, where we specify the values of the coordinates, or state variables.
Furthermore, the specification of the state seems to be ambiguous, since not all the coordinates
are independent. In practice, this means that there is an equation of state that relates them
(e.g. the ideal gas law, PV = NkT ).

The power of this approach is shown when we consider the First law of thermodynamics:

dE = d̄Q+ d̄W, (1.1)

where we write d̄Q and d̄W for the heat flow into and work done on the system rather than dQ
and dW , to emphasise that these are not functions of state and so depend on thermodynamic
path. For reversible changes only, we define the change in entropy as

d̄Q = T dS (1.2)

and the work done on the system is d̄W = −P dV . But then we have the first law in a form that
involves only functions of state, so it must be generally true – even when T dS no longer arises
from a reversible heat flow:

dE = T dS − P dV. (1.3)

This relation must reflect the differentiation of a function E(S, V ), so that we can identify terms
via the chain rule:

T =
∂E

∂S

∣

∣

∣

∣

V

; P = − ∂E

∂V

∣

∣

∣

∣

S

. (1.4)

But then we can use the symmetry of 2nd partial derivatives to deduce non-trivial Maxwell

relations between the thermodynamic coordinates, e.g.

∂T

∂V

∣

∣

∣

∣

S

= − ∂P

∂S

∣

∣

∣

∣

V

. (1.5)

More generally we can write the first law as

dE = T dS +
∑

γ

fγ dXγ , (1.6)

where fγ is an applied force and Xγ is a thermodynamic variable (sometimes referred to as a
displacement) conjugate to that force. In a magnetic system the force would be the external
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magnetic field B and the displacement would be the magnetisation M . Note that the forces are
intensive (i.e. don’t depend on the size of the system) but the displacements Xγ are extensive
(i.e. scale linearly with the size of the system).

The second law This fundamental fact can be stated in a number of ways. One is to say that

T dS ≥ d̄Q, (1.7)

with equality in the case of reversible changes. Where a change is irreversible, in effect a fric-

tional process is operating, and in fact we can write the second law as an equality: T dS =
d̄Q+ d̄Wf , where the latter term represents the work done by friction. So if we have a box of gas
that includes a block of metal sliding with a nonzero velocity on the rough base of the box, this
will generate heat in slowing down. The gas will then increase its entropy, exactly as if the block
had been absent but that heat equivalent to its kinetic energy had been transferred reversibly.

One normally becomes convinced about the second law viaClausius’s inequality (Rudolf
Clausius 1822-1888), which is based on a cyclic system that exchanges heat with an external
body at temperature T :

∮

d̄Q

T
≤ 0, (1.8)

where d̄Q is the heat given to the system. This is proved in the following stages. First we consider
an ideal reversible heat engine that takes in heat Q1 and produces heat Q2, yielding work Q1−Q2.
By considering a succession of such engines, it is possible to argue that Q1/Q2 = T1/T2, in terms
of the temperatures of the input and output. Any irreversible engine will be less efficient (work is
lost in friction), so it will have a lower value of Q1/Q2, so Q2/T2 ≥ Q1/T1.

Availability and free energy We can think more generally about the work that may be
extracted from a system. Suppose the system has internal properties P , T etc., but that it is
immersed in an enclosure with in general different properties P0, T0. The surroundings matter: if
P0 = P and T0 = T , then no work can be extracted since we need a pressure difference to drive a
piston and a temperature difference to drive a heat engine. Consider the first law in the following
slightly modified form:

d̄W = −dE + d̄Q, (1.9)

where d̄W is the work done by the system (the opposite of the usual convention) and d̄Q is the
heat supplied to the system. But d̄W will not be useful if it is all expended in pushing back the
surroundings. Therefore, we must subtract this environmental term to obtain d̄Wa, the available
work:

d̄Wa = −dE + d̄Q− P0dV, (1.10)

If heat is supplied from the surroundings in a manner that is reversible as far as the surroundings
are concerned, then d̄Q = −T0dS0. But by the second law, the total entropy of the universe can
only increase, so dS + dS0 ≥ 0, implying

d̄Wa ≤ −dE + T0dS − P0dV. (1.11)

We can express this neatly by defining the Availability, A:

d̄Wa ≤ −dA; A ≡ E − T0S + P0V. (1.12)

Now consider the important case where a system is allowed to come into equilibrium with its
surroundings, and where we extract no work. If d̄Wa = 0, then dA ≤ 0, and the system will evolve
so as to minimise the availability. As equilibrium is approached, A approaches the Gibbs Free

Energy:
G ≡ E − TS + PV, (1.13)
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which is therefore minimised in equilibrium. The derivation through the availability justifies the
‘free energy’ terminology. If we consider a system of fixed volume, which is often a more realistic
case, the environmental work term −P0dV in equation (1.11) is absent; thus we would define
the availability as just A ≡ E − T0S, so that the quantity to be minimised in this case is the
Helmholtz Free Energy:

F ≡ E − TS. (1.14)

This represents a trade-off between minimising the internal energy and maximising the entropy
(internal disorder) of a system. The free energy is a key quantity that will feature frequently
throughout this course.

The free energy has the virtue that it changes the natural variables of the first law from
S and V to T and V :

dF = −S dT − P dV. (1.15)

This shows directly and simply that F is stationary for changes at constant temperature and
pressure. It also shows that the free energy gives a practical means of computing the entropy and
pressure:

⇒ S = − ∂F

∂T

∣

∣

∣

∣

V

P = − ∂F

∂V

∣

∣

∣

∣

T

. (1.16)

We will take advantage of these relations in what follows.

The chemical potential All the above applies for closed systems that can exchange only
heat with their surroundings. But one can generalise further to include the effect on the internal
energy of changing the number of particles or indeed the number of each species of particle:

dE = T dS +
∑

γ

fγdXγ +
∑

α

µα dNα, (1.17)

which defines the chemical potential µα as the change in internal energy by adding a particle
of species α to the system.

Thermodynamic potentials Using the above ingredients, we can generate useful thermody-
namic quantities that are natural functions of different sets of variables;

(T, V,N) F = E − TS Helmholtz Free Energy

(S, P,N) H = E − (−PV ) = E + PV Enthalpy

(T, P,N) G = F − (−PV ) = E − TS + PV Gibbs Free Energy

(T, V, µ) Φ = F −Nµ = E − TS − µN Grand Potential

(1.18)

All these thermodynamic potentials provide different minimisation principles, based on the first
law. For example, dG = −S dT +V dP +µdN , so we can see that this quantity will be stationary
under changes at constant pressure (and T & N), in the same way as F is minimised for changes
at constant volume.

Gibbs-Duhem relation With all these different thermodynamic coordinates in play, we can
ask whether they are independent beyond the constraints set by the first law and any equation of
state. The answer is no. This can be demonstrated by focusing on variable that are extensive,
i.e. proportional to the size of the system. For example, the energy and all its natural variables
are extensive. Increasing the size of the system by a factor b therefore gives

bE(S, {Xγ}, {Nα}) = E(bS, {bXγ}, {bNα}) . (1.19)
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Now differentiate both sides with respect to b and then set b = 1:

E(S, {Xγ}, {Nα}) =
d

db
E(bS, {bXγ}, {bNα})

∣

∣

∣

∣

b=1

(1.20)

=
∂E

∂S
S + . . . (1.21)

= TS +
∑

γ

fγXγ +
∑

α

µαNα , (1.22)

where we have used (1.17) to identify the partial derivatives. Differentiating this relation gives

dE = T dS + S dT +
∑

γ

[fγdXγ +Xγdfγ ] +
∑

α

[µαdNα +Nαdµα] , (1.23)

and subtracting the first law yields

0 = S dT +
∑

γ

Xγdfγ +
∑

α

Nαdµα . (1.24)

This is known as the Gibbs-Duhem relation and implies that the intensive variables T, {fγ}
and {µα} are not all independent. For example, in a PV T system with one species, only two of
T , P , µ are independent since the Gibbs-Duhem relation becomes

0 = S dT − V dP +N dµ , (1.25)

i.e. a change in T , P implies a specified change in µ (see tutorial sheet).

Mathematical aside (non-examinable) What we have done here is to define another thermo-
dynamic function through what is known as a Legendre transform. More generally consider
the chain rule applied to a function f({xi}), i = 1, . . . , k:

df =
k
∑

i=1

∂f

∂xi
dxi =

k
∑

i=1

ui dxi . (1.26)

Then we can let g = f −∑k
i=r+1 uixi and

dg =

r
∑

i=1

uidxi −
k
∑

i=r+1

xidui . (1.27)

g is a natural function of x1 . . . xr, ur+1 . . . uk and is the Legendre Transform of f . The idea
is that the function g should contain the same information as f . As a simple example, consider a
function of one variable, f(x), where the transform is g(u) = f(x) − ux. Geometrically, g is the
intercept of a tangent line on the y axis, as a function of the slope. So our assertion is that the slope
as a function of intercept is enough to reconstruct the curve f(x). A more general example of the
same philosophy of changing variables from coordinate-like quantities to velocity-like quantities is
in dynamics. Here, we know that the equations of motion for a set of coordinates q can be derived
either from the Lagrangian L(q, q̇), or the Hamiltonian H(q, p).

2 Microstates and entropy

The challenge of statistical mechanics is to compute these thermodynamic state functions from
first principles. We are dealing with quantities that are experimentally measurable properties of
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macroscopic materials, and so the thermodynamic state under study is a macrostate. But we
know that there must be much underlying complexity that is hidden in classical thermodynamics.
For example, in an ideal gas the internal energy, E, is the sum of the kinetic energies of the N
particles that make up the gas. The exact description of the the system is via its microstate,
which for a classical system means specifying the positions and velocities of all the constituent
particles.

Boltzmann and entropy But if the origin of the macroscopic energy is clear enough, the
microscopic origin of entropy is much less so. Boltzmann’s great insight was to realise that there
would be a large number, Ω, of different microstates that correspond to a given macrostate,
specified by a few global numbers such as total energy, E. Boltzmann further assumed that a
system will be equally likely to inhabit any of the possible microstates – a critical assumption,
which we will examine in detail. If this is true, then the relative probability of being found in
two different macrostates (with different entropies, in particular), will be in the ratios of their
statistical weight or multiplicity, Ω:

p(S1)/p(S2) = Ω1/Ω2. (2.1)

The second law will then arise statistically if Ω is larger for macrostates of larger entropy –
i.e. S will probably increase if the system is not placed in an initial state of maximum entropy,
although it is apparently not guaranteed to do so.

To make this idea definite, we need a relation between S and Ω; but this is not straightforward
to obtain. The classical or experimental entropy is something that we know how to calculate
for substances that are in thermal equilibrium and are macroscopic: composed of very
many particles so that a property like pressure is well defined. For a system that is out of
equilibrium, or which contains just a few particles, it is less clear what would be meant by the
classical entropy. Boltzmann suggested that this dilemma could be solved by proceeding in the
opposite direction and defining entropy in terms of the statistical weight:

S = k lnΩ, (2.2)

a formula that appears on his gravestone. k is Boltzmann’s constant, with SI value 1.3806×
10−23; we will sometimes write it as kB, whenever there is a risk of confusion with wavenumber.

−→
remove partition

Figure 1: Joule expansion: a gas is prepared in an initial macrostate with all the particles in the left hand
region of the container. Then the partition is removed. As time goes by the particles become evenly spread
out through the container. Macroscopically, this process is irreversible and there is an associated increase
of entropy.

We should be clear about the need to prove that this microscopic formula is consistent with
the macroscopic one. One immediately attractive property of Boltzmann’s definition is that it
is extensive (proportional to amount of material). If we make a composite system by adding
together independent subsystems, the entropies should add – which they do in this case, because
the Ω’s multiply. As a more specific example, Boltzmann’s formula is often motivated with the
example of free expansion of an ideal gas released from one half of a box by removing a partition
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(Joule expansion). Since dE = TdS − PdV , dE = 0, and P = kTN/V with T constant,
∆S = Nk∆ lnV = Nk ln 2 in this case. If the microstate is simplified to a choice of L or R,
Ω = N !/([N/2]!)2, which via Stirling’s approximation gives the Boltzmann ∆S for large
N : lnΩ ≃ N lnN − 2(N/2) ln(N/2) = N ln 2 (at least, for distinguishable particles; we discuss
below how to deal with identical particles, although this does not affect the result for ∆S in this
case).

A general check on this approach will be performed in detail in section 4, where we show
that the classical and statistical entropies are the same for large systems in thermal equilibrium.
But for systems of a few particles, the statistical approach and the classical one are not so easily
reconciled.

Stirling’s approximation The approximate expression for N ! will be needed often; for in-
terest, it arises as follows. ln(N !) =

∑N
i=1 ln(i), and it is easy to see from a sketch that this

histogram is close to
∫ N
1 lnx dx = N lnN − N + 1. An even more accurate approximation is

ln(N !) ≃ N lnN −N + ln(
√
2πN); but for large enough N , the simple form ln(N !) ≃ N lnN is

adequate. For N = 100, it is too high by a factor 1.27; but for macroscopic applications N ∼ 1024,
and then the error in adopting ln(N !) ≃ N lnN is at the % level.

Randomisation The Boltzmann entropy rests on the idea that there is some process that will
scramble the microstates among the permissible values given macrostate constraints. This is
readily seen to be reasonable when a system can interact with a second one. Heat is transferred
to the first system (with dS = dQ/T if the transfer is performed reversibly), and our picture
of heat is indeed one of randomisation: the microstate will change in some way, over which we
lack control or knowledge. The case of an isolated system is however more difficult – as we
will discuss in detail below. Dynamics can accomplish some of what Boltzmann needs, since the
microstate can change with time depending on how it is specified: for example, a particle with
a given position and velocity will change its position with time, and eventually will change its
velocity if it undergoes collisions. But as we will see, it not obvious that causal dynamics alone
can have the same effect as randomisation of the microstate. Nevertheless, it is common to assume
that the process by which microstates change satisfies two general properties. Firstly there is the
ergodic hypothesis, which states that the system will evolve so that eventually it explores
all the microstates that are accessible (allowed by macroscopic constraints – e.g. fixed total
energy in the case of an isolated system). A stronger assumption is that all accessible microstates
are occupied with equal probability (the pompous-sounding principle of equal a priori

probability – PEAPP). Both of these propositions do indeed apply in some circumstances,
but they are insufficiently general. PEAPP might seem reasonable as a description of the system
averaged over a long period of time, but what about evolution away from a given initial state? For
example, transfer dQ to one end of a box of gas, rather than distributing the heat homogeneously,
and you will populate only a subset of the microstates, at least initially. Furthermore, PEAPP
certainly does not apply for systems in full thermal equilibrium, where we will see that there are
extreme microstates that have a non-zero but small probability of being occupied via thermal
fluctuations.

2.1 Gibbs entropy

We therefore need to consider the general situation in which microstates are occupied with different
probabilities. In this case, Boltzmann’s expression for the entropy generalises to the Gibbs

entropy (which, following Stigler’s law, was first written down by Boltzmann). The Gibbs
entropy is derived below in section 3; for now, we simply quote the expression and consider some
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of its implications:

S = −k
∑

i

pi ln pi, (2.3)

where pi is the probability that the system is in the ith microstate. This clearly yields the original
Boltzmann expression under PEAPP, when pi = 1/Ω or zero (because ln pi is then a constant that
comes outside the sum, and

∑

i pi = 1). If the value of 0 ln(0) bothers you, consider ln(x)/x−1

and use l’Hôpital’s rule, where the limit of f/g is f ′/g′ when either f and g are both zero or both
divergent. Thus, with f = lnx and g = 1/x, limx→0 x lnx = 0. As with the original Boltzmann
expression we note that the microscopic definition of entropy is S = 0 when the microstate is
specified exactly. We can therefore see at the outset that the statistical definition of the entropy
is a little odd: it is a property of the ensemble of possible microstates and is concerned with all
the possible states for the system, rather than being a property of the state it actually occupies
(unlike other extensive quantities, such as internal energy). This is also true for the original
Boltzmann S = k lnΩ, but the Gibbs form makes this point more explicit.

Additivity of the Gibbs entropy Given a system composed of many independent
subsystems, the total Gibbs entropy is the sum of the Gibbs entropies for the subsystems. The
probability of being in an overall microstate is p1(n1)×p2(n2)×. . . , where n1 labels the microstate
of system 1 etc., so

SG/k = −
∑

n1

∑

n2

∑

...

p1(n1)p2(n2) . . . (ln p1 + ln p2 + . . . ). (2.4)

Since the p’s sum to unity, we get

SG/k = −
∑

n1

p1(n1) ln p1(n1)−
∑

n2

p2(n2) ln p2(n2)− . . . (2.5)

Thus the Gibbs definition of entropy is extensive, as we would require if it is to correspond to
the classical entropy.

Advantages of the Gibbs entropy The Gibbs entropy has several advantages over the Boltz-
mann entropy:

(1) It defines entropy directly from the distribution of microstates, thus avoiding the identifica-
tion of a macrostate.

(2) It defines entropy for systems that are not large (e.g. systems with only one or two states).
This is very important since it helps one to ‘divide and conquer’ by breaking up a system
into small subsystems.

(3) It defines entropy for systems that are not in thermal equilibrium but are evolving with time
and perhaps undergoing some irreversible process.

Bayesian view What exactly do we mean by probability here?. Take a given classical system:
it is undoubtedly in some microstate, j, so surely pj = 1 and all other p’s are zero, meaning that
S = 0 at all times? But the point is that we do not know what j is, and the probabilities represent
the fact that our knowledge is restricted to just the range of possibilities. This is exactly what is
meant by probability in the Bayesian framework: a degree of belief, rather than anything to
do with observed frequencies of actual events. In this view, entropy is not an objective property of
the system under study, unlike e.g. energy, but is a subjective combination of the system and
of our detailed knowledge about it. This is not an easy proposition to accept, since one may with
justice feel that physical systems ought to obey fundamental laws in a way that is independent of
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observers: an ice cube will melt, whether or not we look at it. We will try to answer this objection
in the following sections.

Frequentist view We can compare this with the more empirical approach of carrying out N
trials of some experiment, where Ni of these have the outcome labelled i. Then we can define
the probability in terms of relative frequencies:

pi ≡ lim
N→∞

Ni/N. (2.6)

This situation is consistent with the Bayesian view: if we toss a coin a billion times and get 500
million heads, that certainly gives a very strong basis for the belief that p = 0.5 for getting heads
at the next toss. But the Bayesian framework is more general: the probability of a fair coin toss
coming out as heads is 0.5, and we can state this belief before we ever toss it. As we will see below,
the frequentist point of view is useful as a practical means of calculation in statistical mechanics.

Disorder and hidden information It is interesting to compare this with the treatment in
Thermal Physics. This presented the common terminology in which entropy is equated to dis-

order: the more disordered a macrostate is, the higher the statistical weight and the higher the
entropy. For example: water has a higher entropy than ice because the crystal lattice restricts the
spatial positions of water molecules, but the molecules have many more possible locations in the
liquid phase. This is consistent with the message of the Gibbs expression: S = 0 when the system
is in a single perfectly known microstate, but S rises if we lose knowledge of exactly which mi-
crostate is occupied and have to assign a probability to each possible microstate. Another fruitful
way of describing this situation is to say that entropy is a measure of hidden information

(sometimes ‘missing information’): a system will occupy some specific microstate, but the less
certain we are about what this is, the more the system has in practice become randomised, the
greater the disorder, and the higher the entropy.

2.2 Shannon’s information entropy

In 1948, Claude Shannon published a radical article entitled “A Mathematical Theory of Com-
munication”, in which he established a result in the theory of information that turns out to be of
great importance in understanding statistical thermodynamics.

Suppose we have a message that consists of a stream of different characters: how much
computer memory is required to store it? The lazy default is to use ascii coding, which assigns
a distinct pattern of 8 bits to each character, using 8N bits for a message of N characters. But
such text can usually be stored much more efficiently than this, by exploiting the fact that some
characters are rare and some common, and assigning codes with the fewest bits to the common
characters. Further gains are possible if there is repetition of characters: for 100 consecutive
occurrences of ‘A’, we just need to send codes for ‘A’ and ‘100’. In general, consider a message
of N characters, and suppose there are m different characters, each occurring Ni times, with i =
1, . . . ,m. The number of possible distinct messages of this sort is given by the combinatorial

question of how to choose N1, N2 etc. from N . The number of possible combinations is

W =
N !

∏m
i=1Ni!

, (2.7)

so we just need to store a number up to a maximum of W to specify which message was received
(assuming the Ni are fixed in advance). This requires information – defined as the number
of binary digits (bits) – equal to I = log2W = lnW/ ln 2. For large N we can use Stirling’s

approximation:
ln(N !) ≃ N lnN, (2.8)
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so that the number of messages is

lnW = N lnN −
m
∑

i=1

Ni lnNi =
m
∑

i=1

(Ni lnN −Ni lnNi) = −N
m
∑

i=1

pi ln pi, (2.9)

where pi = Ni/N is the probability of getting the ith character. The same relation applies with
base-2 logs, so that the mean information per character is

I/N = −
m
∑

i=1

pi log2 pi. (2.10)

Von Neumann advised Shannon to call this the entropy, “since no-one knows what entropy
really is”.

A sanity check on the Shannon formula is provided by the simplest example of only two
characters, one of which is rare, p2 ≪ 1. The information in the message is then just the lengths
of the unbroken runs of character 1, punctuated by a single instance of character 2. The typical
run length will be 1/p2 so we expect to use log2(1/p2) bits for each run length, of which there
will be Np2 in the message. Thus the mean number of bits needed per character is −p2 log2 p2,
which is Shannon’s expression since p1 log2 p1 → 0 as p1 → 1. We can see that the Shannon
formula states that one should be able to code so that on average log2(1/pi) bits are assigned to
a character with probability pi. Rare characters are surprising, and their arrival constitutes much
more information than a common character. This all really works. These lecture notes contain
approximately 338,000 characters, or 331KB when stored as ascii. But the file size declines to
89KB when passed through the gzip algorithm, giving an average of 2.1 bits per character (cf.
4.7 bits if a to z were all used with equal frequency).

It is important to be clear about what the Shannon entropy represents. It does not measure
the information in any given message: if we knew in advance what was coming, we could devise a
maximally efficient coding scheme where that particular message was coded with just one bit. So
the Shannon entropy is the ‘information imprecision’ allowing for all the messages that you might

have received – the amount of storage you need to set aside to cope with any possible message
given the frequencies of the various letters. It can therefore be viewed as a measure of hidden
information, analogous to the physical case of the Gibbs entropy; the hidden information here
being which of the many possible messages you are actually about to receive. The fact that the two
entropies have the same functional form is therefore more than a coincidence, and the Shannon
form illuminates the interpretation of the Gibbs entropy.
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Figure 2: The idea of an ensemble: the ‘super-system’ is divided up into a large number M of systems
e.g. the black square is one system.
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3 Ensembles in statistical mechanics

To make use of the appearance of probabilities in the Gibbs entropy, it is convenient to take a
frequentist approach and introduce the idea of an ensemble. This approach was pioneered by
Maxwell, who proposed that we should consider a very large number of copies, M , of the same
macroscopic system, but where each copy may occupy a different microstate. In other words, we
are making a realisation of the random process governed by the probabilities pi of occupying
a given microstate – in effect, tossing some multi-sided coin. This picture aligns with the idea
of thermal equilibrium, in which a system is constantly being rearranged as a result of external
random influences. Then the members of the ensemble might represent a single system seen at
different times – although the concept is more general than this.

In any case, using the frequency definition of probability, the probability of microstate i is
related to the number of systems in microstate i divided by M

pi = lim
M→∞

mi

M
. (3.1)

Statistical averages over the probabilities of different microstates can then be carried out in a
frequentist manner by simple averaging over members of the ensemble. The macroscopic energy
can be thought of as the average over the energy of the energy of each member of the ensemble
(each of which has a definite microstate):

〈E〉 ≡ Ē =
∑

i

piEi. (3.2)

We will use these notations interchangeably to denote the ensemble average of the energy –
which in general will be different from the energy of any given member of the ensemble. But note
that entropy cannot be viewed in this way, since S = 0 for any specific microstate.

One can think of this ensemble of systems as a single super-system (see Fig. 2). Practically
one can think of a block of material: each system being a small piece of the whole block. Each
of the many pieces can still contain Avogadro size numbers of atoms so we can have both the
number M of systems large and the number N of particles in each system large.

Deriving the Gibbs entropy Considering this general ensemble allows the form of the Gibbs
entropy to be justified. Consider an ensemble of N versions of a system, with ni in microstate
i. The number of ways of arranging this ‘multiverse’ of systems is Ω = N !/

∏

i ni! (assuming
two systems in the same microstate to be indistinguishable). Taking logs and using Stirling’s
approximation, S/k = lnΩ = N lnN −∑i ni lnni = −∑i ni ln(ni/N). Dividing by N to get the
entropy per system, we get −∑i pi ln pi, where pi = ni/N .

The key question is whether the different (sub-)systems can interact with each other, and
we now distinguish three different kinds of ensembles (with unfortunately rather obscure and
unhelpful names).

3.1 Canonical ensemble

The simplest ensemble (which might be better termed the ‘thermal equilibrium ensemble’) arises
when the members of the ensemble can all exchange heat and come into mutual thermal equilib-
rium. One can think of this as a single member of the ensemble coming into equilibrium with a
much larger heat bath, which is the source of randomness. Let heat dQ be transferred reversibly
to the chosen system, moving it from some initial microstate to a new one and changing its total
energy from E to E + dQ. Since there is a definite microstate in both cases, there is no change
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in system entropy; but the heat bath suffers dS = −dQ/T , i.e. a change in internal degrees of
freedom of d lnΩ = dS/k = −dE/kT , according to Boltzmann. If we regard the statistical weight
Ω as being proportional to probability, we deduce the Boltzmann factor for the system being
in a given microstate:

p(Ei) ∝ exp(−Ei/kT ). (3.3)

This can be normalized by summing over all states to deduce the partition function, Z:

p(Ei) =
exp(−Ei/kT )

Z
; Z =

∑

i

exp(−Ei/kT ). (3.4)

The partition function turns out to be an object of particular practical importance in thermody-
namic calculations.

3.2 Grand canonical ensemble

A simple extension of the canonical ensemble (with an even less useful name) allows also exchange
of particles with the heat bath, with a chemical potential (energy per particle transferred) of µ.
The first law is dE = T dS + µdN ; applying this to the bath with d lnΩ = dS/k once again, the
statistical weight for the (E,N) microstate becomes the Gibbs factor,

p(Ei, Ni) ∝ exp(−(Ei − µNi)/kT ). (3.5)

And in analogy with what was done for the canonical ensemble, normalization involves the grand
partition function, ZG:

p(Ei, Ni) =
exp(−(Ei − µNi)/kT )

ZG

; ZG =
∑

i

exp(−(Ei − µNi)/kT ). (3.6)

3.3 Microcanonical ensemble

Here the individual members are isolated systems. This is a more difficult case: there is no
interaction leading to thermal equilibrium with an external heat bath, and so there is no explicit
source of randomness. And yet isolated systems generally do settle into an internal thermal
equilibrium. Understanding how this happens is at the heart of the second law. Because of the
isolation, the total energy is fixed; if the microstates were non-degenerate, then all members of
this ensemble would have to be identical. The microcanonical ensemble is then only interesting if
there exists a number, N , of microstates with the same energy – in which case we would appeal
to PEAPP to say pi = 1/N for all these states. To cover the non-degenerate case, it is common
to define an ensemble where the system energy lies in some small range ∆E, and later taking
the limit of ∆E → 0. But all of this is obscure in several ways. It sounds like we need some
random external influence to cause the members of the ensemble to jump between the allowed
microstates, but external contact should lead to full thermal equilibrium as in the Canonical
ensemble. As mentioned earlier, Boltzmann’s vision was that internal dynamical evolution (in
particular, collisions between particles) would lead a system to explore different microstates and
so possibly result in PEAPP (at least, after a sufficiently long time has elapsed – though certainly
this will not hold early in the evolution). But we will see that all of this is more complicated than
expected when examined in detail.
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3.4 The maximum entropy approach

An illuminating alternative approach to obtaining the Boltzmann and Gibbs factors is to argue
that entropy should be maximised. This follows from the free energy, where we know that F =
E − TS should reach a minimum in equilibrium (at constant volume). So if we consider systems
of given energy, their thermal equilibrium must correspond to maximising their entropy. This is
an example of the general idea of constrained maximum entropy:

{pi} should be such as to maximise S subject to constraints imposed by the
available information.

We will proceed to apply this principle by maximising the Gibbs entropy, −k∑i pi ln pi, although
we need to be clear that we have yet to prove that this is a good substitute for the classical
entropy; this is done in the following section.

Constraints: These are intended to be classical values, so in the statistical context they will
typically take the form of expectation values of some observables, e.g. Ē =

∑

iEipi = const.
The general problem is as follows: maximise f(xi) subject to the constraint g(xi) = const, where
xi are various coordinates (the microstate probabilities), f is the function of prime interest (the
entropy), and g is a constraint function (which here has the simple form of a linear sum over the
coordinates). In fact, there will be more than one constraint: in addition to the value of Ē, the
probabilities sum to unity:

∑

i

pi = 1 . (3.7)

Conditional optimisations of this form can be performed using the method of Lagrange

multipliers or undetermined multipliers. We want f to be stationary for changes in
the xi that move within the level surface of g:

df =
∑

i=1

∂f

∂xi
dxi = ∇f · dx = 0 , (3.8)

where ∇g · dx = 0. These two conditions can be satisfied by the single criterion

∇(f − λg) = 0, (3.9)

where λ is a number that is unknown at this stage. Additional constraints are added in the same
way: if we also had h(xi) = const, we would solve ∇(f − λ1g − λ2h) = 0 etc.

Mathematical aside (non-examinable) The justification for this procedure can be seen ge-
ometrically. If dx is in the level surface of g then ∇g ·dx is zero by definition. Thus ∇(f −λg) ·dx
is ∇f ·dx and setting this to zero finds the conditional stationary point of f . But if ∇(f −λg) = 0
then we must have ∇(f −λg) · dx = 0 for any dx, even allowing a component parallel to ∇g. But
we can arrange for the effect of this component to vanish if we set λ = (∇f ·∇g)/|∇g|2. We don’t
yet know what this number is, but we know it exists and so the problem of finding a conditional
zero gradient for f can be replaced by the simpler one in which the unconditional gradient of
f − λg vanishes.

Example 1 First suppose there are no given constraints other than
∑

i pi = 1. Then we need
to make the function h stationary, where

h = −k
∑

j

pj ln pj − λ
∑

j

pj . (3.10)
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Then our conditions become

∂h

∂pi
= −k [ln pi + 1]− λ = 0 ⇒ pi = exp[−1− λ/k] , (3.11)

making pi constant for all i. But the normalisation constraint requires

∑

i

pi =M exp[−1− λ/k] = 1 ⇒ pi =
1

M
, (3.12)

where there are M distinct microstates. Thus the maximum entropy state in this case of no
constraints is that of maximum ignorance, in which all allowed states are considered equally
likely. This is the principle of equal a priori probability (PEAPP). Note that this case covers that
of the microcanonical ensemble, where the probabilities cover a range of microstates that have a
fixed energy, and so what we have done in effect is maximise the entropy subject to exactly fixed
energy.

Example 2 Now suppose we have two constraints in the form of linear averages over quantities
y and z that are specified for each state. We now require

∂h

∂pi
= 0 , where h = −k

∑

j

pj ln pj − λ
∑

j

pj − λy
∑

j

yjpj − λz
∑

j

zjpj . (3.13)

This gives −k(ln pi + 1)− λ− λyyi − λzzi = 0, so that

pi = exp(−1− λ/k) exp(−[λyyi + λzzi]/k) . (3.14)

The first factor, exp(−1 − λ/k) is a constant (independent of i) and as before can be eliminated
via normalization,

∑

i pi = 1:

pi =
1

Z
exp(−[λyyi + λzzi]/k) where Z =

∑

i

exp(−[λyyi + λzzi]/k) . (3.15)

Note also that

∂2h

∂p2i
= − k

pi
< 0 , as pi > 0 , (3.16)

so it is indeed a maximum.

The last example should look familiar. If we say that yi is the energy of a microstate, Ei,
and zi is the corresponding number of particles, Ni, then the maximum-entropy solution for the
microstate probabilities under the constraint that Ē and N̄ are both known is just the Gibbs
factor, and we can identify the Lagrange multipliers as

λy =
1

T
; λz =

µ

T
. (3.17)

Similarly, the simpler problem in which there is only one constraint,
∑

i piyi = const follows the
two-constraint solution, but neglecting the term involving λz. Then we get

pi =
1

Z
exp(−λyyi/k) where Z =

∑

i

exp(−λyyi/k) ; (3.18)

and if we choose y to be the energy, then the maximum-entropy solution with fixed Ē is the
Boltzmann factor, with λy = 1/T .
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In short, by maximising the Gibbs entropy subject to various constraints we have derived the
standard ensembles of statistical mechanics. The Lagrange multipliers that enter into the max-
imisation procedure have been identified with intensive thermodynamics variables: temperature
and chemical potential.

In the tutorials, you are invited to show how two systems in equilibrium under exchange of
a certain quantity should share the same value of the Lagrange multiplier corresponding to that
quantity. For example systems in equilibrium with respect to energy exchange should share the
same value of λE i.e. the same temperature. This recovers the zeroth Law of thermodynamics.
Similarly systems in equilibrium with respect to particle exchange should share the same value of
λN i.e. the same chemical potential.

Alternative extremisation principles Recall that our original programme was to maximise
S subject to constraints. If the constraint is E (Canonical ensemble) then we ended up extremising

h = S − λ1
∑

i

pi − λEE , (3.19)

which is equivalent to maximising

(i) h/λE = −F − λ1/λE
∑

i pi i.e. minimising F subject to the constraint of probability con-
servation (taking λE = 1/T , as above).

(ii) h/λE = −E +1/λES − λ1/λE
∑

i pi i.e. minimising E subject to the constraint of constant
S (i.e. we would have a Lagrange multiplier λS = 1/λE)

Thus the different extremisation principles (maximisation of entropy, minimisation of energy,
minimisation of free energy etc.) are all intimately related and which one applies is determined
by which ensemble one is working in, i.e. which constraints apply and which variables are held
fixed.

4 Relation to classical thermodynamics

The above discussion has focused on ensemble average quantities, such as the mean energy, E.
For any real system in thermal equilibrium, the exact energy will differ from E. However, later on
we will calculate the size of these fluctuations and show that they become vanishingly small (in
fractional terms) as the size of the system tends to infinity. Therefore, in this limit of very large
systems (which are the subject of classical experimental thermodynamics), we should expect to
be able to use E and E interchangeably. Our remaining task is then to check that the ensemble-
average statistical quantities do behave in the same way as the corresponding classical quantities,
following which we derive some powerful relations that allow the statistical results to be exploited.

Consider first the canonical ensemble. The microscopic definition of the ensemble average
energy of a system is

E =
∑

i

piEi . (4.1)

Now, we know from quantum mechanics that changing the volume of the ‘box’ for example must
change the energy levels. It follows that a change a volume-like coordinate dXγ must give rise to a
change in the mean energy. Therefore a change in the mean energy has two types of contribution,
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one from changes in pi and one from changes in Ei due to Xγ

dE =
∑

i

∂E

∂pi
dpi +

∑

γ

∂E

∂Xγ
dXγ (4.2)

=
∑

i

Ei dpi +
∑

γ

∂E

∂Xγ
dXγ . (4.3)

We now consider a small change in the entropy. Since S = −k∑i pi ln pi is just a function of the
probabilities pi, a change in S comes from a change in the probability distribution, and this may
be expressed as

dS =
∑

i

∂S

∂pi
dpi (4.4)

= −k
∑

i

[ln pi + 1] dpi (4.5)

= −k
∑

i

ln pi dpi (4.6)

where since
∑

i dpi = 0 (conservation of probability). Using the Boltzmann factor for pi, this
becomes

dS =
1

T

∑

i

Eidpi , (4.7)

implying

dE = T dS +
∑

γ

∂E

∂Xγ
dXγ . (4.8)

Similarly, if we are dealing with systems where particle number can vary, we would use the
Gibbs factor for pi. In this case, we then have

dS =
1

T

∑

i

(Ei − µNi)dpi , (4.9)

implying

dE = T dS + µdN̄ +
∑

γ

∂E

∂Xγ
dXγ (4.10)

(because dN̄ =
∑

iNidpi).

This equation has the same form as the classical first law, provided we make the following
identification of the thermodynamic ‘generalised forces’:

fγ =
∂E

∂Xγ
. (4.11)

For example the pressure is given by

−P =
∂E

∂V
=
∑

i

pi
∂Ei

∂V
. (4.12)

In short, the statistical quantity Ē and the Gibbs entropy can be used consistently as proxies for
the classical energy and entropy, and we assume hereafter that we can use them interchangeably for
macroscopic systems. But the classical entropy refers specifically to a thermal equilibrium state,
whereas Gibbs automatically allows a generalisation to a non-equilibrium situation in which the
microstate probabilities are evolving.
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4.1 The bridge equation

We can now introduce one of the central results of statistical mechanics. Consider first the
canonical ensemble, where we recall the Boltzmann distribution in the form involving the partition
function:

pi =
1

Z
exp(−Ei/kT ) where Z =

∑

i

exp(−Ei/kT ) (4.13)

Substituting this form for pi into the expression for the Gibbs entropy gives

S = −k
∑

i

pi [−Ei/kT − lnZ] =
E

T
+ k lnZ . (4.14)

Or, recalling the Helmholtz free energy F = E − TS, we may rewrite the above equation as

F = −kT lnZ (4.15)

This remarkable result is sometimes referred to as the bridge equation, as it provides a bridge
between the microscopic and macroscopic descriptions of a system. The Helmholtz free energy,
which is a potential that we introduced on macroscopic grounds, is obtained by using the canonical
partition function, which comes from summing over microscopic states.

Similarly, for systems with variable particle number, we follow the same argument but now
using the Gibbs factor instead of Boltzmann:

S = −k
∑

i

pi [−(Ei + µNi)/kT − lnZG] =
E

T
− µN

T
+ k lnZG, (4.16)

where the grand partition function is ZG =
∑

i exp[−(Ei + µNi)/kT )]. Hence the grand

potential, Φ = E − TS − µN , may be expressed as

Φ = −kT lnZG (4.17)

Again we have a remarkable bridge equation connecting the microscopic and macroscopic
descriptions of an open system.

The significance of these results is colossal, because the free energy and the grand potential
are the routes by which we can calculate other thermodynamic quantities of importance:

S = − ∂F

∂T

∣

∣

∣

∣

V

P = − ∂F

∂V

∣

∣

∣

∣

T

. (4.18)

Thus the evaluation of partition functions turns out to be one of the most important practical
tasks in statistical thermodynamics. We can sum up this this section by writing a selection of
relations based on partition functions, and contrasting them with their direct definitions in terms
of microstate probabilities:

Ē =
∑

i piEi = − ∂
∂β

∣

∣

∣

V
lnZ

S = −k∑i pi ln pi =
∂
∂T

∣

∣

V
kT lnZ

P = −∑i pi
dEi

dV = ∂
∂V

∣

∣

T
kT lnZ

N̄ =
∑

i piNi = ∂
∂µ

∣

∣

∣

T,V
kT lnZG,

(4.19)

where we have used the common notation

β ≡ 1

kT
. (4.20)

22



5 Counting states

So far, we have assumed that different microstates can be identified without being very specific
about how this is to be accomplished. We first give a classical discussion, then deal with the
quantum case.

q

p δ

δp

q

Figure 3: A one-dimensional phase space divided into cells of side δq, δp.

5.1 Classical particles and phase space

The classical Hamiltonian is

H = E =
∑

i

|pi|2
2m

+ U
({

q
})

, (5.1)

where i labels the particles, pi is the momentum and qi is the position vector of particle i. Here, pi
and qi are the conjugate or canonical coordinates of Lagrangian or Hamiltonian dynamics.
Thus, classically the state of a particle i is specified by the six numbers px, py, pz, qx, qy, qz. In
principle, it seems that these need to be specified exactly, but even at the classical level this feels
unrealistic. Instead, for a given particle, we consider cells defined by a finite range in position
and momentum, δqx δpx etc. – see Fig. 3 for a one-dimensional illustration. Call the ‘volume’ of
a cell (in the 6 dimensional space)

h3 = (δp)3(δq)3 . (5.2)

This 6D space is known as phase space, and we can count a finite number of states by inte-
grating over a phase-space volume:

Nstates =
1

h3

∫

d3q d3p. (5.3)

The fact that h appears to be arbitrary is clearly unsatisfactory, but:

• Classically one can interpret the cells as the uncertainty in any physical measurement (this
was the view of Maxwell).

• In the end the size of the cell turns out to be a ‘book-keeping’ device that disappears from
the final physical results.

• In quantum mechanics the uncertainty principle furnishes a unique definition of the cell size.
The notation h turns out to be appropriate.
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5.2 Many-particle phase space

We now want to extend this method of describing states to deal with many particles, and there
are two distinct approaches, adopted by Boltzmann and by Gibbs:

Distribution function Here we take the states in the above single-particle phase space, and
allow each one to have an occupation number, ni, so that more than one particle can lie
in a single state. This is most useful for particles that interact weakly enough that the total
energy is dominated by the individual particle kinetic energies – i.e. the particles may interact
sufficiently to scatter off each other on occasion, but at any given time the potential energy of
such interactions is negligible. In this language, the total particle number and energy are

N =
∑

i

ni =
1

h3

∫

n(q, p) d3q d3p

E =
∑

i

niǫi =
1

h3

∫

n(q, p) ǫ(q, p) d3q d3p.

(5.4)

The combination n/h3 is called the distribution function, f(q, p), otherwise known as the
phase-space density, since f(q, p) d3q d3p is the number of particles existing in a given phase-
space volume element.

Full phase space But a more general approach is to insist that the specification of a state
requires us to list the position and momentum of all particles. Thus the state of the whole system
is specified by a single point in a 6N -dimensional space with coordinates (q1, q2, . . . , p1, p2, . . . ).
Unfortunately, this space is also commonly referred to as phase space, even though it could benefit
from a distinct name to distinguish it from the single-particle form. Now a sum over states becomes
a ‘volume’ integral over the 6N -dimensional space, so that e.g. the partition function would be
written as

Z(T, V,N) = h−3N

∫

∏

i

d3qi d
3pi e

−βH({q},{p})
, (5.5)

where the limits of integration for momentum components are ±∞ and for positions 0, L.

Independent particles Commonly, the particles that comprise the system will be weakly in-
teracting, so that Hamiltonian (total energy) is a sum of single-particle energies:

E = ǫj1 + ǫj2 + · · ·+ ǫjN , (5.6)

where the index j1 labels the different single-particle energy states available to particle 1 etc. The
canonical partition function is then

Z =
∑

j1,j2...jN

exp−β[ǫj1 + ǫj2 + · · ·+ ǫjN ] . (5.7)

But the sum in the exponential factorises:
∑

ij exp[Ai + Bj ] = (
∑

i exp[Ai]) × (
∑

j exp[Bj ]) etc.,
leading to

Z =
∏

i Z(1)i → [Z(1)]N , (5.8)

where

Z(1) =
∑

j

exp(−βǫj) , (5.9)
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is the single-particle partition function and the index j runs over the single-particle
states – assuming in the final expression that these are the same for all particles, so that Z(1) is
independent of which particle is being considered. The thermodynamic properties of the system
now follow via the bridge equation:

F = −kT lnZ = −NkT lnZ(1) . (5.10)

So the total free energy is the sum of that from each of the individual non-interacting particles,
as expected.

Entropy of identical classical particles It is interesting to contrast the above thermal equi-
librium results with the general expression for the entropy of a classical particle system. If the
particles are independent, the entropy is S = NS1, where S1 is the entropy of a single particle.
This will generally be of the Gibbs form, S1 = −k∑i pi ln pi, where the probability of occupying
a single state, which is the probability of lying in a phase-space ‘volume’ h3:

pi =
h3f(q, p)

N
. (5.11)

The sum over states becomes a phase-space integration:

S = −Nk 1

h3

∫

(h3f/N) ln(h3f/N) d3q d3p = −k
∫

f ln(h3f/N) d3q d3p, (5.12)

or

S = −k
∫

f ln f d3q d3p−Nk lnh3 + kN lnN, (5.13)

where we use N =
∫

f d3q d3p. The last term can be recognised as ln(N !), and its significance
arises because we have treated the N particles as distinct (albeit following the same probability
distribution). But in most common cases of interest, the particles will be identical. The proper
treatment of identical particles comes through quantum mechanics, where we deal with spin and
wave-function symmetry. But even at the classical level we can note that identical particles are
also indistinguishable, and this is a problem for counting microstates of a system. If we place
particle 1 in state A, and particle 2 in state B, this cannot be distinguished from placing 1 in B
and 2 in A. Thus the above procedure overcounts microstates. It is easy to see that we overcount
by a factor of the number of permutations of the N particles (if we take the limit where every
particle is in a slightly different single-particle state). In the original Boltzmann formulation of
S = k lnΩ, we should therefore divide the number of states, Ω, by N !. This removes the final
term above, yielding

S = −k
∫

f ln f d3q d3p−Nk lnh3. (5.14)

Similarly, the overcounting can be corrected by scaling down the partition function:

Z → Z

N !
. (5.15)

We can now verify that the equilibrium entropy derived from the partition function matches the
general definition in terms of f (see tutorial sheet).

5.3 Identical particles in general

The correct treatment of identical particles becomes even more central when we move beyond the
classical limit. The fundamental principle is now that
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the microstate is specified purely by the set of occupation numbers, {ni}.

We can see that this formulation implicitly assumes identical particles: if we exchange a pair of
particles between two different single-particle states, the occupation numbers do not change. Thus
a description in terms of occupation numbers alone must refer to identical particles, and no ad
hoc modification of the counting by a factor N ! is required. Here, the sum over all microstates is
a sum over the allowed occupation numbers for the single-particle states. We write the energy of
microstate i as

Ei =
∑

j

njǫj , (5.16)

and the total number of particles in a microstate is

N =
∑

j

nj . (5.17)

So far so good, but this last equation creates a problem, since the different nj must add
up to give N . This means that summing over the different values of nj to get the canonical
partition function is not easy, because the different nj are not independent. The solution is to
consider instead the grand canonical ensemble, in which N is not fixed, and derive thermodynamic
properties from the grand partition function ZG. This quantity depends on the unknown chemical
potential, µ, which sounds like trouble; but as we saw in section 3.4, we can determine µ by
applying the softer constraint that on average we have N particles.

The grand canonical partition function now takes the form

ZG =
∑

n1,n2...

exp{−β[n1ǫ1 + n2ǫ2 + . . . ] + βµ[n1 + n2 + . . . ]} , (5.18)

where the sum over nj is over the allowed occupation of state j. Using the same argument as
above regarding the factorisation of the exponential, the partition function may be written as

ZG =
∏

j Zj (5.19)

where

Zj =
∑

nj

exp[βnj(µ− ǫj)] . (5.20)

is the single-state grand partition function for state j. This result may be compared
to equation (5.8) for the partition function of the canonical ensemble of nonconserved particles in
the previous subsection. Here the factorisation is over states rather than particles.

The probability of finding the system in the microstate characterised by the set {nj} ≡
{n1, n2, . . .}, is just given by the Gibbs factor, which also factorises over states:

p{nj} =
1

ZG
exp



βµ
∑

j

nj − β
∑

j

njǫj



 = Πjpnj
. (5.21)

The last equality is the factorisation over states and pnj
is the probability of finding exactly nj

particles of the system in state j:

pnj
=

1

Zj
expβnj(µ− ǫj); Zj =

∑

nj

expβnj(µ− ǫj) . (5.22)
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Notice that we are treating the probabilities pnj
as independent; this is consistent with the assumed

lack of interaction needed to write the total energy as n1ǫ1 + n2ǫ2 + · · · . It follows that the mean
number of particles in a specific state j, with energy ǫj , is just

nj =
∑

nj

njpnj
= kT

∂ lnZj

∂µ
, (5.23)

where the last step follows because ∂Zj/∂µ =
∑

nj
βnj expβnj(µ− ǫj).

5.4 Quantum statistics

In order to perform the sums over allowed occupation numbers we need to consider whether the
particles are Bosons or Fermions.

Fermions Fermions have half integer spin (e.g. spin 1/2) and the exclusion principle limits the
possible occupation numbers to nj = 0 or 1. Hence the single-state partition function becomes

Zj = exp 0 + expβ(µ− ǫj) = 1 + expβ[µ− ǫj ] . (5.24)

Bosons Bosons are those particles with integral spin, and the occupation number can take any
nonnegative integer value. Thus the single-state partition function now becomes

Zj =
∞
∑

nj=0

expβnj [µ− ǫj ] . (5.25)

The sum is given by the geometric series

∞
∑

n=0

xn =
1

1− x
for |x| < 1 , (5.26)

and thus

Zj =
1

1− expβ[µ− ǫj ]
. (5.27)

Combining both cases Thus we can write the single-particle partition function for both cases
as

Zj = {1± expβ[µ− ǫj ]}±1 + Fermions
− Bosons

(5.28)

We now compute the mean number of particles in state j using (5.23)

nj =
1

β

∂ lnZj

∂µ
(5.29)

= ± 1

β

∂

∂µ
ln [1± expβ[µ− ǫj ]] (5.30)

=
expβ[µ− ǫj ]

1± expβ[µ− ǫj ]
. (5.31)

Finally, we can rearrange slightly to yield

nj =
1

expβ[ǫj − µ]± 1

+ Fermions
− Bosons

(5.32)
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and these are the Fermi–Dirac and Bose–Einstein distributions for the mean number of
particles in a given state j. For the Fermi–Dirac case, this expression can be obtained more
directly by summing the appropriate series.

Also we obtain for the grand potential

Φ = −kT lnZG = ∓kT
∑

j

ln {1± expβ[µ− ǫj ]} , (5.33)

and observable macroscopic properties can be deduced from this. Recall the differential relation
involving Φ: dΦ = −P dV − S dT −N dµ, so that

P = − ∂Φ

∂V

∣

∣

∣

∣

T,µ

; S = − ∂Φ

∂T

∣

∣

∣

∣

V,µ

; N = − ∂Φ

∂V

∣

∣

∣

∣

V,T

, (5.34)

all of which are straightforward, given the form of ZG.

5.4.1 The classical limit

The classical limit occurs when mean occupation numbers are small, n̄i ≪ 1. We will show that
this is guaranteed in the limit of

(1) high T

(2) low particle density

or a suitable combination thereof. There is then no distinction between BE and FD statistics.
This is achieved by defining the dilute limit

exp [βµ] ≪ 1 . (5.35)

Provided the single-particle energies are positive, this ensures that

expβ[µ− ǫj ] ≪ 1 ∀j . (5.36)

We can now take the expression (5.33) for Φ, ∓kT∑j ln {1± expβ[µ− ǫj ]}, and use ln(1+x) ≃ x,
to obtain

Φ ≃ ∓kT
∑

j

(±) expβ[µ− ǫj ] = −kT
∑

j

expβ[µ− ǫj ] , (5.37)

or

Φ = −kT exp [βµ]Z(1) , Z(1) =
∑

j

e−βǫj , (5.38)

where Z(1) is the single-particle partition function. We fix the chemical potential µ as follows.
The mean particle number is given (thermodynamics) by

N = −
(

∂Φ

∂µ

)

T,V

= exp [βµ]Z(1) ; (5.39)

alternatively we can get the same result from

N =
∑

j

nj =
∑

j

1

eβ(ǫj−µ) ± 1
≃
∑

j

e−β(ǫj−µ) = eβµZ(1) . (5.40)
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Thus µ = kT ln(N/Z(1)), and using the dilute limit expression for Φ we have

Φ = −kTN . (5.41)

The Helmholtz free energy becomes

F = Φ+ µN (5.42)

= −kTN + kTN ln

[

N

Z(1)

]

(5.43)

≃ −kT ln

[

Z(1)N

N !

]

(5.44)

where in the last step we have used Stirling’s approximation for large N

lnN ! ≃ N lnN −N . (5.45)

Therefore we deduce that in the dilute limit

F = −kT lnZ , Z =
Z(1)N

N !
. (5.46)

This result was derived by working from the start with indistinguishable particles, and we see that
it automatically recovers the overcounting factor, N !, which we introduced as a fix to the classical
partition function for distinguishable particles.

k

2π

kx

y

L

Figure 4: A 2D representation of ‘k-space’ for periodic boundary conditions. The unit of wavenumber is
2π/L. A shell of radius k and thickness dk is indicated.

5.5 The density of states

All of the above is general, but we now need to consider how the sums over states are actually
performed in the quantum case. As with the previous classical discussion of phase space, we will
assume that the particles under study are weakly interacting, so that a starting point is the
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quantum mechanics of free particles. We will initially assume that these have zero spin. The
time independent Schrödinger equation is

Hψ = ǫψ ⇒ − ~
2

2m
∇2ψ = ǫψ , (5.47)

where ǫ is the energy eigenvalue. The natural solutions of this wave equation are plane waves,
ψ ∝ exp[−k · x], each associated with a well-defined momentum, p = ~k. We want to discuss the
properties of a thermodynamic system consisting of a box of side L, which requires us to introduce
boundary conditions. There are two choices: a physical box imposes ψ = 0 at the edges, so that the
solutions become standing waves and the nice correspondence between wavevector and momentum
is broken. For this reason, a more common alternative is periodic boundary conditions,
so that a particle leaving one wall is reinjected at the other. In effect, we create an infinite system
by periodically repeating a single unit of volume L3. This periodicity requires whole number of
oscillations in each direction, so that

kx = nx
2π

L
, (5.48)

etc., where nx is an integer and k = (kx, ky, kz). Allowed modes therefore lie on a mesh in k-
space, with a spacing of the fundamental 2π/L, as shown for 2D in Fig. 4. We can therefore
count microstates very simply, by considering a region in k-space and asking how many mesh
points lie within it. As L is made larger and the mesh spacing becomes finer, this is obviously
well approximated by the volume of the region divided by that of the fundamental cell:

Nstates =

(

L

2π

)3 ∫

d3k, (5.49)

where (L/2π)3 is the density of states; in n dimensions, this would be (L/2π)n.

In particular, for a spherical shell of ‘radius’ k and thickness dk,

dNstates =

(

L

2π

)3

4πk2 dk =
L3

2π2
k2 dk. (5.50)

Now, the energy depends only on the magnitude k of the vector in k-space:

ǫ =
p2

2m
=

~
2

2m
k2 ⇒ dǫ =

~
2

m
k dk ⇒ ǫ1/2dǫ =

~
3

21/2m3/2
k2 dk. (5.51)

We can thus rewrite the number of states in terms of energy:

dNstates/dǫ ≡ g(ǫ) =

(

2m

~2

)3/2 V

4π2
ǫ1/2. (5.52)

The important features to note here are that the density of states increases with energy as ǫ1/2

and increases linearly with the volume V = L3. It is easy to generalise this to particles with spin,
since each wave mode would have a spin degeneracy, gs, and we simply multiply the density of
states by this. For fermions (spin 1/2), this is gs = 2. Photons have spin 1, but because they are
massless, they only have two spin states, gs = 2 again, corresponding to left- and right-handed
circular polarizations.

It is worth noting that the same result for g(ǫ) would have been obtained if we had worked
with a box with standing-wave boundary conditions. Then we need half-wavelengths across the
box, so that the density of states would be 8 times larger, V/π3. But then kx etc. would be purely
positive and so we would integrate over only the positive octant of k-space. But the periodic
approach allows a direct relation to the classical formulation: we have p = ~k, so that

Nstates =
V

(2π)3

∫

d3k =
V

(2π~)3

∫

d3p. (5.53)
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Thus the density of states in phase space is 1/(2π~)3, a result that was anticipated when we wrote
the classical result as 1/h3. At the classical level, the number h was arbitrary – but we now see
that it is indeed the unrationalized Planck’s constant, as the notation anticipated.

5.5.1 Ideal quantum gases

We can use the density of states to calculate the thermodynamics of ideal quantum gases: es-
pecially black body radiation and the corresponding system for massive particles. As you know,
the massive Bose gas is of particular interest in showing the radical phenomenon of Bose-Einstein
condensation, which is an example of a phase transition. All of this was covered in some detail
in Junior Honours Statistical Mechanics, but it is useful to recapitulate some of the main results;
we will also extend the treatment to consider massive quanta and to the general relativistic
relation for ǫ(p):

ǫ =
√

m2c4 + p2c2, (5.54)

rather than either the m = 0 photon case, or the non-relativistic ǫ = p2/2m.

The key feature of black-body radiation is that it is not a system of fixed photon number:
in reaching equilibrium with the walls of an enclosing box at temperature T , photons can be
emitted or absorbed by the walls until equilibrium is reached. The consequence of this is that the
chemical potential evolves to reach µ = 0. This is a consequence of the first law written in
terms of free energy: dF = −SdT − PdV + µdN , so that F can only be stationary at constant
T and V if µ = 0. Thus the Gibbs factor reduces to a Boltzmann factor. Since the number of
particles is proportional to the density of states, which is proportional to V , we see firstly that
the number of particles is extensive (∝ V ), and also that the number density, n = N/V (not
to be confused with an occupation number) is independent of V :

n = g
1

(2π~)3

∫ ∞

0

4π p2dp

eǫ(p)/kT ± 1
. (5.55)

Similar reasoning gives the energy density, u, since it is only necessary to multiply the integrand
by a factor ǫ(p) for the energy in each mode:

u = ρ c2 = g
1

(2π~)3

∫ ∞

0

4π p2 dp

eǫ(p)/kT ± 1
ǫ(p). (5.56)

The pressure and the entropy density can be obtained as follows, using the grand partition function
and Φ = −kT lnZG:

P = − ∂Φ

∂V

∣

∣

∣

∣

µ,T

; S = − ∂Φ

∂T

∣

∣

∣

∣

µ,V

. (5.57)

The grand partition function is

ZG =
∏

states

nmax
∑

n=0

e−(ǫ−µ)n/kT

=
∏

states

ZG(1);

ZG(1) =
[

1± e−(ǫ−µ)/kT
]±1

(+ : F − : B).

(5.58)

This gives

P = −Φ

V
= g

4πkT

(2π~)3

∫

p2 dp lnZG(1)

s = S/V = g
4πk

(2π~)3

[∫

p2 dp lnZG(1) +

∫

p2 dp
(ǫ− µ)/kT

e(ǫ−µ)/kT ± 1

]

,

(5.59)
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although in this case we will set µ = 0 in these general expressions.

Black-body radiation For kT ≫ mc2 the particles behave as if they were massless, so that
ǫ = pc. It is often convenient to work in terms of frequency, so that hν = pc and the energy
density per unit bandwidth is

du

dν
=

4πg h ν3/c3

exp[hν/kT ]− 1
, (5.60)

which is the familiar Planck function. This can be integrated over frequency, using
∫ ∞

0
dy y3/(exp[y]− 1) = π4/15, (5.61)

to obtain

u =
gπ2k4

30c3~3
T 4; (5.62)

the famous aT 4 law. Similarly, the total number density scales as T 3:

n =

(

kT

c

)3 4πg

(2π~)3

∫ ∞

0

y2dy

ey ± 1
. (5.63)

Given the energy density u(T ), it is easy to obtain the entropy density directly from the first
law, considering a box of constant volume that is heated up from T = 0: T ds = du. Since u ∝ T 4,
it is easy to perform the integral and obtain

s =
4u

3T
. (5.64)

Thus the entropy of black-body radiation also scales as T 3, meaning that the total entropy of
the radiation field is, in suitable units, just the total number of photons. We should check that
this simple direct derivation of the entropy density agrees with our general expression in equa-
tion (5.59). This expression looks rather more complicated, but can be simplified by integrating
the first term by parts:

∫

dxx2 ln(1 − exp[−x]) = (1/3)
∫

dxx2 x/(exp[x] − 1). We can then see
that both terms are proportional to the one we need for the energy density, and we recover the
desired s = (4/3)u/T .

Cosmic background radiation Perhaps the most significant application of these formulae
relates to the fact that the universe as a whole is permeated by black-body radiation with a
temperature of 2.735K. This background radiation lies in the microwave band, with the spectrum
peaking at wavelengths around 1mm, and was discovered in 1965. The significance of this radiation
is that it shows that the universe was once in a hot and dense state – the Hot Big Bang. This
conclusion arises because we have known since the work of Vesto Slipher around 1917 that the
universe is expanding, with all galaxies moving away from each other. What happens to thermal
radiation in this process? If material in the universe is uniform, there can be no heat flow in
any direction and the process should be adiabatic, so that the entropy remains constant. If we
define a cosmic scale factor, a(t), which is proportional to the size of the universe and is
taken to be unity today, then the entropy density must scale as s ∝ a−3. But since s ∝ T 3, we
see that the radiation cools as the universe expands, and conversely was extremely hot at early
times when the universe was small:

T ∝ 1

a(t)
. (5.65)

Non-relativistic limit Here we can neglect the ±1 in the occupation number, in which case

n = e−mc2/kT (2mkT )3/2
4πg

(2π~)3

∫ ∞

0
e−y2y2dy. (5.66)
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The dominant factor here is the suppression by the exponential factor e−mc2/kT . What is going on
here demands a little further explanation, however. We have assumed that the particle numbers
can adjust automatically to reach equilibrium – but what physical process permits this? Usually
there will be an additional symmetry that requires the existence of antiparticles, which can be
created or destroyed in pairs (particularly obvious with charged particles such as e±). At high
enough T (as in the earliest phases of the expanding universe, near to the big bang), typical
thermal energies can create a particle-antiparticle pair, so that the early phases of the universe
naturally contain nearly equal numbers of all particle species. But as the universe expands and
cools, it becomes thermodynamically preferred for particle-antiparticle pairs to annihilate. But
even so there will remain some non-zero relic density of such particle pairs. The most natural
explanation for the infamous dark matter that dominates the matter density of the universe is
that it is an incompletely annihilated relic of exotic massive particles, which were once as common
as photons.

Gravitational thermodynamics The total entropy of the universe seems to be dominated by
that of the cosmic background. We have seen that this evolves adiabatically, with the numbers
of photons being conserved. In practice there are ∼ 109 background photons for each proton in
the universe, so the entropy of ordinary matter turns out to be rather unimportant.

However, this argument turns out to have neglected a much more important source of entropy:
the contribution of black holes. For a non-rotating black hole of mass M , there is an event

horizon of radius 2GM/c2. In 1972, Jacob Bekenstein noted that merging a pair of black holes
will lead to an area for the event horizon that is larger for the final object than for the sum of the
initial areas. He therefore proposed that the area of the event horizon must be a measure of the
entropy of the black hole, writing the relation

S

k
= α

A

L2
P

, (5.67)

where A is the area of the horizon (16π[GM/c2]2 in the non-rotating case). The coefficient α is
an unknown dimensionless number, as must be the case because S/k is dimensionless and because
the area has been normalized to the square of the Planck length:

LP ≡
√

~G

c3
. (5.68)

This is a unit of distance (1.6× 10−35m) derived from the fundamental physical constants, and it
represents the onset of quantum gravity (the point at which the horizon size 2GM/c2 is of order
the Compton wavelength of a black hole, ~/Mc). It therefore seems reasonable that a horizon area
of one Planck unit could not have distinct microstates, although the Bekenstein formula requires
that the number of microstates is roughly

Ω ∼ exp[A/L2
P
], (5.69)

and the derivation of this formula is an open challenge in theoretical physics. Claims have been
made that the corresponding calculation for rapidly rotating black holes can be accomplished in
string theory, but the non-rotating case remains unsolved.

If a black hole has an entropy, it also has a temperature:

1

kT
=
∂S/k

∂E
=
∂ 4πα(2GM/c2LP)

2

∂Mc2
=

32παGM

c3~
. (5.70)

In 1974, Hawking solved the equations of quantum field theory in the curved spacetime of the black
hole to deduce that black holes emitted thermal radiation at the Hawking temperature,
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determining α = 1/4 and hence fixing the entropy of a black hole. This entropy is colossal in
practical terms. Every galaxy has a black hole at its centre, amounting to perhaps 0.1% of the
baryonic material; for the Milky Way, the mass is 4×106M⊙ = 8×1036kg. Our galaxy is reasonably
typical, and the spacing between such galaxies is roughly 20 million light years. So we have an
entropy of S/k = 1.7 × 1090, and an entropy density of ρS/k = 2.6 × 1020m−3. We can compare
this with the entropy density from 2.725K black-body radiation (equation 5.64), which is lower
by a factor of about 2 × 1011. Therefore, to a very good approximation, practical responsibility
for the cosmic operation of the second law of thermodynamics has been subcontracted to the
population of black holes and their growth through gravitational mergers.

6 Fluctuations and response

All the above discussion has concerned thermal equilibrium. But this arises as a result of random
influences on a system from the heat bath. We have used the statistics of this process to calculate
ensemble average quantities such as the mean energy, E. But for any single member of the ensem-
ble the actual energy will fluctuate about this value – and this is true for most thermodynamic
quantities. The tools we have assembled so far allow us to compute these fluctuations.

6.1 Fluctuations in the energy of a system

Consider the Canonical Ensemble, in which the (internal) energy of a system fluctuates randomly
about the fixed mean value E. First note that the mean energy may be expressed in the Canonical
Ensemble as

E =
∑

i

piEi =

∑

iEi exp(−βEi)
∑

i exp(−βEi)
(6.1)

= − 1

Z

∂Z

∂β
(6.2)

= −∂ lnZ
∂β

. (6.3)

But this evaluation of Ē is an average over a probability distribution of different microstate
energies, so we can use the same reasoning to compute the average of any function of energy, e.g.
〈E2〉. But this is what we need to compute fluctuations. Consider the offset of a given Ei from
the ensemble mean:

∆Ei ≡ Ei − E , (6.4)

noting that 〈∆Ei〉 = 0. So if we square the fluctuation, and take averages, we obtain the usual
expression for the variance in energy:

〈(∆E)2〉 = 〈E2〉 − 〈E〉2. (6.5)

And finally, by noting that two derivatives of Z with respect to β brings down E2
i inside the sum,

we see that the required average of E2 is also related to a derivative of the the partition function:

〈E2〉 = (1/Z)∂2Z/∂β2. (6.6)

Thus, knowing the partition function, we can compute the fluctuations in energy. Note that this
doesn’t tell us everything about the fluctuations – e.g. we don’t learn how long it takes the energy
to change – but we can compute the rms amplitude of any eventual fluctuations.
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In practice, this result for the mean-square fluctuation in energy can be conveniently expressed
in terms of the heat capacity CV (at constant volume):

CV =

(

∂E

∂T

)

V

=
dβ

dT

∂E

∂β
(6.7)

= − 1

kT 2

[

− 1

Z

∂2Z

∂β2
+

1

Z2

(

∂Z

∂β

)2
]

, (6.8)

where we have first used the chain rule for differentiation. Using the earlier relations between
moments of E and derivatives of Z, we see that

CV =
1

kT 2
[E2 − E

2
] , (6.9)

and so taking the square-root of both sides leads to an expression for the root-mean-square fluc-
tuation ∆Erms:

∆Erms ≡
(

(∆E)2
)1/2

= (CV /k)
1/2 kT . (6.10)

Evidently the relative fluctuation, i.e. the rms fluctuation on the scale of the mean, may be written
as

∆Erms

E
=
kT
√

CV /k

E
∼ 1

N1/2
, (6.11)

where the last step follows from the fact that both E and CV are extensive quantities: CV ∼ Nk
and Ē ∼ N kT . For Avogadro-sized systems, we have N ∼ 1024 and hence the relative fluctuation
in the energy has a root-mean-square value of about ∼ 10−12. This is less than any experimental
precision could detect, so the value of the energy is sharp.

This property is often referred to as the equivalence of the Canonical and Microcanonical
Ensembles i.e. in the Microcanonical Ensemble the energy is strictly fixed and only microstates
with the same energy are available, whereas in the Canonical Ensemble microstates of all energy
are available but are sampled with the Canonical probabilities, which depend on Ei. The result
is that the actual energy fluctuations vanish in the large-N limit and we expect the physical
properties of the Microcanonical and Canonical Ensembles to be the same in this limit.

6.2 Magnetisation fluctuations

Let us consider a system in an applied external magnetic field H and write the energy of a
microstate as

Ei(H) = Ei(H = 0)− µ0Mi ·H , (6.12)

where M i is the magnetisation of the system in microstate i and µ0 is a constant (vacuum per-
meability). The energy is reduced when dipoles align with field.

Consider the one-dimensional case here. The mean magnetisation may be expressed in the
Canonical Ensemble as

M =
∑

i

piMi =
1

Z

∑

i

Mi exp(−βEi(0) + βµ0MiH) (6.13)

=
1

βµ0Z

∂Z

∂H
=

1

βµ0

∂ lnZ

∂H
. (6.14)
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Again we see the idea of writing the expectation value of an observable (here M) as the derivative
of lnZ with respect to the conjugate field (here H). In the tutorial you are invited to show that

∆M2 =
kT

µ0
χ , (6.15)

where

χ =

(

∂M

∂H

)

T,V

, (6.16)

is the isothermal susceptibility.

6.3 Density fluctuations

Let us now consider a system in the Grand Canonical Ensemble and study the fluctuations in the
number of particles – the number of particles in a system in the Grand Canonical Ensemble will
fluctuate about the mean value N . The derivation parallels the one concerning energy fluctuations.
We begin by noting how we may express N :

N =
∑

i,N

Npi,N =

∑

i,N N exp(−β(Ei,N − µN)
∑

i,N exp(−β(Ei,N − µN))
(6.17)

=
1

βZG

∂ZG

∂µ
=

1

β

∂ lnZG

∂µ
. (6.18)

This is a relation we have seen previously in the context of the grand potential Φ = −kT lnZG,
where in general

N = − ∂Φ

∂µ

∣

∣

∣

∣

T,V

. (6.19)

Now we have

∂N

∂µ

∣

∣

∣

∣

T,V

=
1

β

∂2 lnZG

∂µ2
(6.20)

=
1

β

[

1

ZG

∂2ZG

∂µ2
− 1

Z2
G

(

∂ZG

∂µ

)2
]

= β
[

N2 −N
2
]

, (6.21)

giving

∆N2 = kT
∂N

∂µ

∣

∣

∣

∣

T,V

. (6.22)

Since the RHS is extensive ∝ N , we have

∆Nrms

N
∝ 1

N
1/2

. (6.23)

(∆Nrms ≡ (∆N2)1/2). Thus the typical particle number fluctuation is negligible on the scale of the
mean, for sufficiently large systems. This is referred to as the equivalence of the Grand Canonical
and Canonical Ensembles in the thermodynamic limit N → ∞.
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This result can also be re-written in terms of the isothermal compressibility κT (analogously
to using CV for the canonical ensemble). We define

κT = −1

v

∂v

∂P

∣

∣

∣

∣

T

≡ − 1

V

∂V

∂P

∣

∣

∣

∣

T,N

, (6.24)

where v = V/N = 1/ρ is the volume per particle. Then it can be shown (see tutorial sheet) that

∂N

∂µ

∣

∣

∣

∣

T,V

= NρκT , (6.25)

or

∆Nrms

N
=

√

kTρ κT

N
∼ 1

N
1/2

. (6.26)

6.4 General theorem

If we have some macroscopic observable A with conjugate field f we can write the energy of a
microstate as

Ei = Ei(0)− fAi , (6.27)

where Ai is the value of the observable in microstate i and Ei(0) is the energy at f = 0 i.e. this
term does not involve f . Let us work on the Canonical Ensemble (a similar general theorem can
be deduced for the Grand Canonical Ensemble). Following the previous development,

βA =
∂ lnZ

∂f
, (6.28)

and

χAA ≡ ∂A

∂f
= β∆A2 . (6.29)

Here, χAA is a generalised susceptibility i.e. it is the response of observable A to a change
in the field conjugate to A. Since we expect χAA ∝ N , we have ∆Arms/N ∝ 1/N1/2, and the the
typical fluctuation on the scale of the mean vanishes in the large-N limit.

Although we expect χAA ∝ N , it is possible for the coefficient of proportionality to diverge at
some parameter values. In this case the above argument for vanishing fluctuations breaks down
and there would be large scale fluctuations. This is realised at certain parameter values where
phase transitions occur.

7 Quantum statistical mechanics and the density matrix

In this section we discuss some general aspects of how quantum mechanics has to be adapted to
deal with statistical ensembles. We begin by discussing the many-particle Schrödinger equation.

7.1 Many-particle Schrödinger equation

Consider a system of N particles of mass m. (For simplicity we suppress any spin index.) The
time-independent Schrödinger equation reads

HΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ) , (7.1)
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where E is the energy of the eigenstate Ψ(r1, r2, . . . , rN ). In general, the Hamiltonian operator
is

H = −
N
∑

k=1

~
2

2m
∇2

k + U(r1, r2, . . . , rN ) , (7.2)

where k labels the particles. The first term is kinetic energy and the second term, U , is the
interaction potential which depends on the relative positions of all the particles e.g. we
could have electrostatic Coulomb interaction between particles with charge e. That would be an
example of a ‘2-body’ interaction i.e. pairwise interactions between particles.

Weakly interacting case One case where we can solve (7.1) is when the potential energy term
contains no interaction terms, i.e. when

U(r1, r2, . . . , rN ) =
N
∑

k=1

V (rk) . (7.3)

Then we can write the Hamiltonian as

H(r1, r2, . . . , rN ) =
N
∑

k=1

h(rk) , h(r) = − ~
2

2m
∇2 + V (r) . (7.4)

The Hamiltonian h has wavefunctions ψ1, ψ2, . . . and corresponding energies ǫ1, ǫ2, . . . common
for all the particles. Thus the many-body eigenfunctions are factorised

Ψ(r1, r2, . . . , rN ) =
N
∏

k=1

ψαk
(rk) with E =

N
∑

k=1

ǫαk
. (7.5)

where α1, α2, . . . are a collection of (integer) labels for the wavefunctions and energies.

Spin and symmetry This wavefunction (7.5), which is factorised form, is for distinguish-
able particles. In order to impose indistinguishability we should take suitably symmetrised
combinations of these eigenfunctions, depending on whether the spin is integral (Bosons) or half-
integral (Fermions). For Fermions the wavefunction is antisymmetric

Ψ(r1, r2, . . . , rN ) ∝
∑

P

ǫ(P )ψαP1
(r1) . . . ψαPN

(rN ) , (7.6)

where P is a permutation of 1, . . . , N , ǫ(P ) = ± depending on whether we have an even or odd
permutation. For example for two particles we have

1√
2
(ψα1

(r1)ψα2
(r2)− ψα2

(r1)ψα1
(r2)) . (7.7)

If two particles try to occupy the same state, then ψα1
= ψα2

and Ψ vanishes. For Bosons the
wavefunction is similarly a symmetric combination of all permutations P

Ψ(r1, r2, . . . , rN ) ∝
∑

P

ψαP1
(r1) . . . ψαPN

(rN ) . (7.8)

Dirac notation Here and below it is convenient to use Dirac’s bra-ket notation. This is a
shorthand motivated by the matrix element for an operator, and emphasising the similarity to an
inner product:

∫

ψ∗
1(x)Aψ2(x) d

3x −→ 〈1|A|2〉. (7.9)
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i.e. a bracket is made from a bra 〈ψ| and a ket |ψ〉. This is like a scalar product involving a
row vector and a column vector: the bra and ket are alternative and equally valid representations
of the same state vector. We write eigenstates of the Hamiltonian (or any Hermitian operator) as
H|i〉 = Ei|i〉; it can be shown that the eigenstates are orthonormal:

〈i|j〉 = δi,j . (7.10)

They also form a complete set of states so that any state function can be expanded in eigenstates:

|ψ〉 =
∑

i

ci|i〉 =
∑

i

|i〉〈i|ψ〉 (7.11)

(using orthonormality). We can write this equation using the general completeness relation:

∑

i

|i〉〈i| = 1. (7.12)

To compute the expectation value of some observable corresponding to a Hermitian operator A
we use

〈A〉 = 〈ψ|A|ψ〉 =
∑

i

〈i| c∗i A
∑

j

cj |j〉 =
∑

ij

c∗i cjAij (7.13)

where Aij are the matrix elements of operator A in the energy eigenbasis. So for example if A is
H, H will be diagonal in the energy eigenbasis

〈i|H|j〉 = Ejδij (7.14)

and
〈H〉 =

∑

i

|ci|2Ei (7.15)

7.2 Quantum mechanics of non-isolated systems: the density matrix

In the above, we have assumed that a wave function description is always applicable – but this is

not always true. An isolated system may be described by a wave function, but a sub-part of a
single system will not be so described unless the overall wave function factorises. If x and y are the
coordinates of two particles, A & B, and ψ(x, y) = ψA(x)ψB(y), then there is a well-defined wave
function for A, independent of what B is doing, but not otherwise. In other words, the overall
system of Schrödinger’s cat plus killing apparatus may be described by a wave function, but the
cat is not so easily disentangled from its environment. Similarly, a system in thermal contact with
a heat bath cannot be described by a wave function. In such cases, we have an ensemble of

states. Simple quantum mechanics assumes that the state of the system is |ψ〉, a single Hilbert-
space vector which we refer to as a pure state. A pure state can be in the standard form of
a linear superposition, |ψ〉 = ∑

i ai|i〉, where the probability of an experiment finding the
system in an eigenstate |i〉 is pi = |ai|2. But in an ensemble, we consider something else: a mixed

state where all properties of the system reflect the system being prepared in state |i〉, with
classical probability pi. These may sound like the same thing, but a pure state can display
quantum interference, whereas a mixed state will not. The difference can be seen when we
take the expectation value of an operator, A, that is not diagonal in the eigenstates:

pure state : 〈A〉 =
∑

i

∑

j

a∗i aj〈i|A|j〉

mixed state : 〈A〉 =
∑

i

pi〈i|A|i〉.
(7.16)
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We need to satisfy the latter relation for any operator A, and this is not possible with a wave-
function description.

The general concept that handles the quantum mechanics of composite systems is the
density matrix (which could do with a better and more informative name), invented by von
Neumann in 1927. To describe simply what this is, suppose that a given system has eigenstates
|i〉 corresponding to some operator. If this system is described by a wave function, this will be
expandable in terms of the eigenstates: |ψ〉 =

∑

i ai|i〉, where ai = 〈i|ψ〉. We can therefore
introduce the projection operator |i〉〈i|, which operates on |ψ〉 to yield its ith ‘component’:
|i〉〈i| |ψ〉 = ai|i〉. Now, when a non-isolated system is observed, the resulting measurement will
still be one of the eigenvalues of the operator, and there will be some probability pi that the
system will be found in the corresponding eigenstate. The density operator is the weighted sum
of the projectors over all possible states:

ρ =
∑

i

pi |i〉〈i|. (7.17)

Traces and expectations Now, ρ can be represented by a matrix,

ρij ≡ 〈i|ρ|j〉, (7.18)

and the way to find the probability of the system being found in a state |j〉 is use the trace (where
the trace of any matrix is the sum of the diagonal elements, TrM = Mii): pj = Tr

(

|j〉〈j|ρ
)

.
The proof is as follows:

Tr
(

|j〉〈j|ρ
)

=
∑

n

〈n|j〉 〈j|ρ |n〉

=
∑

n,i

pi〈n|j〉 〈j|i〉 〈i|n〉

=
∑

n,i

pi〈i|n〉 〈n|j〉 〈j|i〉

=
∑

i

pi〈i|j〉 〈j|i〉 = pj ,

(7.19)

where some reordering of terms and completeness on n has been used.

Similarly, the density operator gives a general means of obtaining expectation values of any
operator, A:

〈A〉 = Tr(Aρ) = Tr(ρA). (7.20)

First consider what the expectation of an operator looks like for a single state |ψ〉: 〈A〉 ≡ 〈ψ|A|ψ〉.
If the state is expanded in some basis |ψ〉 =∑i ai|i〉, then

〈A〉 =
∑

i,j

aia
∗
j 〈j|A|i〉 =

∑

i,j

ρijAji = Tr[ρA]. (7.21)

The name ‘density matrix’ is clearly applicable here, since ρ = |ψ〉〈ψ|, and ρij = 〈i|ρ|j〉 = aia
∗
j .

In the general case,

Tr(Aρ) =
∑

n

〈n|Aρ|n〉 =
∑

n,i

pi〈n|A|i〉 〈i|n〉

=
∑

n,i

pi〈i|n〉 〈n|A|i〉 =
∑

i

pi〈i|A|i〉,
(7.22)

where the last step uses completeness,
∑

n |n〉〈n| = 1; thus 〈A〉 is just the weighted sum of 〈A〉
over each of the possible pure states. Note in the above that the order of A and ρ is irrelevant.
The trace of a matrixM isMii, so the trace of a product is independent of order: AijBji = BjiAij .
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Thus a density matrix is needed in general in order to understand how the relation 〈A〉 =
∑

i pi〈i|A|i〉 can arise. We could try constructing a wave function

|ψ〉 =
∑

i

p
1/2
i |i〉, (7.23)

but then the expectation value would be

〈A〉 = 〈ψ|A|ψ〉 =
∑

ij

p
1/2
i p

1/2
j Aij . (7.24)

This contains extra ‘off diagonal terms’ (involving Aij i 6= j) that are absent from the desired
expression

∑

i pi〈i|A|i〉. The classical probabilities appearing in this latter expression thus cannot
be accommodated within a single wave function.

Density matrix, measurement, and decoherence Note that this formalism does also in-
clude the simpler case of a pure state, where the system is described by a single wave function.
Consider for example the case where this is a superposition of two other states: |ψ〉 = a|1〉+ b|2〉,
where 〈1|2〉 = 0. The density matrix is

ρ = |ψ〉〈ψ| = |a|2|1〉〈1|+ |b|2|2〉〈2|+ ab∗|1〉〈2|+ a∗b|2〉〈1|. (7.25)

The indication of the possibility of quantum interference here is the cross terms |1〉〈2| and |2〉〈1|.
For a ‘classical’ system, which would definitely be either in state |1〉 or |2〉, these off-diagonal
terms would be zero, so that

ρ = |a|2|1〉〈1|+ |b|2|2〉〈2|. (7.26)

Now, the key point is that in both classical and non-classical cases the probability of a measurement
finding the system in state |1〉 is |a|2, independently of the off-diagonal terms: Tr

(

|1〉〈1|ρ
)

= |a|2.
This gives a possible solution to our intuitive worries about macroscopic objects possibly being in
a quantum superposition. Suppose we set up Schrödinger’s cat in a pure state that is a mixture
of the |alive〉 and |dead〉 states. If the cat is an isolated system, that mixture will of course be
preserved, and interference will be possible at some later time. In practice, however, the cat
is a complex system of many sub-parts all of which interact with its environment – and these
interactions are the very agency that will cause the balance of probabilities to tilt from life to
death. In these circumstances, the rapid phase changes of the microscopic components of the
cat will mean that the wave function at later times will not stay coherent with its initial value,
and the opportunity for macroscopic interference will be lost. The idea of decoherence is thus
that these microscopic interactions very rapidly cause the off-diagonal components of the density
matrix to decay to zero. When we open the box, we find a classical system in which the cat is
definitely dead or alive, not a superposition of these states.

Canonical density matrix The canonical ensemble is a classic example of a mixed state

where a density matrix is required. For a thermal ensemble, the occupation probabilities are
Boltzmann factors, so

ρ =
1

Z

∑

i

exp(−Ei/kT ) |i〉〈i|. (7.27)

Now, exp(−Ei/kT ) |i〉 = exp(−H/kT ) |i〉 (expand the exponential term by term) and complete-
ness says

∑

i |i〉〈i| = 1, so for a system in thermal equilibrium

ρ =
1

Z
exp(−H/kT ). (7.28)

Finally, the Canonical partition function can be written as

Z = Tr
[

e−βH
]

(7.29)
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because

Tr
[

e−βH
]

=
∞
∑

i=0

〈i|e−βH |i〉 =
∞
∑

i=0

e−βEi〈i|i〉 =
∞
∑

i=0

e−βEi . (7.30)

Von Neumann entropy Finally we state the form of the entropy using the density matrix,
which is known as the von Neumann entropy (see tutorial)

S = −kTr [ρ ln ρ] . (7.31)

This is extends the Shannon-Gibbs entropy from statistical mechanics and classical information
theory to the field of quantum mechanics and quantum information theory. In the tutorial, we
will show that this general formula indeed corresponds to the Gibbs entropy as we have met it
earlier.

Discussing entropy via the density matrix and the idea of decoherence gives us a useful new
perspective on the increase of entropy. Consider again our earlier example of the density matrix
for a pure state, which we have seen degenerates through decoherence to ρ = |a|2|1〉〈1|+ |b|2|2〉〈2|,
so that there are classical probabilities |a|2 and |b|2 of being in states 1 or 2. The entropy for this
situation is S/k = −|a|2 ln |a|2 − |b|2 ln |b|2, which is positive. But the initial pure state undergoes
unitary evolution and there can be no possibility for its entropy to change from zero. The loss of
the phase information through decoherence is therefore the cause of irreversibility and the arrow
of time. Decoherence reduces our knowledge about the system, so there is hidden information –
which as we have seen is required in order for entropy to increase.

8 Non-equilibrium processes and the arrow of time

8.1 The reversibility paradox

Having set up the microscopic formulation of entropy, it is time to ask if our ideas can account
for the second law of thermodynamics: that entropy for an isolated system will never decrease,
but rather evolve in the direction of increasing S, until settling down in a maximum-entropy
state of internal thermal equilibrium. As before, we can use the convenient example of Joule
expansion to illustrate this (Fig. 1): when particles are released (slowly) from the LH side
of a box, they spread and eventually become evenly distributed throughout the container. The
growing disorder of the particle distribution seems to exemplify the second law and define a clear
arrow of time, a term due to Eddington.

The problem with this familiar view is that the microscopic physics at work is invariant under
time reversal. Classically, each particle obeys Newton’s law mẍ = F , where the acceleration is
unchanged under t → −t. The force will also unchanged under this transformation, as can most
easily be seen by assuming that it arises from a potential, F = −∇Φ. Thus if we take a video
of the evolution and reverse time (so that all velocities are reversed), what we observe will be a
valid physical process that obeys Newton’s laws. But then the particles will return to their initial
positions and entropy will seem to have decreased. Why is such a violation of the second law not
observed?

Less obviously, the same invariance under time reversal also applies to quantum mechan-
ics. Schrödinger’s equation is first order in time, but is unchanged under the more complicated
transformation

t→ −t and ψ → ψ∗ . (8.1)
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But replacing ψ by its complex conjugate has no effect on observables (most simply, the probability
density |ψ|2 is unaltered).

The need to reconcile this microscopic reversibility with the thermodynamic irreversibility
seen empirically has generated a vigorous debate among physicists, which has continued from the
time of Boltzmann to the present day. There are two schools of thought, and they propose very
different solutions to the problem:

(1) The large number view states that the second law is not absolute and that it will be
routinely violated for small systems. For example, place N = 2 particles in the LHS of the Joule
box and let them go: you won’t have to wait too long before both return to the LHS once again.
But for such a coincidence to happen with N = 1024 particles spread throughout the full box
requires either exquisitely adjusted initial conditions or a period of time much longer than the age
of the universe.

(2) The information view states that the second law applies exactly, but that we have to be
more careful with how we calculate the total entropy of system plus observer, and to ask how if
or how an empirical violation of the second law could be accomplished (conversion of heat into
work).

This divergence of views comes down to the difference between the Boltzmann and Gibbs
treatments of entropy, and the following sections contrast these approaches.

8.2 Boltzmann entropy and the H-theorem

H theorem An immediate puzzle with the second law is to ask how an isolated system can
reach thermal equilibrium, which normally we think of in terms of energy exchange with a heat
bath. If we initially place a system in some given microstate, what is the origin of the randomness
that produces a non-zero probability of occupying a range of microstates at some later time? The
answer has to be that the system is still capable of reaching internal equilibrium through
interactions between its constituent particles. We therefore need to consider how the state of the
system evolves under scattering.

Boltzmann approached the question of the evolution of entropy by defining the following
quantity in terms of the classical distribution function:

H =

∫

f ln f d3p. (8.2)

There is no integration over space, but Boltzmann was interested in the homogeneous case and
focused on the evolution of the velocity distribution. As we saw earlier (equation 5.14), this
quantity is equal to the entropy for a classical gas, to within a (negative) multiplicative factor and
an additive constant. Because of the change in sign, we can see that the second law will be proved
if we can show that H decreases monotonically with time for an isolated system. Boltzmann
claimed to be able to prove this, together with the statement that dH/dt = 0 when f is the
Maxwellian (i.e. in thermal equilibrium).

The Boltzmann equation First consider how f(q, p) evolves in the absence of collisions. All
particles at a given point in phase space are moving in the same direction, so a cell in phase space
transforms to a new cell at some later time, and all the particles in the initial cell remain within
the new one. In fact, the volume of these two cells are the same, so that the phase space density
in the new cell does not change with time. This is trivial to see in the case of zero applied force:
a square in x − px space changes to a parallelogram, with no change in area. In the presence
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of forces, we need to be more careful. When conserving particles, we must be dealing with the
continuity equation, which in normal 3D space looks as follows:

∂

∂t
ρ = −∇ · j = −∇ · ρv. (8.3)

Here, ρ→ f , and our 6D velocity is (q̇, ṗ), so that

∂

∂t
f +∇q · (f q̇) +∇p · (fṗ) = 0. (8.4)

But when we expand the derivatives, two terms cancel provided we assume that the dynamics are
described in terms of a Hamiltonian. In that case, we have Hamilton’s equations

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
, (8.5)

and ∂q̇/∂q+∂ṗ/∂p vanishes through the symmetry of 2nd partial derivatives. We therefore obtain
the collisionless Boltzmann equation,

∂

∂t
f + q̇ · ∇qf + ṗ · ∇pf = 0. (8.6)

We recognise the LHS here as just the total time derivative, df/dt, familiar in 3D in the form of
the convective derivative, ∂/∂t+ v ·∇ = 0 (which just says that we see things change as we
move either because they really change with time, or because we move to a new location where
conditions are different). Finally, the full Boltzmann equation has to allow for collisions, which
can scatter particles out of a given moving 6D volume element and change f :

∂

∂t
f + q̇ · ∇qf + ṗ · ∇pf =

(

∂f

∂t

)

coll

. (8.7)

Moments and fluid equations The Boltzmann equation is an important general tool for
discussing the evolution of classical statistical systems (and indeed quantum ones, such as black-
body radiation treated as a gas of photons). A description in terms of a distribution function
goes beyond the familiar case of a fluid treatment, in which material in a small volume element
has a single common velocity. At first sight, it would seem incorrect to treat even an ideal gas
as a fluid, because molecules at a given location have a distribution of velocities, travelling in
different directions. But it turns out that appropriate averaging of the Boltzmann equation yields
the equations of fluid mechanics even in such cases. To do this, we will write the momentum
c in terms of a particle velocity and a mass: p = mq̇ = mu. It is also convenient to write the
Boltzmann equation in its original form, (8.4), with a collision term on the RHS:

∂

∂t
f +∇q · (fu) +∇p · (fṗ) = ḟcoll. (8.8)

Now integrate this equation over momentum, and define the number density, n, and the mean
velocity, v ≡ 〈u〉:

n =

∫

f d3p; v =
1

n

∫

f u d3p. (8.9)

The first two terms in the Boltzmann equation become ṅ and ∇ · (nv). The third term vanishes
through the divergence theorem, and assuming f → 0 at infinite momentum. If the collision term
on the RHS represents only scattering, then it does not create or destroy particles and so must
average to zero (although this would not be so if the collisions involved annihilations). We then
get the fluid continuity equation

ṅ+∇ · (nv) = 0. (8.10)
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This is exactly what we would expect if all particles travelled at the same mean velocity, so
any dispersion in velocities doesn’t enter. Other equations of interest can be obtained by taking
different moments of the Boltzmann equation. In particular, suppose we multiply the equation by
u before integrating over momentum. The first term gives ∂(nv)/∂t. For the second, it is better
to consider the ith component, which has the tensor form ∇jn〈uiuj〉. For the third term, we have
pi(∂/∂pj)(faj), where a is the acceleration. Now, we can rewrite the derivative using

pi
∂

∂pj
f =

∂

∂pj
(fpi)− fδij . (8.11)

The first term here integrates to zero, as before, leaving −nai. Lastly, the collision term conserves
momentum and integrates to zero, so the velocity moment of the Boltzmann equation is

∂(nvi)

∂t
+∇jn〈uiuj〉 = nai. (8.12)

If we write ui = vi +wi, then 〈uiuj〉 = vivj + 〈wiwj〉. In principle the latter term has off-diagonal
terms, but we can consider the simplest case of isotropic velocities, for which m〈wiwj〉 = Pδij :
pressure just reflects an internal dispersion of velocities. Then we have

∂(ρvi)

∂t
+∇j(ρvivj) +∇iP = ρai (8.13)

(multiplying through bym and writing the mass density as ρ = mn). Finally, we can use continuity
to eliminate derivatives of the density, and write everything back in vector notation. The result is
the Euler equation, showing how the change of mean velocity is driven by pressure gradients
and external forces:

∂v

∂t
+ (v·∇) v = −1

ρ
∇P + a. (8.14)

This equation can be given a more direct and intuitive derivation but it is nevertheless pleasing
to see that it emerges directly from the Boltzmann formalism.

Collisions and the H theorem Boltzmann approached the collision term by enunciating the
hypothesis of Stosszahlansatz or molecular chaos, in which the velocities of colliding par-
ticles are uncorrelated, and statistically independent of position. From this, Boltzmann was able
to prove the H theorem, which states that the statistical entropy will indeed increase. The
proof is regrettably fairly long and detailed: see e.g. chapters 3 & 4 of Huang’s Statistical Mechan-

ics. In the end, skipping this derivation is not a catastrophe as we will develop better methods
for understanding entropy at the microscopic level – although it is important for understanding
the development of the subject to know about Boltzmann’s approach. And indeed the H theorem
initially does seem satisfying, as we know that the macroscopic experimental entropy will
increase, so can the statistical Boltzmann entropy really be considered a theoretical calculation of
this empirical quantity?

Arrow of time The H theorem has been severely criticised, starting in Boltzmann’s own time.
As shown earlier, the classical particle dynamics that he considered are invariant under time
reversal, so it is apparently impossible to have a systematic increase (or decrease) of entropy
(Loschmidt’s paradox). The weak point seems to be the Stosszahlansatz, which in effect
smuggles randomness into the initial conditions, thus forbidding the sort of fine-tuning that would
allow something like the Joule expansion to be reversed.

The modern view of Boltzmann’s work is therefore that causal microscopic processes alone
cannot assure an entropic arrow of time, and that the experimental increase of entropy in isolated
systems must be traced to the nature of the initial conditions. These are not only below the
maximum possible entropy, but are also presumed not to be chosen specially. The latter point is
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important: otherwise, we could set up the Joule expansion with all particles moving to the left,
so that the gas would spontaneously compress and reduce its classical entropy. But in reality the
initial condition for the gas in the LH side of the box will be thermal equilibrium, and such an
initial fine-tuned microstate will be unlikely. Similarly, if we pick a set of time-reversed particles
in the full box, these will indeed end up in the left hand region. But again this occurs for that
particular microstate we have prepared. For the overwhelming majority of microstates associated
with the equilibrium macrostate, the time evolution will be as expected i.e. for there to be only
small fluctuations in the number of particles in the left hand side. The probability of evolving
to a microstate with all the particles in the left hand region becomes overwhelmingly small as N
increases that such an event is unlikely to have occurred in the age of the universe. Nevertheless,
from this point of view it does seem inevitable that entropy could decrease. This can be proved
more formally via the Poincaré recurrence theorem: after a sufficient time, any dynamical
system will reach a point in phase space that is arbitrarily close to its initial state (see e.g. Huang
Chapter 4). As a simple estimate, imagine a box of gas with sufficiently high density that the
mean free path is small compared to the side of the box, L. In that case, by the time the particle
has travelled a distance L (made ‘one crossing’), it will be effectively impossible to predict which
side of the box it lies in. The probability that all particles are in one side is therefore (1/2)N ,
which is impressively small for N ∼ 1024. But after sufficient crossings, a rare event will happen:

Poincaré recurrence time ∼ 1/prob ∼ 210
24

crossings ≫ age of universe. (8.15)

So for practical purposes, this can be neglected. Nevertheless, in this picture one apparently has
to accept that the second law is purely statistical: it will routinely be violated in small-N systems,
and we are saved from seeing this in the laboratory only because we work closer to N ∼ 1024.

8.3 The Gibbs view on the arrow of time

The Gibbsian view of all this is very different. This may seem surprising given that Boltzmann’s
H was justified because it came from evaluating the Gibbs entropy in terms of the distribution
function. But there is a critical distinction between the two entropies. The distribution function
is related to occupation numbers via

f = h−3n, (8.16)

but are we to use the actual ni or their expectation, n̄i? Boltzmann uses the former, which
is a ‘noisy’ quantity: if e.g. n̄ = 2, we can expect order unity fluctuations in n with Poissonian
statistics, so that the actual n will be 0,1,2,3,. . . at different times. But the Gibbs entropy uses
probabilities of being in a given state and so must refer to n̄i. For a given n̄i, the fluctuations
in ni will also cause fluctuations in the entropy defined in the Boltzmann sense. But the Gibbs
entropy will have a smoother dependence on time, and indeed will not change at all unless the
probabilities evolve. This picture is certainly appealing in disposing of the idea that entropy can
fluctuate:

if the second law is a true law of physics, it should apply without exception, not
just ‘most of the time’ – and this is what the Gibbsian approach delivers.

But this viewpoint has difficulties.

Pseudoandomness and causality The Gibbs entropy, S = −k∑i pi ln pi, is problematic for
an isolated system. Suppose we place the system in one specific initial microstate, so that S = 0,
and ask how it will evolve. At least at the classical level, the particles obey causal dynamics: it is
in principle possible to calculate the effects of collisions. Thus the system always stays in a single
microstate and so the entropy always remains zero: the Gibbs entropy is a constant of the
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motion and apparently does not allow for a second law. Choosing a single initial microstate is
unrealistic, and instead we should have a set of {pi} conditional on some macroscopic information,
but this doesn’t change the argument as each initial microstate evolves to a unique new one, with
the same pi. Things would be different if the non-equilibrium system was placed in contact
with a heat bath, as then the p = 1 for a single microstate would be progressively reduced and
the probability of occupying other states would grow, evolving towards the maximum-entropy
state that we know gives probabilities based on Boltzmann factors. But without this external
randomness, how can the pi change?

It is at this point that the Bayesian view of probability as a degree of belief or knowledge
can be useful, since we can ask how well the prediction of the future microstate would work in
practice. Even for the simplest case of a single particle bouncing off elastic walls in x alone,
guaranteeing that it will be in the LH side of the box at a time t in the future requires a precision
in velocity δv < Lbox/t, which in due course becomes arbitrarily small. But things will be much
worse with collisions, where the particle dynamics will be chaotic, so that a small uncertainty
in initial conditions becomes magnified exponentially with time (as is appreciated by anyone
who has ever mis-hit a snooker ball very slightly). Thus the future evolution of the system
rapidly becomes in effect unpredictable – and this is really what we mean by randomness. Every
computer includes a random number generator, which is actually a causal algorithm. But in
practice these pseudorandoms are indistinguishable from the real thing. We can therefore
see that Boltzmann was perhaps being reasonable in arguing that collisions can lead to random
thermal equilibrium, with an associated increase of entropy.

This gives us a Bayesian interpretation of the second law in terms of information. The Gibbs
entropy is of the Shannon form and represents the hidden information about the system. It
should be clear that our knowledge about the system can only decline with time, if we make no
further measurements. As our confidence in predicting the future microstate erodes, the entropy
increases. Here, the origin of the arrow of time is very clear: it is causality. We generate some
information about the system by imposing an initial condition at time ti, and the effects of this
propagate to t > ti, albeit with decreasing certainty. But the state of the system at t < ti cannot
be influenced at all by how we choose to interfere with the system in the future.

Demons and information We can illuminate this further by considering Maxwell’s de-

mon of 1867. Maxwell had the idea of a microscopic creature that could open or close a flap
to ensure that particles only passed in one direction through the middle of the box, allowing
entropy to decrease. Actually, Maxwell’s original argument was based on segregating fast and
slowly-moving particles, so that the two sides of the box would attain different temperatures; but
in either case, there is the potential to turn an equilibrium situation into one of lower experimental
entropy. In the case of temperature segregation, we could certainly run a heat engine to extract
work, thus turning some of the initial heat in the box purely into work – which is an explicit
violation of one form of the second law. The resolution of the demon paradox is now agreed: an
entropy increase has to occur in the brain of the demon corresponding to the information they
process. As argued by Landauer in 1961, taking one bit of computer memory with a definite
value and then erasing it ready for the next measurement involves an entropy change k ln 2 (so
that there is an irreducible heat generation of kT ln 2 for each binary operation). Allowing for
this computational entropy generation, the total universe of (box + demon) does not undergo
an entropy decrease. But if we wait long enough, the effect produced by the demon will occur
spontaneously: so does entropy decrease in that case? That would be so if we could guarantee
to extract work from the system. However any L-R temperature difference will fluctuate, so we
would need to monitor the system continuously in order to know when L is hotter than R and
that our hypothetical heat engine should be connected. This change in the information stored in
our brains cannot be neglected: we are Maxwell’s demon.

We now explore the evolution of the Gibbs entropy in more detail, firstly in the classical
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regime, and then via a quantum treatment.

8.4 Entropy and phase-space dynamics

We will discuss the Gibbs entropy in the context of its full phase space: a 6N -dimensional
space spanned by the pi and qi co-ordinates of all particles in the system. Each point in this space
represent a distinct microstate. To simplify notation we denote a point in phase space by

X = (q1, . . . , q3N , p1, . . . , p3N ) . (8.17)

In order to introduce probabilities, we introduce a probability density in this space:

dprob = ρ(X, t) dΓ; dΓ ≡
3N
∏

i=1

dqi dpi ≡ d3Nq d3Np . (8.18)

Thus ρ keeps track of the ensemble of possible independent systems, each moving separately
through phase space. The ‘mass’ in this fluid of points is conserved, since the total probability,
∫

ρ(X, t) dΓ, is unity.

As in our discussion of the Boltzmann equation, the dynamics in full phase space is most
naturally described by Hamiltonian dynamics, since this concerns the changes in the coor-
dinates, qi and their conjugate momenta, pi. Hamilton’s equations read

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (8.19)

For a system of point particles of mass m interacting via a potential U({q}) = U({r}), the
generalised momentum and position coordinates can be chosen as ordinary Cartesian ones.
The Hamiltonian is then the total energy, written in terms of the p’s and q’s as

H =
∑

i

p2i
2m

+ U({qi}) = E , (8.20)

so that Hamilton’s equations have the familiar Newtonian form:

q̇i =
pi
m
, ṗi = −∂U

∂qi
. (8.21)

8.4.1 Liouville’s theorem

Liouville’s theorem states the important result that the phase-space fluid is incompressible.
We have previously seen the key elements of the proof in discussing the 6D Boltzmann equation.
First define the 6N -dimensional phase space velocity of a point X as

V = Ẋ = (q̇1, . . . , q̇3N , ṗ1, . . . , ṗ3N ) . (8.22)

In these terms, the conserved nature of total probability must require a continuity equation

in phase space. The flux density of probability will be just ρ V , so the continuity equation is

∂ρ

∂t
= −∇ · (V ρ) ≡ −

3N
∑

i=1

[

∂

∂qi
(q̇iρ) +

∂

∂pi
(ṗiρ)

]

. (8.23)

Expanding the derivatives gives

−∂ρ
∂t

= V · ∇ρ+ ρ∇ · V ≡
3N
∑

i=1

[

q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]

+ ρ
3N
∑

i=1

[

∂q̇i
∂qi

+
∂ṗi
∂pi

]

. (8.24)

48



But from Hamilton’s equations the second pair of terms on the RHS cancel, so that

∇ · V =
3N
∑

i=1

[

∂q̇i
∂qi

+
∂ṗi
∂pi

]

=
3N
∑

i=1

[

∂

∂qi

(

∂H

∂pi

)

+
∂

∂pi

(

−∂H
∂qi

)]

= 0 , (8.25)

and hence we have

−∂ρ
∂t

= V · ∇ρ =

3N
∑

i=1

[

q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

]

, (8.26)

As d/dt, the time derivative, is given by

dρ

dt
=
∂ρ

∂t
+

3N
∑

i=1

[

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]

=
∂ρ

∂t
+ V · ∇ρ , (8.27)

then we have

dρ

dt
=
∂ρ

∂t
+ V · ∇ρ = 0 . (8.28)

It is apparent that d/dt, the total time derivative, is a convective time derivative that moves
with the fluid of phase-space points. Thus we have proved that the fluid is incompressible:

if we follow the trajectory of any phase-space point, the density at its
location, ρ, will not change with time.

More generally (see tutorial) we can show that any function u of the canonical variables
{qi, pi} satisfies

du

dt
=
∂u

∂t
+ [u,H] , (8.29)

and so we can write Liouville’s equation in the form

dρ

dt
=
∂ρ

∂t
+ [ρ,H] = 0 , (8.30)

where we define the Poisson bracket of functions u and v of the canonical variables {qi, pi} as

[u, v] =
∑

i

(

∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)

, (8.31)

(see tutorial sheet). Finally we note that to have a stationary distribution

∂ρ

∂t
= 0 , (8.32)

which is a necessary condition for equilibrium, we require that [ρ,H] = 0. Choosing ρ = const. or
ρ = ρ(H) recovers the microcanonical and canonical ensembles respectively.
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8.4.2 Entropy and coarse graining

We now write the Gibbs entropy in the language of phase-space density. We need SGibbs =
−k∑ pi ln pi, where now the probability is to be thought of as the probability of occupying a cell
of volume δΓ: pi → ρ δΓ. For small δΓ, the sum approaches an integral:

SGibbs = −k
∫

dΓ ρ ln ρ+ const. , (8.33)

where the integral is over all phase space. The constant is not well defined, but it is independent
of ρ. If we take SGibbs as our definition of S, then it follows from Liouville’s theorem that

dSGibbs

dt
= −k d

dt

∫

dΓ ρ ln ρ = 0 (8.34)

(see tutorial). Thus the classical Gibbs entropy is constant in time, rather than increasing, as
expected from an argument from discrete microstates. We should however note the subtlety that
we have implicitly assumed that the dynamical trajectories move one initial phase-space point to
another in a 1-to-1 mapping: phase-space volume elements distort their shape, but do not
overlap. This may not seem obvious, but assume that two distinct phase-space points do evolve to
the same point at some later time. Then the time-reversibility of the dynamics would be violated,
as there can only be a single time-reversed trajectory from that point.

Figure 5: An example of the phase-space density before and after an irreversible change in a 1D ‘box’ of
gas. Initially, the two halves are at different temperatures, T1 and T2 (left). After evolution, the distribution
is Boltzmann with T = (T1 + T2)/2.

This constancy of SGibbs applies for any initial ρ, and not just a single microstate, or very
close to one. A particular example would be a system in thermal equilibrium, where the microstate
probabilities are given by Boltzmann factors. We know that this is a maximum entropy state,
which will not change under dynamical evolution. So a fixed Gibbs entropy is not a problem
there. But our main interest is is in non-equilibrium initial conditions, and we need
to know the initial microstate probabilities conditional on the macroscopic constraints we
have applied. In practice, we can see that this problem only has a clear solution if we set up
initial macroscopic systems that are inhomogeneous mixtures of subsystems that are locally
in equilibrium: Joule expansion is such an example, as is the case of a box of gas with equal mass
at different temperatures, T1 and T2, in each half. In the latter case, all of phase space has a
non-zero probability, but the Boltzmann factors are different in each half (see Fig. 5). Classically,
this system will evolve towards equilibrium at T = (T1 + T2)/2, with microstate probabilities
that are Boltzmann factors corresponding to T . But since this has a higher entropy that the
original state, such an end point is forbidden by Liouville’s theorem. In the end, the failure of
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the Gibbs entropy to increase is less about that entropy definition, and more a reflection of the
fundamental puzzle that Hamiltonian-based interactions in an isolated system cannot create

true thermal equilibrium, with Boltzmann microstate probabilities. But if we can solve
this general problem, then the Gibbs entropy will naturally increase.

Figure 6: Coarse graining at work. Phase-space density is constant, so the total occupied phase-space
volume must be constant in order for probability to be conserved. But the shape of the volume elements
can become highly distorted and ‘thready’: any practical pixellization will then include much empty space,
so that the average phase-space density is reduced.

Coarse graining One way of understanding the behaviour here is to focus on the shape of
elements in phase space. As a consequence of Liouville’s theorem, these must maintain their
volume (the density doesn’t change, and total probability must remain at unity). But at the same
time, different points in phase space will tend to move apart. The way in which these requirements
are reconciled is that volume elements distort into complicated regions of extreme ‘threadiness’,
as depicted in Fig. 6. This is very much like stirring ink into water: in principle, there is always
ink in one place and water in another, but after a while the ink appears to have a uniform density,
lower than the original one. Thus in practice the Gibbs entropy will be redefined as

S̄ = −k
∫

dΓ ρ̄ ln ρ̄ , (8.35)

where ρ̄ is a coarse grained probability density, defined by averaging ρ over some fixed local
scale Λ in phase space.

Concavity of entropy The coarse-graining procedure smooths out the local probability density,
and we can prove that this can only increase S̄. To see this, note that the function s(ρ) = −kρ ln ρ
is concave, so that the function of the average is ≥ the average of the function: s(λa+(1−λ)b) ≥
λs(a) + (1 − λ)s(b) for λ ∈ [1, 0]. For a convex function the opposite is true. The truth of this
statement can be grasped geometrically, as shown in Fig. 7.

This is all very well, but what sets the coarse-graining scale? Unless we can argue that this
is objective rather than an arbitrary personal choice, the true fine-grained distribution function
should apparently still be there to discover. But can the state of an evolved isolated system always
be distinguished from true thermal equilibrium? There are several arguments that suggest not.
Classically, the forward trajectories cannot be predicted perfectly (the phenomenon of chaos),
but also the scale of any required coarse-graining will decrease with time as the distortion of volume
elements becomes more extreme, until it hits the fundamental limit set by h, which ultimately
derives from quantum mechanics. Finally, though, we must once again remember that all the
Liouville discussion is based on probabilities; and although we use ensembles as a conceptual
device, we only have a single actual system. Classically, the particles in phase space are random
drawings from the underlying probability distribution, and the finite numbers of these will have an
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Figure 7: Property of a concave function, which always lies above the straight line joining any two points.
This is guaranteed if the second derivative is negative.

impact on what we believe about the system. Once the scale of fine structure in the probability
density is below the typical separation of particles, we will have no reason to prefer the exact
phase-space density from one that is smooth on small scales (as illustrated in Fig. 8) Therefore,
for practical purposes, we can proceed as though exact thermal equilibrium is attained – because
we can never be in possession of any evidence to contradict this hypothesis.
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x

1.0

0.5

0.0

0.5

1.0

p
x

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

Figure 8: An example of a fine-grained phase-space probability density, sampled with a finite number
of particles, contrasted with the same number of particles distributed entirely at random according to a
uniform coarse-grained density. With too few particles, the fine-grained structure cannot be detected.

As a further example of ‘coarse-graining’ leading to irreversibility, consider Newton’s law with
a viscous term:

mr̈i + κṙi = −∇iU(r) . (8.36)

The drag term dissipates energy in an irreversible way, and the presence of the first-order time
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derivative makes it mathematically clear that the system does not have time-reversal symmetry.
But the viscous drag on a particle is a result of complicated processes involving molecular collisions
and in principle we could write out all these other processes using microscopic time-reversible equa-
tions (and keeping energy conserved). The viscous term in the equation approximates microscopic
reversible processes by a ‘coarse-grained’ description.

The linkage between coarse-graining and entropy increase is an illustration of Shannon’s
view relating entropy to hidden information. In the coarse-graining process, we do explicitly lose
information: only by doing so is the Gibbs entropy allowed to increase. Therefore the increase of
entropy is linked to our knowledge about the system, rather than anything it is doing internally,
in a manner that may appear questionable. Can it really be that macroscopic and reproducible
phenomena, such as heat flow, depend on how we handle information? Perhaps yes, since the
division between work and heat is somewhat arbitrary. Were we able to track all the particle
positions, there would be no need to talk about heat energy, or heat flow.

9 Quantum dynamics, the master equation and detailed balance

9.1 The quantum entropy paradox

We now look again at the same issue of reconciling macroscopic irreversibility with microscopic
reversibility, but this time from a quantum perspective. Since any increase of the Gibbs entropy
requires us to move from the certainty of occupying a single microstate to having a range of
possible states in play, we might initially have some vague notion that ‘quantum uncertainty’
could accomplish the necessary blurring. But any such hope is quickly seen to be incorrect.
Suppose we choose as the microstates the eigenstates of the system’s quantum Hamiltonian H.
But each |i〉 undergoes independent unitary evolution under H, so there is no mechanism for
an isolated system to jump from one eigenstate to another (this is the fundamental problem of
measurement in quantum mechanics). If we write the state of the system as

|Ψ〉 =
∑

i

ci|i〉 , (9.1)

then the evolution becomes

i~
∂|Ψ〉
∂t

= H|Ψ〉 =
∑

i

ciEi|i〉 , (9.2)

with solution (assuming time-independent H)

|Ψ(t)〉 =
∑

i

cie
−iEit/~|i〉 , (9.3)

which simply applies a phase factor to the eigenstates. That is, Schrödinger’s equation applied
to energy eigenstates as microstates cannot change their classical weights pi = |ci|2. Accordingly,
the entropy S = −k∑ |ci|2 ln |ci|2 is trivially constant: dS/dt = 0, just as in classical mechanics.

We can generalise this argument to the case where the microstates |i〉 are not eigenstates of
H, which requires the density matrix:

ρ =
∑

i

pi|Ψi〉〈Ψi| , (9.4)

where |Ψi〉 is some state vector (not necessarily an energy eigenstate) and pi are classical proba-
bilities. In this language, we saw that the Gibbs entropy is

SG = −k Tr [ρ ln ρ] . (9.5)
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Now use the Schrödinger equation and its adjoint (and the fact that H is Hermitian):

i~
∂|Ψ〉
∂t

= H|Ψ〉 − i~
∂〈Ψ|
∂t

= 〈Ψ|H .

This allows us to differentiate the product in ρ, to obtain its time derivative:

∂ρ

∂t
= − i

~
[H, ρ] , (9.6)

which is the von Neumann equation. The unitary time evolution of |Ψi〉 and ρ becomes

|Ψi(t)〉 = e−iHt/~|Ψi(0)〉 ; ρ(t) = e−iHt/~ρ(0)eiHt/~ . (9.7)

But this unitary transformation is a time-dependent change of basis, which is not something that
can affect the trace of a matrix, so that again we have

dSG
dt

= 0 . (9.8)

9.2 Fermi’s master equation

To get anything resembling the second law, we therefore again require a coarse graining

operation, leading to nonunitary time evolution, and the discarding of information. One way
of doing this is to acknowledge that we cannot write down the true Hamiltonian, containing all
the microscopic detail of a real many particle system; instead, we generally adopt an approximate
Hamiltonian H0 and describe the system in terms of a set of eigenstates of H0, |i〉. The true
Hamiltonian is given by H0 plus a small perturbation:

H = H0 + h . (9.9)

In terms of this true Hamiltonian, the states |i〉 are approximate energy eigenstates. The matrix
elements of h in this basis are

hij = 〈i|h|j〉 = h∗ji , (9.10)

where ∗ denotes complex conjugate. This perturbation induces quantum jumps between the
approximate states |i〉. These states are treated in an explicitly nonunitary way: we assign to them
evolving classical probabilities pi, instead of keeping track of their quantum amplitudes.
This can be viewed as a form of coarse graining in which the quantum coherence between these
different states is wiped out.

The transition rates induced by the perturbation can be calculated using time-dependent
perturbation theory, and the standard result is Fermi’s Golden Rule:

νij =
2π

~
|hij |2 δ(Ei − Ej) . (9.11)

You may be more familiar with this in the form where there is a continuum of final states, so that
the delta-function in energy is replaced by a density of final states, ρ(E), but the above form is
the more fundamental result, which applies for an explicit pair of initial and final states. Note
that because hij = h∗ji, the jump rates are symmetric in either direction

νij = νji . (9.12)

In a small enough time interval dt, the probability of making a transition is p = ν dt, and the
probabilities pi change according to

dpi =



−pi
∑

j

νij +
∑

j

pj νji



 dt , (9.13)
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where the first term is the probability that the system is in state |i〉 initially but jumps out of it
into some other state, and the second is the probability that the system is initially elsewhere but
jumps into state |i〉. Thus

dpi
dt

=
∑

j

(pjνji − piνij) =
∑

j

νij (pj − pi) , (9.14)

where the last step uses equality of the two rates. This is called the Master equation: it is
first order in time and clearly does not have time reversal symmetry.

9.3 Quantum H theorem

Consider transitions just between a particular pair of states, |1〉 and |2〉, so that p1 + p2 = const.
and in a small interval dt, dp1 = −dp2. The master equation says dp1 = −ν12(p1 − p2)dt, and we
can add this to itself to get

d(p1 − p2) = −2ν12(p1 − p2)dt . (9.15)

Since νij is always positive, we see that |p1 − p2| always decreases: transitions will always tend to
equalise occupation probabilities. The entropy change which results from this is always positive.
The proof is again based on the concavity of the function s(p) = −kp ln p, which we considered
previously in the classical case. If p1 and p2 evolve to p′1 and p′2, we can see from Fig. 9 that the
entropy must increase. Since the master equation describes the overall effect of many pairwise
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p
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p2

(s(p1) + s(p2))/2p′1

p′2

(s(p′1) + s(p′2))/2

Figure 9: Due to concavity the entropy always increases under the master equation, which brings the
probabilities p1 and p2 progressively closer.

contributions of this kind, each of which can only increase the entropy, we have proved a quantum
version of the H theorem:

dS

dt
≥ 0 , (9.16)

which is the second law.

The coarse graining implicit in the master equation succeeds in reconciling microscopic quan-
tum dynamics with the observed thermodynamic properties of large systems. But the actual
nature of the coarse graining is less clear than in the classical case; it involves discarding quantum
information (phase). Also, this raises the question of whether the phenomenon of wavefunc-

tion collapse (implicit in the concept of a quantum jump) is somehow required to fix the arrow
of time. Yet again, we see that the concept of the observer has entered the discussion. As we
saw with the discussion in terms of the density matrix, an isolated system will undergo unitary
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evolution: there will be no quantum jumps and no change in entropy. The contrary conclusion
from the master equation in then a statement about what changes as a result of us performing
measurements on the system and acquiring (or not) information. This is perhaps the ultimate
illustration of the fact that the Gibbs formulation of entropy is a subjective quantity.

9.4 Summing up the second law

This concludes our survey of the attempts to understand thermodynamics (and entropy in par-
ticular) via a fundamental microscopic approach. Along the way, we have developed a number
of interesting tools and concepts, and for the remainder of the course it is time to ‘shut up and
calculate’ as we look at the plentiful applications of these ideas. But the journey has been long
and complicated, so it is worth a final attempt to take stock: did we succeed in understanding
the second law and the arrow of time? The most important elements of any such understanding
are the following:

(1) A general definition of entropy is the Gibbs expression, SG = −k∑i pi ln pi, involving the
probability of finding a system in the ith microstate. In thermal equilibrium, the pi are
given by Boltzmann or Gibbs factors and SG is then maximised and is equal to the classical
experimental entropy – a quantity that is meaningful only for large systems in equilibrium.

(2) The central difficulty in moving beyond equilibrium thermodynamics and proving ∆S > 0
is to understand how an isolated system can attain thermal equilibrium, when there is no
external random influence. A symptom of this fundamental problem (but not the disease
itself) is that SG cannot change: the system must stay in a single (evolving) microstate.

(3) Nevertheless, a small range of initial microstates in phase space will spread to cover a large
range of states at late times, in a way that cannot be distinguished from true thermal
equilibrium. SG will then increase, as a result of ‘coarse graining’: our lack of precise
knowledge of the exact microstate occupation probabilities.

(4) Even in thermal equilibrium, however, rare microstates will sometimes be populated – and
some of these can lead to evolution towards a temporary state of lower classical entropy.
But these transient states can only be used to extract work from heat (and thus violate the
second law) if the system is monitored continuously. This information processing by the
observer generates additional entropy, so that the total entropy of the universe still always
increases.

(5) In the end, the arrow of time derives from causality: any non-equilibrium initial conditions
that we impose affect the universe – and our knowledge about it – in the future, but not in
the past.

10 Applications of the master equation: random walk and diffu-
sion

The basic structure of the master equation underlies most irreversible processes in physics, whether
quantum or classical. As a ubiquitous example, we consider the case of diffusion on a lattice in
one dimension, i.e. a continuous time random walk. This could be the motion of a vacancy (or
of an impurity atom) in a crystal that moves by swapping places with (other) atoms. We label
the lattice sites of the system by positive and negative integers i = −L/a . . . + L/a where a is
the lattice spacing and L is very large (effectively infinite so that we avoid discussion of boundary
conditions). The state of the system is then given by i, the spatial position of the particle. In
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small time interval dt there is probability ν dt for our particle to move to the right in time interval
dt and the same to the left. Then

νij =







ν j = i− 1
ν j = i+ 1
0 otherwise

(10.1)

so that

dpi
dt

=
∑

j

νij(pj − pi) (10.2)

= ν (pi−1 − pi) + ν (pi+1 − pi) . (10.3)

This is the master equation for a random walk – specifically, for a continuous time random walk
on a discrete lattice. When the time variable is also discrete, we end up with the binomial
distribution for pi if we start at the origin (say). The continuous time case is a bit messier (the
solution for pi(t) involves modified Bessel functions rather than Binomial coefficients).

But things simplify if we assume that pi varies smoothly with i (in fact this will always be
true eventually even if not to begin with). In that case we can rewrite the master equation as
continuous also in space by introducing the probability density p(x, t)dx of finding our object
in a small region centred on x = ia. Then the idea is to replace pi(t) → p(x, t) and expand
pi±1 = p(x± a) for a small. i.e.

pi±1 = p(x, t)± a
∂p(x, t)

∂x
+
a2

2

∂2p(x, t)

∂x2
+ . . . (10.4)

Then keeping terms up to O(a2) we obtain

∂p

∂t
= a2ν

∂2p

∂x2
, (10.5)

which is the diffusion equation for the probability density of a particle with diffusion

coefficient D = a2ν. The dimensions of D are [L2/T ]. The diffusion equation can also describe
many non-interacting particles diffusing: we then replace p by ρ, the density or concentration of
particles. The normalisation is

∫

ρ dx = N where N is the number of particles. The diffusion
equation, like the master equation from which it was derived, explicitly violates time reversal
symmetry and allows entropy to increase.

The solution of the diffusion equation for an initial condition in which the particle is localised
at the origin (formally, p(x, 0) = δ(x)) is the Gaussian

p(x, t) = (4πDt)−1/2 exp[−x2/4Dt] . (10.6)

This formula may be checked directly and can also be derived by taking the Fourier transform
of the diffusion equation. As t increases the Gaussian ‘bell-shaped’ curve spreads out, becoming
wider and lower at the peak (Fig. (10). The width grows as 〈x2〉1/2 = (2Dt)1/2, so that a particle
will take time ∝ L2 to explore a region of size L.

10.1 Detailed balance

As we have seen, by introducing a type of coarse-graining, the master equation violates time
reversal symmetry and leads to the second law. Remarkably, however, the fact that the underlying
microphysics is actually time reversal-symmetric has deep consequences that survive the coarse-
graining procedure and provide the cornerstones of nonequilibrium thermodynamics, as follows.
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Figure 10: The solution of the diffusion equation (Gaussian distribution) with D = 1 as t increases.

Isolated system For an isolated system in equilibrium, the Principle of equal a priori probability
(PEAPP) holds (peqi = const. = peq) and we have transition rate symmetry, so that

peqi νij = peqj νji . (10.7)

This is the condition of detailed balance: the rate of quantum jumps from i to j (which is
the left hand side) is the same as from j to i. In the other words the probability flux from i to
j is exactly balanced by the probability flux from j to i. This is a stronger statement than the
master equation, which only states that to have a stationary distribution (ṗi = 0) there should be
overall balance between rate of jumping into and out of state i. But here we see that equilibrium
requires balance between any two pairs of states.

The result is very powerful, because it applies not only to individual states but any grouping
of them: consider two groups of states A and B. Summing the detailed balance condition over i
a member of group A and j a member of group B yields

∑

i∈A

∑

j∈B

peqi νij =
∑

i∈A

∑

j∈B

peqj νji . (10.8)

Now consider the mean rate of transition from group A to group B

peqA νAB =
∑

i∈A

peqi
∑

j∈B

νij . (10.9)

The left hand side involves the total probability of being in group A:

peqA =
∑

i∈A

peqi = peqΩA , (10.10)

where ΩA is the number of microstates in A. This probability is multiplied by the mean rate,
νAB, of transitions from group A to group B given that the system is in group A:

νAB =

∑

i∈A p
eq
i

∑

j∈B νij
∑

i∈A p
eq
i

=
1

ΩA

∑

i∈A

∑

j∈B

νij , (10.11)

and similarly for the right hand side.
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To understand the right hand side note that we must start in some state i in group A. Thus
we consider the total rate from state i into group B given by

∑

j∈B νij then average over the states
i in group A each with their equilibrium probability peqi . Then the equation becomes

peqA νAB = peqB νBA , (10.12)

i.e. the transitions from A to B are exactly balanced by the transitions from B to A and we have
detailed balance between the two groups. It is important here to note since pA 6= pB for different
size groups the transitions rates between the two groups are generally not symmetric:

νAB 6= νBA . (10.13)

Canonical ensemble Now we can use this result to describe dynamics in the canonical en-
semble. Recall the setup that can be used to derive the canonical ensemble: a microstate of the
‘composite’ of system + bath specifies the state of both. But if we just specify the microstate of
the system, then this corresponds to many possible states (with the allowed energy) of the bath
and thus to a group of states of the composite. Therefore transitions between states (say α and β)
of the system in the canonical ensemble are between groups of states in the composite and obey
detailed balance

peqα ναβ = peqβ νβα . (10.14)

Further since we know in the canonical ensemble that peqα ∝ e−βEα we find

ναβ
νβα

= eβ(Eα−Eβ) . (10.15)

Thus the transition rates are asymmetric and the ratio is a function of the energy difference
between the states.

Spontaneous emission Detailed balance was used to great effect by Einstein. Consider for
simplicity two states of different energies: transitions between them must conserve energy and
usually this will involve the emission or absorption of a photon, where hν is equal to the energy
difference. The problem is that the golden rule, applied to some perturbing radiation field, predicts
that the transition rates are symmetric: νup = νdown = BU , where U is the electromagnetic
energy density and B is some calculable coefficient. But detailed balance says that the rates must
be unequal. Einstein guessed that the correct equation involved spontaneous emission:
νdown = A+BU . Since we have

νdown

νup
=
A+BU

BU
= exp[−βhν], (10.16)

we learn that
A = BU(exp[−βhν]− 1). (10.17)

But we saw that U ∝ ν3(exp[−βhν] − 1)−1, so we get an expression for A, independent of the
temperature used in the argument. A more transparent way to express the answer, though, is to
recognise that (exp[−βhν]− 1)−1 = n̄, the photon occupation number. Hence

νdown

νup
=
n̄+ 1

n̄
. (10.18)

It is as if downwards transitions are stimulated by one more photon than is actually present. This
can be understood when the electromagnetic field is treated quantum mechanically.
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Currents One general consequence of detailed balance is that, in equilibrium, there are no
microscopic probability currents or, more generally, macroscopic currents of physical quantities.
As an example consider the one-dimensional diffusion equation in the continuity equation form

∂ρ

∂t
+
∂J

∂x
= 0 , (10.19)

where

J = −D∂ρ

∂x
, (10.20)

is the diffusive particle current (diffusion causes a net flow down a concentration gradient). The
current is of the globally conserved particle concentration ρ. A stationary solution ∂ρ/∂t = 0
requires J = const.. An equilibrium solution goes further and fixes

Jeq = 0 , (10.21)

implying that ρeq is spatially constant. A non-equilibrium stationary solution would have J 6= 0
thus implying

ρ(x) = const.− J

D
x . (10.22)

Such a linear density profile would have to be maintained in a stationary state by forcing particles
through the system from an external reservoir for example. The system is then held out of
equilibrium in a non-equilibrium steady state.

Monte Carlo simulation Detailed balance can be used as a practical tool in computing.
Suppose we want to simulate the interactions of many particles in order to follow them into their
equilibrium state. Solving exact equations of motion in the molecular dynamics method
can be highly time consuming. But to obtain the equilibrium properties of the system, it may be
much faster to use a dynamics which does not look anything like the actual equations of motion.
If in equilibrium the artificial dynamics obey the principle of detailed balance, then it is (almost)
guaranteed that the steady state found by simulation is the true equilibrium state, namely

pα =
1

Z
e−βEα . (10.23)

The best known example is the Monte Carlo method, in which the dynamical algorithm
consists of random jumps, according to the Metropolis algorithm. Here, the jump rates ναβ
for all pairs of states (α, β) take the form

ναβ = ν0

{

1 Eβ < Eα

exp(−β(Eβ − Eα)) Eβ ≥ Eα
(10.24)

(10.25)

≡ ν0 min (1, exp(−β(Eβ − Eα))) , (10.26)

where ν0 is an irrelevant constant. This satisfies detailed balance as we have

peqα ναβ =
1

Z
e−βEα × ν0min

(

1, e−β(Eβ−Eα)
)

(10.27)

=
1

Z
ν0min

(

e−βEα , e−βEβ

)

(10.28)

=
1

Z
e−βEβ × ν0min

(

1, e−β(Eα−Eβ)
)

(10.29)

= peqβ νβα . (10.30)
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This is useful in simulations as it dynamically generates a realization of the canonical distribution
peqα , from which we can directly find various averages 〈O〉 =∑αOαp

eq
α .

Note that the Monte Carlo method is a stochastic algorithm, i.e. is non-deterministic. It thus
represents a form of coarse-graining over the deterministic microscopic dynamics. (The epithet
Monte Carlo was inspired by the spinning of wheels in a Casino.)

11 The Langevin approach and the dynamics of fluctuations

11.1 The random walk

We have seen that the approach to thermal equilibrium ends up involving random influences –
either exactly so if there is external thermal contact, or effectively so in isolated systems despite
the operation of causal dynamics. It is therefore interesting to study particle dynamics by means
of stochastic differential equations, which include explicitly random terms. To illustrate
what is involved, let us revisit the random walk and the diffusion limit of section 10:

∂p

∂t
= D

∂2p

∂x2
. (11.1)

This is the equation for the time evolution of the probability distribution of the position
of a particle, x.

The Langevin equation, on the other hand is a stochastic equation that tries to describe
the time dependence of x directly. Consider a small time interval ∆t with

x(t+∆t) = x(t) + ∆x(t), (11.2)

where the step ∆x(t) is a random variable. When the lattice spacing is |∆x| = a,

∆x(t) =







+a probability ν∆t
−a probability ν∆t
0 probability (1− 2ν∆t) .

(11.3)

Note that 〈∆x〉 = 0 and 〈(∆x)2〉 = 2a2ν∆t = 2D∆t. Also note that ∆x(t) are uncorrelated for
different t. What we want to do now is take the ‘continuum limit’ i.e. let ∆x and ∆t go to zero in
some prescribed way. There are some mathematical subtleties involved, and to make things work
the lattice spacing a should in fact scale as

a ∝ (∆t)1/2 (11.4)

when we take the limit ∆t→ 0. But the continuum form of the equation is intuitively reasonable:

dx

dt
= η(t) , (11.5)

where

〈η(t)〉 = 0 (11.6)

and 〈η(t)η(t′)〉 = Γ δ(t− t′) . (11.7)

A random variable η(t) with these statistics is known as white noise.
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We thus have stochastic processes x(t) and η, related through a stochastic differential
equation, commonly referred to as a Langevin equation. We can formally integrate (11.5)
to obtain

x(t)− x0 =

∫ t

0
dt′η(t′) (11.8)

To extract useful information from this solution we should take averages. Using the properties
(11.6,11.7)

〈x(t)− x0〉 = 0 (11.9)

〈(x(t)− x0)
2〉 =

∫ t

0
dt′
∫ t

0
dt′′〈η(t′)η(t′′)〉 = Γ

∫ t

0
dt′
∫ t

0
dt′′δ(t′ − t′′) = Γ t. (11.10)

We therefore identify the diffusion coefficient D by

Γ = 2D. (11.11)

These two descriptions, diffusion equation and Langevin equation, are in fact equivalent and
generate the same Gaussian probability distribution p(x). A detailed proof is given in the Advanced
Statistical Physics course, but informally we can appeal to the central limit theorem: (11.8)
is a sum of uncorrelated random variables, which under general conditions has a Gaussian prob-
ability distribution. In summary, the Langevin approach then describes a Gaussian Markov

stochastic process: one whose state at some future time t has a Gaussian probability distri-
bution that is purely conditional on its state at time t0, not on the history by which the system
reached that state (independence of history is what we mean by a Markov process).

11.2 Brownian motion

We now apply the Langevin approach to the motion of a single colloidal particle in a fluid.
This particle is constantly being bombarded by collisions with the (smaller) fluid molecules; this
Brownian motion was first reported by Reverend Robert Brown in 1827. It was analysed
in 1905 by Einstein (in his most cited research paper) who realised that, among other things,
it proved that the suspending fluid was indeed made of discrete molecules, an idea which up to
then had remained controversial. Today, when laboratory experiments on individual atoms are
commonplace, it seems shocking that the reality of atoms could have been doubted as recently
as the early 20th Century. In this uncertain context, we can only admire Boltzmann’s courage in
seeking microscopic explanations of thermodynamics, and we can understand more readily why
his efforts met with such resistance.

Approaching the phenomenon of Brownian motion via a Langevin equation is a form of coarse-
graining, which once again introduces irreversibility into macroscopic physics. That is, in principle
we could keep track of all the (reversible) molecular dynamics which gives rise to the collision but
we cannot practically do this. Instead we postulate the existence of random forces that are
not derived from any Hamiltonian, as first done by Paul Langevin in 1908.

Consider a particle of mass m immersed in a fluid. According to Langevin, its equation of
motion is (in one dimension)

m
d2x

dt2
= −γ dx

dt
+ f(t) . (11.12)

The first term on the right is a damping force caused by friction between the particle and the
fluid. Note that often µ ≡ 1/γ is called the mobility of such a sphere (not to be confused with
chemical potential). The final term f(t) is a random force. This stochastic process should be
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correlated in time over some period set by the duration of molecular conditions, tc, but we assume
that this is short enough that in practice we can model the correlations with a delta-function so
that, as in the random walk,

〈f(t)〉 = 0 (11.13)

〈f(t1)f(t2)〉 = Γδ(t1 − t2) . (11.14)

Now let us integrate the equation. For simplicity take m = 1. Introducing an integrating factor
gives

d

dt

[

v(t)eγt
]

= eγtf(t) , (11.15)

which we can integrate up to obtain

v(t)− v0e
−γt =

∫ t

0
dt′e−γ(t−t′)f(t′) . (11.16)

Thus the expectation of the velocity damps away through friction:

〈v(t)〉 = v0e
−γt . (11.17)

Now consider the mean squared velocity

〈v(t)2〉 = v20e
−2γt +

∫ t

0
dt′
∫ t

0
dt′′e−γ(t−t′)−γ(t−t′′)〈f(t′)f(t′′)〉 (11.18)

= v20e
−2γt + Γ

∫ t

0
dt′e−2γ(t−t′) (11.19)

= v20e
−2γt +

Γ

2γ

[

1− e−2γt
]

. (11.20)

So initially 〈v2〉 ≃ v20, but eventually the particle forgets its initial velocity and comes into thermal
equilibrium with the fluid:

〈v2〉 → Γ

2γ
for γt≫ 1 . (11.21)

By equipartition, a particle in equilibrium should have kinetic energy (m = 1 here)

1

2
〈v2〉 = 1

2
kT . (11.22)

Therefore we deduce

Γ = 2γkT . (11.23)

The magnitude of the noise fluctuations Γ are thus related to the viscous or dissipative term
controlled by γ – reasonably enough, as both effects result from the same microscopic dynamics
involving molecular collisions.

Einstein relation Integrating again gives (see tutorial)

x(t)− x0 =
v0
γ
(1− e−γt) +

∫ t

0
dt′
∫ t′

0
dt′′ e−γ(t′−t′′) f(t′′) , (11.24)

leading to

〈(x(t)− x0)
2〉 = Γ

γ2
t− Γ

γ3
[

1− e−γt
]

+
1

γ2

(

v20 −
Γ

2γ

)

[

1− e−γt
]2
, (11.25)
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and giving the short and long time limits

〈

(x(t)− x0)
2
〉

≃
{

v20t
2 γt≪ 1

Γ
γ2 t =

2kT
γ t γt≫ 1 .

(11.26)

Thus initially the Brownian particle moves ballistically with the initial velocity v0; but after a
sufficiently long time, it performs diffusive motion (where the acceleration term in equation [11.12]
can be ignored). Comparing with equation (10.6) with diffusion coefficient D, i.e. 〈(x(t)−x0)2)〉 =
2Dt, we obtain

D =
kT

γ
(11.27)

This equation is known as the Einstein relation and relates the diffusion coefficient (the
fluctuation) of the particle to its dissipation.

Nernst–Einstein relation Finally we can consider a particle with charge q and allow for the
effect of an external field E. This field will produce a systematic force qE to add into (11.12) and
the equation for the mean velocity becomes

m

〈

dv

dt

〉

= −γ〈v〉+ qE . (11.28)

The terminal drift velocity (when 〈dv/dt〉 = 0) is then

〈v〉 = qE

γ
. (11.29)

This idea of a drift velocity provides a direct shortcut to the Einstein relation. If we consider
equilibrium under the external field, then we would expect the density of particles to be governed
by a Boltzmann factor: ρ(x) ∝ exp[qEx/kT ] (because −qEx is a potential energy if the force
points in the +x direction). The drift velocity produces a flux density of particles in the +x
direction of j = ρ〈v〉, but in equilibrium this will be cancelled by the flux density of diffusion in
the direction of lower density:

ρ〈v〉 = Ddρ/dx = D(qE/kT )ρ ⇒ 1/γ = D/kT. (11.30)

If we define the mobility µ as

µ =
terminal drift velocity

applied force
, (11.31)

then as here µ = 〈v〉/(qE) = 1/γ, we have

µ =
D

kT
(11.32)

which is known as the Nernst-Einstein relation. Note that it relates the response of the
drift velocity to the external electric field) to fluctuations in the equilibrium state, governed
by D. We now develop this idea a little further.

11.3 Correlation, response, and the fluctuation-dissipation theorem

We now show how this idea of relating response and dissipation to statistical fluctuations can be
made more general. Consider some variable X (usually thermodynamic) of mean zero, that can
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fluctuate in time (e.g. a local magnetisation, m, or the local density in a fluid). X is measured
as a departure from the global mean value i.e. it is a fluctuation about the mean value. We are
interested in the autocorrelation function of these fluctuations in an equilibrium state,
defined as

〈X(τ)X(τ + t)〉 . (11.33)

In equilibrium (steady state) this must be independent of the initial time τ , hence

〈X(τ)X(τ + t)〉 =MXX(t) , (11.34)

i.e. MXX is only a function of the time difference t. A typical MXX(t) is sketched in Fig. 11. The
correlations will tend to zero at large time lag, in a way that is often modelled with an exponential
behaviour involving a correlation time, tc:

MXX(t) ∝ exp(−t/tc) . (11.35)

tc
t

Mxx(t)

Figure 11: Sketch of the autocorrelation function of some zero-mean thermodynamic variable X against
time lag: MXX(t).

Different fluctuating variables can also be correlated in time with each other, for example
the magnetisation at two nearby places is correlated. To study this, we can define similarly the
cross-correlation function:

〈X(τ)Y (τ + t)〉 =MXY (t) , (11.36)

for any pair of variables, X and Y .

Now the principle of detailed balance (which as we saw arises from microscopic reversibility)
implies that there are no currents flowing in equilibrium. Once equilibrium is reached there is thus
no direction of time, since there is no current that could distinguish the forward and backward
time directions. Detailed balance therefore implies that the fluctuations arising in equilibrium are
time-reversal symmetric

MXY (t) = 〈X(τ)Y (τ + t)〉 =MXY (−t) . (11.37)

Moreover, the cross-correlation obeys

MY X(t) = 〈Y (τ)X(τ + t)〉 = 〈X(τ ′)Y (τ ′ − t)〉 =MXY (−t) (11.38)

(defining τ ′ ≡ τ + t as a new time to average over). Combining this with the previous result, we
find that the cross-correlation function is symmetric in the indices X and Y :

MXY (t) =MY X(t) . (11.39)

This is a rather nontrivial consequence of microscopic time reversal symmetry.

65



Response function Suppose we now perturb our system by applying a small ‘thermodynamic
force’ fX associated with a quantity X: as in section 6, this adds a perturbation −fXX to the
Hamiltonian. Most simply, X would be position and fX = Fext. But many general alternatives
exist: for example, if X a local magnetisation, m, then fX = H, the applied magnetic field. There
are various experimental ‘protocols’ for studying the effect of such perturbations:

• Consider a perturbation that remains turned on for a long time (say from t = −∞) and is
then switched off at (say) t = 0. For t > 0 the resulting average response of Y decays away.

• Or we can give the system a sharp ‘kick’ at t = 0 and see how it relaxes. This gives the
Green’s function of the system.

In either case, we can define the response function, RY X(t) (an effective susceptibility):

〈Y (t)〉 ≡ RY X(t) fX . (11.40)

Now, if the perturbation is small enough, it will (at least in each local neighbourhood) produce
a change so weak that this could have arisen by a spontaneous fluctuation. If that is the case,
the perturbation Y (t) will on average decay in time just as if it were such a fluctuation, which
happened by chance to be present at t = 0.

Fluctuation-dissipation theorem This idea that the perturbation can be treated as an ‘hon-
orary fluctuation’ is of deep importance, since it means that the way in which spontaneous fluc-
tuations are correlated in time is something that can be approached by studying the response
to imposed external forces. The explicit connection between the two is given by the following
fluctuation-dissipation theorem, in which the correlation function MXY (t) (‘fluctuation’) is di-
rectly proportional to the response function RXY (t) (‘dissipation’):

MY X(t) = kT RY X(t) . (11.41)

We have quoted this relation without proof. The factor kT can be motivated to within a
numerical factor by dimensional analysis: [Y ] = [R][f ], so [Y ][X] = [R][fX]. But [M ] = [Y ][X],
so [M ] = [fX][R]: thus the coefficient of proportionality must have dimensions of energy, which is
satisfied by kT . We do not attempt a proof here as it would be too lengthy (see the final chapter
of the textbook by Chandler for a relatively simple exposition). In the following section we will
however look at a particular example in Brownian motion, for which is straightforward to verify
the theorem.

Onsager theorem Finally, a remarkable theorem can be obtained by combining two previous
results given above the fluctuation-dissipation theorem and symmetry with respect to its indices
of the correlation function.

RXY (t) = RY X(t) (11.42)

that is, the response function is itself symmetric in the X, Y indices. This, in essence, is Onsager’s
theorem, which states that the mean response of a variable X to a small thermodynamic force fY
acting on some other variable Y , is entirely determined by the mean response of Y to fX .

Onsager’s theorem is a remarkably subtle result, in which the time reversibility of microphysics
strongly constrains the time irreversible relaxation of a macroscopic system perturbed away from
equilibrium. Onsager’s achievement was not just to prove the result, but to realise that such a
connection could possibly exist in the first place. This is the same Lars Onsager who solved the
2D Ising Model (see below) and he was awarded the Nobel prize (in Chemistry) in 1968.
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Application: thermoelectricity Suppose you have a system consisting of two blocks of metal
in contact. Let the left hand block be hotter than the right one. In that case, not only heat but
also particles (in this case, electrons) will cross from left to right. This is easy to understand:
hotter electrons, on the left, are more likely to travel to the right than the cold ones on the right
are, to travel to the left. This is the thermoelectric effect.

Now take a different experiment where the temperatures are the same but the chemical
potentials of the electrons are not. That can be arranged by having a voltage difference between
the two blocks. Onsager’s theorem states that not only particles, but also heat energy will flow
from one block to the other. That is not so easy to understand. It is called the Peltier effect,
and is widely used to make solid-state heat pumps. Onsager’s theorem correctly predicts the
magnitude of the Peltier effect from measurements of the thermoelectric effect. There are many
similar, and equally unintuitive, applications of the theorem.

11.4 Over-damped Brownian motion

Let us return to the Brownian motion of a colloidal particle suspended in a fluid acted upon by a
systematic external force Fext. For convenience we shall also add a harmonic restoring force (think
of the particle tethered by a weak spring to the origin) with spring constant κ. This is basically
a trick to keep the displacement of the particle bounded as t → ∞. The Langevin equation now
reads

m
d2x

dt2
= −γ dx

dt
+ Fext − κx+ f(t) , (11.43)

where the statistics of the random force f is as before.

We consider the case of the external force switched on up to t = 0 then switched off. To
simplify things we consider the overdamped regime where we can ignore the acceleration term on
the LHS of the equation; this is justifiable if the viscosity γ is large enough. Then

dx

dt
= µ [Fext − κx+ f(t)] where µ =

1

γ
, (11.44)

(i.e. as terminal velocity 〈dx/dt〉 = 1/γ Fext, as 〈x〉 then vanishes, so we can take the mobility as
µ = 1/γ). Integrating the equation gives

d

dt

[

xeµκt
]

= µeµκt (Fext + f(t)) , (11.45)

or

x(t) = µ

∫ 0

−∞
dt′e−µκ(t−t′)

(

Fext + f(t′)
)

+ µ

∫ t

0
dt′e−µκ(t−t′)f(t′) . (11.46)

The average displacement is

〈x(t)〉Fext
=

1

κ
e−µκt Fext . (11.47)

[So for µκt≪ 1 then 〈x(t)〉Fext
= Fext/κ−Fextµt i.e. the particle moves back from Fext/κ to zero.]

Comparing with 〈x〉f = Rf gives the response function:

Rxx =
1

κ
e−µκt . (11.48)

Next we consider the correlation function

Mxx(t) = 〈x(τ)x(τ + t)〉 , (11.49)
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when there is no external force present. In this case x(t) becomes

x(t) = µ

∫ t

−∞
dt′e−µκ(t−t′)f(t′) , (11.50)

and the correlation function can be computed

Mxx(t) = µ2
∫ τ

−∞
dt′e−µκ(τ−t′)

∫ τ+t

−∞
dt′′e−µκ(τ+t−t′′)〈f(t′)f(t′′)〉 (11.51)

= µ2Γ

∫ τ

−∞
dt′e−µκ(t+2τ−2t′) (11.52)

=
µΓ

2κ
e−µκt =

µΓ

2
Rxx . (11.53)

In section 11.2 we derived the relation

Γ = 2γkT =
2kT

µ
⇒ µΓ/2 = kT , (11.54)

which we can now see recovers the fluctuation-dissipation theorem, Mxx = kTRxx.

12 Many-body problem: example of vibrations in solids

In this section the many-body problem is discussed with reference to a particular context: vibra-
tions of a crystalline solid. We will see that many of the general statistical tools developed in
earlier sections find fruitful applications here.

12.1 Recap of many-particle Schrödinger equation

Recall the time independent many-particle Schrödinger equations

HΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ) , (12.1)

where

H = −
N
∑

k=1

~
2

2m
∇2

k + U(r1, r2, . . . , rN ) , (12.2)

where k labels the particles and U is the interaction potential, which generally depends on
the relative positions of all the particles. In general U contains interactions between particles, and
then a direct solution of the Schrödinger equation is not feasible. But if there are no interaction
terms, then we have seen that the equation can be solved (12.1). In this case, the Hamiltonian is

H =
N
∑

k=1

[

− ~
2

2m
∇2

k + V (rk)

]

=
N
∑

k=1

hk (12.3)

and the many-body eigenfunctions are factorised

Ψ(r1, r2, . . . , rN ) =
N
∏

k=1

ψαk
(rk) with E =

N
∑

k=1

ǫαk
. (12.4)

We refer to this as a diagonal form of the Hamiltonian since the particles are not coupled by
any ‘off-diagonal’ terms. Crudely speaking, much of many-body physics is concerned with making
transformations and/or approximations that render the Hamiltonian into a diagonal form.
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12.2 Einstein’s theory of specific heat

Einstein replaced the full complicated Hamiltonian of a crystalline solid with a simple weakly
interacting H involving only single-particle potentials. Consider N atoms situated near the sites
of a regular lattice, and let rk denote the displacement vector of atom k from its lattice site.
Suppose each atom sits in its own quadratic potential well and oscillates independently of the
others. The Hamiltonian is then

H =
N
∑

k=1

[

− ~
2

2m
∇2

k ++
1

2
mω2|rk| 2

]

, (12.5)

where ω is a free parameter that we can be fixed by comparing to experimental data. The
Hamiltonian is thus a sum of N 3D quantum harmonic oscillators, all having the same
angular frequency, ω.
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Figure 12: Left: model of crystal solid as atoms connected by harmonic springs for simplicity just to the
nearest neighbour (this is the harmonic approximation). Right: model of each atom as an independent
harmonic oscillator (Einstein Model).

A further simplification is that a three-dimensional harmonic oscillator is the same as 3 one-
dimensional harmonic oscillators. Therefore we can consider the system as 3N one-dimensional
harmonic oscillators which we label by k

E =
3N
∑

k=1

ǫk where ǫk = ~ω(nk + 1/2) . (12.6)

Where nk gives the energy level of oscillator k. Recall from quantum mechanics that nk is an
integer taking values 0, 1, . . .∞ The partition function is then

Z = [Z(1)]3N , (12.7)

where

Z(1) =
∞
∑

n=0

exp[−β~ω(n+ 1/2)] (12.8)

=
e−α/2

1− e−α
where α = β~ω , (12.9)

(summing the geometric series). Up to an unimportant factor e−α/2, our single oscillator partition
function Z(1) is the same as a single state partition function for Bosons (with chemical potential
µ = 0). So we can think of the quanta of energy in the oscillator as Bosons.
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We now proceed to calculate the average system energy

E = −∂ lnZ
∂β

(12.10)

= −3N
∂

∂β

[

−α
2
− ln

(

1− e−α
)

]

(12.11)

= const. +
3N~ω

eβ~ω − 1
. (12.12)

The heat capacity is given by

CV =

(

∂E

∂T

)

V

= −kβ2 ∂
∂β

(

const. +
3N~ω

eβ~ω − 1

)

, (12.13)

or

CV = 3Nk (~ωβ)2
eβ~ω

(eβ~ω − 1)2
. (12.14)

This has the following limits. At high temperature, expanding the exponentials gives

CV = 3Nk , (12.15)

which is the classical equipartition result: energy kT per quadratic degree of freedom. At low
temperatures, β → ∞:

CV = 3Nk (~ωβ)2 e−β~ω . (12.16)

This tends to zero as β → ∞, as observed. But in detail the specific heat at low temperatures
is seen to scale as T 3, which is not the dependence predicted by the Einstein model. The reason
for this discrepancy is that co-operative effects become important at low temperatures, so that
we need to consider collective oscillations of the atoms rather than the independent oscillations of
the Einstein theory.

12.3 Harmonic approximation, phonons and the Debye model

In general the potential energy U could be a very complicated function of the atomic displace-
ments, U(r1, r2, . . . rN ). But assuming the displacements to be small, we can make a Taylor series

expansion (in 3N variables x
(k)
i ):

U = U0 +
∑

ki

∂U

∂xki

∣

∣

∣

∣

0

xki +
1

2

∑

ki,lj

∂2U

∂xki∂xlj

∣

∣

∣

∣

0

xkixlj + · · · , (12.17)

Since U must be a minimum at the equilibrium positions the second term (linear in the x’s) van-
ishes. Retaining only the final term on the RHS is known as the harmonic approximation.
Abbreviating the second partial derivatives to Aki;lj we may write the total Hamiltonian as

H = − ~
2

2m

N
∑

k=1

∇2
k +

1

2

∑

ki,lj

Aki,ljxkixlj . (12.18)

Now, because of the structure of the harmonic approximation we can diagonalise this Hamil-
tonian by transforming to appropriate coordinates. This is because it is simply the Hamiltonian
of a system of 3N coupled harmonic oscillators, which you will have studied in dynamics
courses. Systems of coupled oscillators have normal modes in which all the displacements
oscillate with the same frequency. Classically, this arises because the equation of motion for one
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coordinate of one particle, q is q̈ = −∂V/∂q, where V is the total potential energy of the sys-
tem. In the harmonic approximation, this is (1/2)(∂2V ∂qi∂qj)qiqj , so that differentiation gives
q̈ = −V′′ · q, where V′′ is the matrix of 2nd derivatives. This has oscillatory solutions, where ω2

is the eigenvalue of V′′ and the eigenvectors are the normal modes. The motion of the system
can then be expressed in terms of a superposition of normal mode excitations and the energy can
be expressed as the sum of the energy in each normal mode. Since there are 3N co-ordinates
there are 3N normal modes. The diagonalisation involves some linear transformation to normal
coordinates:

qr =
∑

ki

Lr,kixki , r = 1, . . . , 3N , (12.19)

where Lr,ki are the components of the transformation matrix. By design, this will convert the
Hamiltonian into the form

H =
3N
∑

r=1

[

− ~
2

2m

∂2

∂2qr
+

1

2
mω2

rq
2
r

]

. (12.20)

The normal modes are quantum oscillators, and the quanta of energy are known as phonons.
Phonons really do exist and are much studied experimentally e.g. via the scattering neutrons or
X-rays by a solid. The energy of the system is then of the usual oscillator form:

E =
3N
∑

r=1

~ωr(nr + 1/2) nr = number of phonons in mode r . (12.21)

We can compute the canonical partition function my summing over modes

Z =
3N
∏

r=1

Zr where Zr =
e−αr/2

1− e−αr
with αr = β~ωr . (12.22)

The (average) energy follows as

E = −∂ lnZ
∂β

(12.23)

= const. +
∑

r

~ωr

eβ~ωr − 1
. (12.24)

It is normal to ignore the first term, as it is just a constant. The second can be compared
to the energy of an ideal Bose gas at µ = 0. The phonons behave with Bose statistics and
1/(exp(β~ωr) − 1) is the mean number of phonons in mode r. Thus we have a gas of free

phonons (the chemical potential µ = 0 since the number of phonons is not a conserved quantity).

The algebra here is identical to that in the case of the Einstein model, except that the
frequencies of the different oscillators need not be the same (and they are not, as we will shortly
demonstrate). If the number of modes is large, we may suspect that they will be finely spaced in
frequency, so that the total energy can be written using a density of modes, g(ω):

E =

∫

~ω

eβ~ω − 1
g(ω) dω . (12.25)

Calculating this density exactly for a discrete crystal lattice is not straightforward, but the problem
can be solved with the following useful approximation.
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12.3.1 Debye theory

In the Debye theory we neglect the fine structure of the crystal lattice, and treat the solid instead
as a continuous elastic body. For this, the normal modes will be sound waves, and we can argue
that these will be insensitive to the existence of a lattice as long as the wavelength is ≫ the lattice
spacing. But equally, this approach will not be exact for phonons of the shortest wavelengths.
Previously we derived the density of states for wave modes based on the density in k-space:

g(ǫ) =
Γ(k)

dǫ/dk
; Γ(k) = gs

V

2π2
k2 , (12.26)

where we have included a degeneracy factor gs. Now, for wave modes we have the standard
relation between wavenumber and angular frequency

k =
ω

cs
, (12.27)

where cs is the speed of sound (taken here as constant). There will be two transverse and one
longitudinal wave modes, so gs = 3. Changing variables to ω using g(ω)dω = Γ(k)dk, we get

g(ω) = 3
V

2π2
ω2

c3s
≡ AV ω2 . (12.28)

This gives an ultraviolet catastrophe: a divergent number of modes if we integrate to
ω = ∞; but there should be only 3N normal modes in total. To respect this we introduce a
‘cut-off’ frequency ωmax:

∫ ωmax

0
AV ω2dω =

1

3
AV ω3

max = 3N , (12.29)

from which we find

ωmax =

(

9

A

N

V

)1/3

=

(

6π2
N

V

)1/3

cs . (12.30)

This maximum frequency defines a characteristic temperature, ΘD, through

kΘD = ~ωmax . (12.31)

We now proceed to calculate the energy through

E =

∫ ∞

0
~ω g(ω)n(ω) dω

= AV ~

∫ ωmax

0

ω3

exp(β~ω)− 1
dω .

First consider the high T limit T ≫ ΘD(= ~ωmax/kB) which implies hω/kBT ≪ 1. We expand
exp(βhω) ≃ 1 + βhω to obtain

E ≃ AV ~

∫ ωmax

0

w3

β~ω
dω = 3NkBT (12.32)

where we have used (12.29). As with the Einstein theory, this is just the classical equipartition
result.

Now consider the low T limit T ≪ ΘD. In this case we change variables to x = β~ω to
express the result in terms of a dimensionless integral:

E =
AV ~

(β~)4

∫ ΘD/T

0

x3

exp(x)− 1
dx
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But for T ≪ ΘD we can replace the upper limit of the integral by infinity, which yields a standard
integral whose value is π4/15. Thus at low temperatures E ∝ T 4 and the heat capacity

CV ∝ T 3. (12.33)

This is the key result of the Debye theory and it improves greatly upon the Einstein model
prediction. It is well verified experimentally for e.g. for copper or solid Argon (see Baierlein Fig.
6.9). The reason this works is that at low T only low frequency modes will be excited and it is
precisely these long-wavelength modes that are correctly described by approximating the solid as
an elastic medium. Thus the Debye theory is correct at both low and high T , but remains an
approximation in between.

13 Interactions in classical fluids: perturbation about the ideal
gas

We now turn our attention to another many-particle interacting system – classical fluids in which
the particles are delocalised.

13.1 Interlude: interactions and correlations

Let us first review what we mean by correlation. Two random variables, x & y, are inde-

pendent if their joint probability distribution factorises P (x, y) = P (x)P (y), otherwise one
has

P (x, y) = P (x|y)P (y), (13.1)

where P (x|y) is a conditional probability of x given y. Examples:

(1) Throwing two dice: the result from one die is independent of the result from the other.

(2) In the grand canonical ensemble we could write

P ({nj}) =
∏

j

P (nj), (13.2)

so that the occupation numbers of each state are independent.

(3) Gases: let ρ1(r) be the probability of finding a particle at r, ρ2(r1, r2) be the joint proba-
bility density for finding particles at r1 and r2. For the ideal gas, which does not contain
interactions, the particles are independent

ρ2(r1, r2) = ρ1(r1)ρ1(r2). (13.3)

Now let us consider measures of correlation between random variables In physics we usually
define correlation functions through the covariance:

covariance(x, y) = (x− x)(y − y) = ∆x∆y. (13.4)

The covariance corresponds to correlations as follows

∆x∆y = 0 x, y uncorrelated

> 0 x, y correlated

< 0 x, y anticorrelated .
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Independence always implies no correlation, but the converse is not strictly true, although the
distinction is often ignored (can you envisage a 2D distribution that is uncorrelated but not
independent?).

In a system of non-interacting particles, the particles are independent and uncorrelated –
but interactions between the particles will introduce correlations. Generally correlations between
particles imply a gain in information i.e. the correlation means that if you know something about
one particle you are likely to know something about other particles. Thus interactions generally
generate correlations which reduce the hidden information or entropy.

13.2 Interactions in classical statistical mechanics

A classical fluid comprises a system with N particles each of mass m, in a volume V . We assume
that the density

ρ =
N

V
, (13.5)

is low enough that we can

• treat interactions as perturbations about the ideal gas

• (mostly) neglect quantum effects and use classical statistical mechanics.

13.2.1 Recovery of classical ideal gas

As a starting point consider again the ideal gas, where a particle’s energy is simply its kinetic
energy,

ǫi(qi, pi) =
p2i
2m

, (13.6)

and the partition function is just

Zideal =
V N

N !h3N

N
∏

i=1

[∫

d3pi e
−βp2i /2m

]

=
V N

N !h3N

[∫

dp e−βp2/2m

]3N

(13.7)

=
V N

N !h3N

[

(

2mπ

β

)1/2
]3N

(13.8)

=
1

N !

[

V

λ3T

]N

. (13.9)

(cf. equation 5.5). We have used the formula for the Gaussian integral

∫ ∞

−∞
dz e−αz2 =

(π

α

)1/2
(13.10)

and the definition of the thermal de Broglie wavelength

λT =

(

h2

2πmkT

)1/2

. (13.11)

Note that h is present in Z via λT . Thus, quantities stemming from lnZ such as the free energy
F = −kT lnZ or entropy S will retain a dependence on h, as an additive constant. However
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it should be noted that it is only free energy and entropy differences that can be measured
experimentally (absolute values of free energy are not measured) and in the expression for e.g. a
free energy difference the h dependence cancels – as we would hope for a classical system.

Explicitly we have (using Stirling’s formula)

Fideal = −kT lnZideal = kTN
[

lnN − 1− lnV −N lnλ3T
]

(13.12)

= −kTN ln
V e

Nλ3T
(13.13)

so for example we have

Pideal = − ∂Fideal

∂V

∣

∣

∣

∣

T,N

=
NkT

V
, (13.14)

Sideal = − ∂Fideal

∂T

∣

∣

∣

∣

V,N

= kN

[

ln
V

N

(

2πmkT

h2

)3/2

+
5

2

]

(13.15)

as expected. The latter expression is the Sackur–Tetrode entropy.

13.3 Configurational integral

In the interacting case an important simplification arises from the fact that the interaction po-
tential U(q1, . . . , qN ) does not depend on the particle momenta. Then

H({q}, {p}) =
N
∑

i=1

p2i
2m

+ U(q1, . . . , qN ) , (13.16)

and Z factors into two pieces:

Z(T, V,N) =
1

N !h3N

∏

i

∫

d3pi e
−βp2i /2m

∫

∏

i

d3qi e
−βU({q})

, (13.17)

corresponding to integrals over positions, and integrals over momenta. These factors can conve-
niently be separated (in dimensionless form) as follows:

Z(T, V,N) = ZidealQ , (13.18)

where the first factor is the partition function for the ideal gas,

Zideal =
[V/λ3T ]

N

N !
. (13.19)

The second factor is normalised so that it takes value unity for ideal non-interacting gases:

Q = V −N

∫ N
∏

i=1

d3qi e
−βU(q1,...,qN )

; (13.20)

this is known as the configurational integral. Accordingly, the interactions between our
particles enter only via Q, and if we can evaluate this we have all we need to compute Z(T, V,N).

From the factorisation of Z there follows the decomposition of the free energy

F (T, V,N) = Fideal(T, V,N)− kT lnQ , (13.21)
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and of the equation of state,

P (T, V,N) = − ∂F

∂V

∣

∣

∣

∣

T,N

=
NkT

V
+ Pconf . (13.22)

Thus the configurational pressure is

Pconf = kT
∂ lnQ

∂V
, (13.23)

which gives the correction to the ideal gas equation of state, i.e. the correction to the pressure due
to interactions.

13.3.1 Virial expansion

In the following we take the interaction potential to be of the form

U({q}) = 1

2

∑

i 6=j

φ(|qi − qj |) ≡
∑

i<j

φij , (13.24)

Note that this implies

• 2 body interactions

• a central potential (depends only on distance between particles)

Examples of interatomic potentials are as in Fig. 13.

φ
hc

a

LJ

r0

φ

Figure 13: Sketch of the hard-sphere potential and the Lennard–Jones potential.

• The hard-sphere potential

φ(r) =

{

∞ r ≤ a
0 r > a

(13.25)

• the Lennard–Jones potential

φ(r) = 4ǫ[(r0/r)
12 − (r0/r)

6] . (13.26)

Here ǫ is related to the depth of the attractive well and r0 the hard-sphere radius.

For the Lennard–Jones case note the generic features of repulsion at short distance, attraction
at intermediate distance and interaction → 0 at long range. In the generic case, there is no
intrinsic limit to the number of particles that can be interacting simultaneously with each other.
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Consequently new collective phenomena, such as the phase transition from a vapour to a
liquid, become possible. The hard-sphere case, on the other hand, is not generic and is a special
case.

Our task is to calculate the configurational integral (13.20) which we write in the form

Q =
1

V N

∫

∏

i

d3qi
∏

i<j

Fij , where Fij = e−βφij . (13.27)

Just to be clear, let us write out the products

Q =
1

V N

∫

d3q1 . . . d
3qN F12F13 . . . F1N × F23 . . . F2N × . . .× FN−1N . (13.28)

Note that there are (N − 1) + (N − 2) + . . .+ 1 = N(N − 1)/2 Fij ’s in the product. This is just
the number of ways of choosing 2 sites from N . We can think of Q as being a spatial average i.e.
it is the integral of something (the product of Fij) over the spatial co-ordinates divided by the
volume V N . Therefore we can write

Q =

〈

∏

i<j

Fij

〉

, (13.29)

where the angle brackets indicate the spatial average. Now this is very difficult to calculate
because, for example Fij is correlated with Fik. But if we ignore the correlations, then we can
replace the average of the product by the product of the averages:

Q ≃
∏

i<j

〈Fij〉 (13.30)

= 〈F 〉N(N−1)/2 , (13.31)

i.e. we replace the average of the product by the product of the averages. Note that 〈Fij〉 = 〈F 〉
does not depend on the indices i,j. Furthermore, we can write

Fij = 1 + fij , (13.32)

where fij = exp[−βφij ]−1 will typically be small in a dilute gas, where the interparticle separations
are large and φij is small.

Let us take i, j = 1, 2 as representative

〈F 〉 ≡ 〈F12〉 = 1 +
1

V N

∫

d3q1 . . . d
3qN f12 (13.33)

= 1 +
1

V 2

∫

d3q1 d
3q2 f12 , (13.34)

where we have integrated out the coordinates not involved in f12 and used
∫

d3q = V . Now we
change variables to centre of mass and relative coordinates

r = q1 − q2 , R =
1

2
(q1 + q2) . (13.35)

[Consider each component separately: each of the three Jacobians is 1, so d3r d3R = d3q1 d
3q2;

see tutorial sheet.] Noting that there is only dependence on the relative coordinate r so that
∫

d3R = V , we obtain

〈F12〉 = 1 +
1

V

∫

d3r [exp−βφ(r)− 1] , (13.36)
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which we write as

〈F12〉 = 1− 2B2

V
, (13.37)

where [note: d3r = 4πr2dr]

B2 = −1

2

∫

d3r
[

e−βφ(r) − 1
]

(13.38)

The constant B2 is known as the second virial coefficient, and it depends on the form
of the interaction potential φ. The term ‘virial’ was introduced by Clausius and literally means
‘pertaining to interactions between molecules’.

So within our crude approximation we have

Q =

(

1− 2B2

V

)N(N−1)/2

, (13.39)

and following (13.21) we find

F = Fideal − kT lnQ ≃ Fideal +
N2kT

V
B2 , (13.40)

where we have approximated N(N − 1) ≃ N2 and ln(1 − 2B2/V ) ≃ −2B2/V as N,V are large.
Then, from (13.22, 13.23) we obtain

P

kT
= ρ+B2ρ

2 (13.41)

where ρ = N/V . Finally we note

S = − ∂F

∂T

∣

∣

∣

∣

V

= Sideal −Nkρ
∂

∂T
(TB2) . (13.42)

Notes

• This is the start of the virial expansion. This is a perturbation expansion in the
density ρ about the ideal gas limit. That is, we see the start of a series

P

kT
= ρ+B2ρ

2 +B3ρ
3 · · · (13.43)

• A simple approximation for a generic φij (see tutorial sheet) yields

B2 = b0 − a0/kT , (13.44)

where b0 and a0 are positive constants (see tutorial sheet). This recovers the expansion of
the van der Waals equation of state, which is usually written as

(

P + ρ2a0
)

=
NkT

V −Nb0
. (13.45)

Also one can show the entropy is reduced below that of the ideal gas. This is to be expected
from information theory: the attractive interactions should make the positions of the atoms
correlated. Correlations in the positions then reduce the hidden information about the
microscopic state of the system. This is an important general principle
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13.3.2 Extension to higher order (non-examinable)

To improve upon our crude approximation, and in order to calculate the higher order virial
coefficients let us write

Fij = 〈F 〉+ λij , (13.46)

where λij is the deviation of Fij from its average spatial value. Then

Q = 〈(〈F 〉+ λ12) (〈F 〉+ λ13) · · · 〉 , (13.47)

which we wish to expand in powers of λij . We do not explicitly carry out this procedure here, but
it results in

Q = 〈F 〉N(N−1)/2 +

(

N

3

)

〈F 〉N(N−1)/2− 3〈λ12λ23λ13〉+ . . . (13.48)

Notes

• Because 〈λij〉 = 0, an average of a product of λ’s in which a subscript appears only once is
zero. Therefore there are no linear or quadratic terms in the above expansion.

• The first term is the approximation derived above. The second term involves a ‘cluster’ of
three sites say 123 and 〈λ12λ23λ13〉 is representative of such terms. The binomial coefficient
is the number of ways of choosing three sites from N .

• Physically the first term, which involved averaging Fij , represents the interaction of two par-
ticles i.e. a ‘two particle molecular cluster’. The second term, as noted above, involves ‘three
particle particle clusters’, hence this is known as a cluster expansion or alternatively a
Mayer expansion.

• To extend to higher orders diagrammatic methods are required to enumerate the various
clusters and this works well for low densities This was actually the first instance of diagram-
matic methods see e.g. the books by Huang or Pathria for details.

• But at higher densities the expansion at best converges slowly and fails to converge at all
near the phase transition to the liquid phase the This is because near the phase transition
larger and larger clusters of particles become important. Also perturbation theory about
the ideal gas can hardly be expected to describe the liquid phase, which is a different state
of matter.

14 Reduced density distributions and Debye–Hückel theory

This section treats classical fluids from the point of view of the two-point reduced density distri-
bution, and is an alternative way to look at the virial expansion.

14.1 Distribution functions

A distribution function in the Gibbs sense is the probability density ρ(q1, . . . , q3N , p1, . . . , p3N ) in
6N -dimensional phase space, giving the simultaneous probability of finding each of the particles
near their position and momentum. This can be reduced in a number of ways to depend on fewer
variables. First, we can integrate over momentum coordinates to obtain a purely spatial PDF,
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ρ(q1, . . . , q3N ); then, we can integrate over the positions of some of the particles to leave a PDF that
governs the remainingm particles, In statistics, this process would be termedmarginalization.

One-particle reduced density This is simply

ρ1(r1) ≡ ρ = N/V , (14.1)

where N is the number of particles, V is the volume and the last relation assumes that the fluid
is homogeneous so that its statistical properties do not depend on position.

Two-particle reduced density The two-particle reduced density ρ2(r1, r2) is the probability
density for finding a pair of particles at given positions r1, r2 – i.e. ρ2(r1, r2)dV1dV2 is the prob-
ability of finding a particle in the volume dV1 around r1 and finding a particle in dV2 around r2.
If the particles are independent this will be just ρ2 = ρ2, but in general there will be some degree
of correlation:

ρ2(r1, r2) = ρ2g(|r1 − r2|) (14.2)

Here g(r) is called the radial distribution function or pair distribution. It is sometimes
also called the pair correlation function, but this name is better applied to g − 1, since
uncorrelated particles will have g = 1. Note that g(r) depend only on distance between the two
positions, reflecting the assumption that we are dealing with a homogeneous and isotropic

fluid.

To understand g(r) more precisely recall that a joint probability, ρ2(r1, r2) may be written
as a product

ρ2(r1, r2) = ρ2(r1|r2)ρ1(r2), (14.3)

where ρ2(r1|r2) is the conditional probability of a particle being at r1 given that there is
a particle at r2 and the probability of there being a particle at r1 is just the density ρ1(r2) = ρ.
Thus comparing with (14.2) we deduce that ρg(r) is the conditional probability that there is a
particle at a point a distance r from the origin, given that there is a particle at the origin.

• General features of g(r) for a real (interacting) gas are:

– g(r) → 1 as r → ∞ so that the density far away from a given particle is just the overall
density ρ

– g(0) = 0, so that with hard-sphere interactions it is impossible to have particles over-
lapping when r1 = r2

– g(r) > 1 means the particles at r1 and r2 are correlated and 0 < g(r) < 1 means the
particles are anticorrelated.

For a typical dense fluid g(r) looks like the middle figure in Fig. 14. The radial distribution
function contains useful information about how the particles in the fluid are correlated, and can
be measured rather directly by diffraction experiments. (see e.g. the book by Chandler, Ch.7).

Generally g(r) is difficult to calculate – actually it contains the same information as the
equation of state (see below). A simple approximation for g(r) is to take

g(r) = e−βφ(r), (14.4)

where φ is the two-particle potential. This is intuitively reasonable, as g(r) then has the form
of a Boltzmann weight: the probability of finding a particle at r given that there is one at the
origin) is evaluated as if all the others were absent. This expression obeys the correct limits at
r → ∞ (φ→ 0) and r → 0 (φ→ ∞).
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Figure 14: Sketch of g(r) for an ideal gas, a dense gas and for a crystalline solid.

14.2 The virial equation of state (proof is non-examinable)

As before we assume that the interaction energy U({r}) is pairwise additive: U =
∑

i<j φ(rij). In
this case a very useful formula for the pressure P can be found

P = Pideal + Pconf = ρkT − ρ2

6

∫ ∞

0

(

r
dφ

dr

)

g(r) 4πr2dr (14.5)

This is a formula for the virial equation of state which is more general than the previous
virial expansion in ρ and is exact for pairwise interactions.

A proof is as follows: introduce reduced coordinates r̃ = r/L, where L = V 1/3. Then we can
write the configurational integral of section 13.3 as

Q =
1

V N

∫

∏

i

d3ri e
−βU({r}) =

∫

∏

i

d3r̃i e
−β

∑
i<j φ(Lr̃ij) , (14.6)

where the limits of integration for each coordinate are now L-independent (previously they were
all from 0 to L). We have Fconf = −kT lnQ and so

Pconf = − ∂Fconf

∂V

∣

∣

∣

∣

T

= kT
∂

∂V
lnQ (14.7)

=
kT

3L2

1

Q

∂

∂L

∫

∏

i

d3r̃i e
−β

∑
i<j φ(Lr̃ij) (14.8)

= − 1

3V

1

V NQ

∫

∏

i

d3ri
∑

i<j

rijφ
′(rij) e

−β
∑

i<j φ(rij) (14.9)

= − 1

3V

∫

∏

i

d3ri
∑

i<j

rijφ
′(rij) ρ(r1, . . . , rN ) , (14.10)

(where φ′ = dφ/dr). Integrate over everything except the i, jth particles

Pconf = − 1

3V

∑

i<j

∫

d3rid
3rj rijφ

′(rij)
ρ2(ri, rj)

N(N − 1)
(14.11)

= − 1

6V

∫

d3r1d
3r2 r12φ

′(r12)ρ2(r1, r2) (14.12)

= − ρ2

6V

∫

d3r1d
3r2 r12φ

′(r12)g(r12) . (14.13)

As before let r = r1 − r2, R = (r1 + r2)/2,
∫

d3R = V which finally proves the result (see tutorial
sheet).
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Recovering the virial expansion Expand g(r) in powers of ρ:

g(r) = g0(r) + ρg1(r) +O(ρ2) . (14.14)

From the previous virial expansion in section 13 we see that the leading correction to the pressure
is obtained from g0(r). From this expansion

Pconf = B2ρ
2kT (14.15)

= −ρ
2

2

∫ ∞

0

[

e−βφ(r) − 1
]

4πr2dr × kT (14.16)

= −ρ
2

2

[

[

[e−βφ(r) − 1] 4

3
πr3
]∞

0
−
∫ ∞

0

d

dr
[e−βφ(r) − 1] 4

3
πr3dr

]

× kT (14.17)

= −ρ
2

6

∫ ∞

0
rφ′(r)e−βφ(r) 4πr2dr , (14.18)

after integrating by parts and noting that for large r, B2 requires φ(r) ∼ 1/r3+ǫ where ǫ > 0
then r3(e−βφ(r) − 1) ∼ 1/rǫ and vanishes at large r. This recovers the previous expression (see
tutorial sheet). Comparing these expressions then gives to leading order g(r) = exp[−βφ(r)], as
was justified informally above.

14.3 Debye–Hückel theory

An interesting application of these ideas is to a plasma: a fluid of charged particles. This may
seem problematic at first glance, since the pairwise interaction is the 1/r Coulomb potential

and the above expressions for the virial expansion diverge (tutorial sheet). We need a different
approach, which will lead us to conclude that collective effects in the plasma result in screening

of the long-range force – so that in practice the particles do nevertheless participate in effective
weak short-range interactions.

N.B. In this section we change notation to use n(r) for (number) density at r and ρ(r) for
charge density. We also use φ(r) for electrostatic potential and U = eφ for potential energy. For
simplicity we consider a ‘one-component’ plasma, in which a gas of point particles of charge q at
average number density n∞ resides in a static uniform background of charge density −qn∞. This
is a good model for classical electrons in a semiconductor, where the background is the fixed ionic
charges, and the electron density is low enough for the classical limit to hold. And even in a free
plasma, the huge difference in inertia between electrons and protons means that we make little
error in treating the latter as stationary (see tutorial sheet).

Poisson–Boltzmann equation In the previous section, we showed that the radial distribution
function g(r) = n(r)/n∞ was given by a Boltzmann factor. The derivation given there does not
apply for a slowly-declining Coulomb potential, but the result feels general (it is no different to
e.g. the variation of gas density with height in an isothermal atmosphere). We therefore adopt
this assumption and write

n(r) = n∞g(r) = n∞e
−qφ(r)/kT . (14.19)

In the end we will see that this is in fact consistent with the previous analysis.

The potential φ obeys Poisson’s equation

∇2φ(r) = −ρ(r)/ǫ , (14.20)

where ǫ is the dielectric constant of the surrounding medium. The charge density ρ(r) consists of
three contributions:
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(i) That of the point charge q at the origin

ρ0 = qδ(r). (14.21)

(ii) That of the fixed background charge density

ρfixed(r) = −qn∞ (14.22)

(iii) That of all the other free charges in the plasma, which are themselves arranged around the
central charge according to some yet unknown charge density

ρfree(r) = qn∞g(r) = qn∞e
−qφ(r)/kT . (14.23)

We therefore have ρ = ρ0 + ρfree + ρfixed and hence

∇2φ = −n∞q
ǫ

[e−βqφ − 1]− q

ǫ
δ(r) . (14.24)

This nonlinear Poisson–Boltzmann equation can be solved numerically to give φ(r). To
see what sort of physics is involved,consider the limit where φ≪ kT (low charge densities and/or
high temperatures):

e−βqφ(r) ≃ 1− βqφ . (14.25)

In that case, the Poisson–Boltzmann equation becomes linearised to

∇2φ =
n∞q

2

ǫ
βφ− q

ǫ
δ(r) (14.26)

or

∇2φ− φ

λ2D
= −q

ǫ
δ(r) (14.27)

which is called the Debye–Hückel equation; the constant

λD =

(

kTǫ

q2n∞

)1/2

(14.28)

has dimensions of length and is called the Debye screening length.

In the Debye–Hückel equation φ(r) is the Green’s function for a charge q at the origin. For-
mally, this can be derived by Fourier transform techniques, but a direct approach is straightforward
in this case. For spherical symmetry,

∇2φ =
1

r2
∂

∂r

(

r2
∂φ

∂r

)

=
1

r

∂2

∂r2
(rφ) , (14.29)

so that a solution of the Debye–Hückel equation away from r = 0 is that rφ is in the form of a
sum of exponentials. Choosing the decaying solution, we have

φ(r) = A
e−r/λD

r
=

q

4πǫ

e−r/λD

r
. (14.30)

Happily, this vacuum solution tends to a 1/r potential at small r, which will provide a delta-
function on differentiation. This is analogous to the solution of the ordinary Poisson equation,
where the same reasoning yields φ = A/r. Obviously, we need the same A = q/4πǫ in this case,
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since the φ/λ2D term is negligible at r = 0 compared to the δ-function. We derive this constant
by integration of Poisson’s equation over a small sphere about the origin. The RHS integrates to
−q/ǫ (the volume of the δ-function is unity), and the LHS can be rewritten using the divergence
theorem:

∫

∇2φ dV =

∫

∇φ · dS, (14.31)

where the latter integral is −4πA.

The solution (14.30) is called the screened Coulomb potential, and is the net potential
around a point charge, once the other charges have arranged themselves so as to minimise their free
energy. At distances large compared to λD, the charge at the centre is cancelled by the collective
response of the other charges, leaving an effective potential tht is well localised – see Fig. 15. The

n

r r

φ

λDλD

n

Figure 15: Sketch of the potential φ(r) and the density n(r), given a charge (of same sign) at the origin.
Note in the first sketch how the Coulomb potential is screened out at distances of order λD and in the
second sketch how there is a depletion zone size of order λD.

screened coulomb potential is sometimes called the Yukawa potential, after Yukawa who first
proposed this form for the strong force mediated by exchange of (massive) pions. The result is
the same as you would predict if the photon (which mediates the Coulomb force) were a massive
particle. Accordingly it is sometimes said that, because of the many-body interactions between
charges, photons in a plasma ‘acquire mass’.

Debye–Hückel theory is an example of a mean-field theory. What this term generally
means is that correlations are ignored at some level: here we have ignored correlations except
two-point correlations. We shall explore the meaning of mean-field theories more fully in later
sections. We also note that Debye–Hückel theory is a self-consistent approximation, i.e. the density
n(r) depends on the potential φ(r), which is itself determined from the density.

15 Phase transitions and the Ising model

The Debye–Hückel theory shows how the properties of a system can be affected by correlated
behaviour induced by interactions between molecules. A more familiar and more radical exam-
ple of this sort is the case of phase transitions, in which the properties of matter can change
discontinuously when physical conditions are altered. This is undoubtedly one of the most
fascinating parts of physics, where we encounter phenomena that are emergent: effects that
are not obviously to be expected from a first inspection of the microscopic laws that are at work.
For this reason, much effort has been invested in simple models where the connection to phase
transitions can be understood, and the remaining lectures focus on one particular case: the Ising
model.
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15.1 Review of basic phenomenology

15.1.1 Critical point of liquid–gas system

• Along the vapour-pressure (boiling) co-existence curve in Fig. 16a, the gas and liquid coexist
i.e. the fluid can exist in two different forms or phases characterised by different densities.

• This co-existence curve in Fig. 16a terminates at the critical point which has unique
thermodynamic co-ordinates Tc, Pc, ρc where ρ is the density.

• In Fig. 16b the critical isotherm has zero slope at ρc, which means that the isothermal
compressibility given by

κT = − 1

V

(

∂V

∂P

)

T

, (15.1)

diverges at the critical point. This implies that there are large scale fluctuations in the
volume/density.

• In the coexistence region in Fig. 16b (or line in Fig. 16a) the liquid and gas coexist and the
fluid separates into a mixture of gas and liquid, which have densities ρl and ρg, with the
required overall density ρ.

15.1.2 Critical point of a magnet

• A magnetic solid, made up of atoms with dipole moments, exhibits no global magnetisation
at high T (in zero applied field). This is known as the paramagnetic phase.

• But in this phase an applied field will produce a mean magnetisation. This scales linearly
with field for small fields but saturates at large field (Fig. 17).

• Interactions between dipoles, namely the quantum exchange interactions that tend to align
the dipoles, become important at low T .

• For T < Tc a global magnetisation emerges even in zero applied field i.e. the dipoles tend
to line up in the same direction without the aid of an applied magnetic field. This is known
as a ferromagnetic phase.

Furthermore

• For T < Tc note the discontinuity in M as we cross the coexistence line i.e.

{

H = 0+ M > 0
H = 0− M < 0

(15.2)

• At Tc we have Mc = Hc = 0 which is due to the symmetry between the two ferromagnetic
phases ±|M |.

• The critical isotherm H(M) has zero slope at M = 0, which implies that at Tc the response
function diverges:

χ =
∂M

∂H

∣

∣

∣

∣

H=0

→ ∞ , (15.3)

and that there are large scale fluctuations in the magnetisation.
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Figure 16: (a) Phase diagram for a fluid in the P–T plane. Note the ‘vapour-pressure’ (boiling) curve
which separates the liquid and gas phases and terminates at the critical point (b) Isotherms in the P–ρ
plane. Note the emergence of a flat piece in the co-existence region when T < Tc (c) Plot of ρ(T ) as we
move along the co-existence curve. Note the emergence of two values ρl and ρg for T < Tc. [Pictures (a),
(b) from Tuckerman.]

86



T

h

Tc

Spin up phase

Spin down phase

m

h

T <  T

T = T 

T > T

C

C

C

M

TTc

Figure 17: (a) Phase diagram for a magnetic system in the H–T plane where H is the applied magnetic
field. The coexistence curve is along the H = 0 axis (b) Isotherms in theM–H plane whereM is the global
magnetisation. Note the emergence of a flat piece when T < Tc (c) Plot of M(T ). Note the emergence of
two non-zero values ±|M | for T < Tc.
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15.1.3 Critical point of a binary alloy

Finally a brief mention is made here of a less familiar system exhibiting a phase transition.

• There are equal concentrations of A and B type atoms arranged on a regular lattice.

• For T > Tc we have the disordered phase where the atoms are arranged randomly on the
lattice sites.

• For T < Tc an ordered state emerges where A and B atoms are concentrated on their own
separate sublattices.

15.1.4 Common features

There are countless other examples of phase transitions, but our aim here is to unify the common
features:

• Co-existence Curve: line separating two phases differing by macroscopic properties.

• Critical Point: end of co-existence curve.

• Order Parameter O: characterises the difference between the two phases.

For example

– Fluid: O ≡ ρl − ρg the density difference between the two phases.

– Magnet: O ≡M the global magnetisation.

• Phase Transition: qualitative change in macroscopic properties as some parameter e.g. T
is varied.

Generally we have two types of phase transition:

– a discontinuous transition (often referred to as ‘first order’) exhibits a jump in O e.g.
on crossing the co-existence curve

– a continuous transition (or ‘second order’, . . .) has the change in O → zero (but in
a nonanalytic way – see later) e.g. in the passage through the critical point. The
transition is accompanied by divergence of response functions and accompanying large-
scale fluctuations.

15.2 Basic model: the Ising model

We now introduce the most widely studied model system in statistical physics, written down by
Ernst Ising in his 1925 PhD thesis.

• We have N spins on a lattice, which we can take for simplicity to be a simple cubic lattice.
The spins each occupy one lattice site i where i = 1 . . . N and take values Si = ±1 ‘up’ or
‘down’.

• The Configurational Energy, or Hamiltonian of the system, is given by

E({Si}) = −h
∑

i

Si − J
∑

<ij>

SiSj (15.4)
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– First term: h is the ‘field’ i.e. the applied magnetic field. If Si is aligned to the field it
gives a lower energy contribution.

– Second term: here, <> means nearest neighbour (nn) pairs. The number of nn of
a site is z, the co-ordination number of the lattice; for example, on a simple
cubic lattice z = 6. But, as will frequently be the case, we need to make sure that the
energy from each pair is only counted once, independent of the order of the sites that
constitute the pair: thus the total number of independent nn pairs is Nz/2, not Nz.

– J is the coupling constant, here assuming isotropy, so that that all adjacent
spins couple with equal strength. If J > 0 when the neighbouring spins Si and Sj are
aligned, they give a lower contribution to the energy.

– The sign may seem puzzling here, given that we are used to classical magnetic dipoles
having a lower energy when they are antiparallel, and this sign difference is key to
the phenomenon of ferromagnetism. Its origin is via quantum symmetry. Consider
two Fermions, whose wave function must be antisymmetric overall. If both are spin
up, the spin wave function must be symmetric, so that the spatial wave function is
antisymmetric: the particles avoid each other and there is less Coulomb repulsion.

• The Partition Function

Z =
∑

{Si=±1}

e−βE({Si}) β = 1/kT . (15.5)

The configurational sum (often referred to as the trace) is explicitly

∑

{Si=±1}

=
∑

S1=±1

∑

S2=±1

. . .
∑

SN=±1

. (15.6)

Why might we expect a phase transition in this model?

F (E) = E − TS , (15.7)

is the Helmholtz free energy. The equilibrium state is given by minimising F with respect to the
Si, which in turn determine E and S. As usual, T sets the balance between minimising E and
maximising S:

At low T minimise E ⇒ ground states ↑↑ . . . ↑↑ and ↓↓ . . . ↓↓ dominate

At high T maximise S ⇒ disordered states ↑↓↓ . . . ↑↓↑ dominate

But we need to show that there is a phase transition between the two regimes rather than a
smooth crossover.

16 Mean-Field theory of the Ising model

Even though it is an extremely simple idealisation, it is a sad fact that there is no exact solution
for the Ising model (or many other interesting models) on a 3D lattice. Therefore one has to resort
to approximations. This section will go through in detail a mean-field approximation, which is
always the first recourse in trying to construct a theory.
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16.1 The mean-field approximation

16.1.1 The Weiss approximation

Recall that the Ising configurational energy is

E({Si}) = −h
∑

i

Si − J
∑

<ij>

SiSj . (16.1)

Consider all contributions involving spin Sj

ǫ(Sj) = −hSj − JSj

nn
∑

k

Sk , (16.2)

where the sum is over nearest neighbours (nn) k of site j. We now approximate the sum by
replacing the Sk with their mean value

ǫmf(Sj) = −hSj − JSj

nn
∑

k

〈Sk〉 ≡ −hmfSj , (16.3)

where z is the co-ordination number, the number of nn sites,

hmf = h+ Jzm (16.4)

and m, the magnetisation per spin, is just the mean value of any given spin:

m =
1

N

∑

i

〈Si〉 = 〈Sk〉 for all k . (16.5)

Thus the mean-field approximation is to replace the configurational energy by the energy of a non-
interacting system of spins each experiencing a field hmf . Note that here we are calculating the
energy of a single spin, so we count the interactions with the full number of nearest neighbours,
z, and do not divide by 2. For this problem we can immediately write down the single-spin
Boltzmann distribution:

p(Sj) =
e−βǫmf(Sj)

∑

Sj=±1 e
−βǫmf(Sj)

=
eβhmfSj

eβhmf + e−βhmf

. (16.6)

Now, we have a consistency condition to fulfil: the value of the magnetisation m predicted
by the Boltzmann distribution should be equal to the value of m used in the expression for hmf .
Thus we require

m =
∑

Sj=±1

p(Sj)Sj (16.7)

=
eβhmf − e−βhmf

eβhmf + e−βhmf

= tanh(βhmf) , (16.8)

and we arrive at the mean-field equation for the magnetisation:

m = tanh(βh+ βJzm) (16.9)

Note that, although not necessary here, an alternative approach is to use the usual type of trick
based on the partition function:

m =
1

β

∂

∂hmf
ln





∑

Sj=±1

eβhmfSj



 =
1

β

∂

∂hmf
ln (2 cosh(βhmf)) . (16.10)
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16.1.2 Solving the consistency condition

First we will consider the case h = 0 (zero applied field). The solutions of

m = tanh(βJzm) , (16.11)

can be understood graphically, as shown in Fig. 18. We see that for low β (high T ) the only

♠

♠✦ ✵

✵

♠

❢�♠✁✂♠

t✄☎✆� ✝♠✁β

Figure 18: Picture of tanh(βJzm) versus m and the straight line m versus m. The intersections give the
solutions of (16.11).

solution is m = 0 whereas for high β (low T ) there are three possible solutions m = 0 and
m = ±|m|. The solutions with |m| > 0 appear when the slope of the tanh function at the origin
is greater than 1 (i.e. the gradient of the straight line m)

d

dm
tanh(βJzm)

∣

∣

∣

∣

m=0

> 1 . (16.12)

Using the expansion of tanh for small argument tanhx ≃ x − x3/3 (we only need the first term
at this point), the mean-field equation becomes

m = βJzm+O(m3) . (16.13)

Thus a nonzero solution emerges when the gradient of the RHS reaches unity; the critical tem-
perature at which this happens is given by

βcJz = 1 or Tc =
zJ

k
. (16.14)

Thus for T > Tc only the paramagnetic m = 0 solution is available, whereas for T < Tc we also
have the ferromagnetic solutions ±|m|. These are the physical solutions for T < Tc, as we shall
see in the next section.

16.2 Critical behaviour

Consider again equation (16.11), which in terms of Tc is

m = tanh

(

m
Tc
T

)

. (16.15)
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We wish to analyse the emergence of the ferromagnetic solutions when T is near Tc, that is, in
the critical regime where T ≃ Tc and |m| ≪ 1. Now expanding tanh(x) to O(x3) we obtain

m = m
Tc
T

− m3

3

(

Tc
T

)3

. (16.16)

Thus m = 0 or

m2 = 3

(

T

Tc

)3(Tc
T

− 1

)

. (16.17)

We now define the reduced temperature t by

t =
T − Tc
Tc

(16.18)

which gives

T

Tc
= 1 + t

Tc
T

=
1

1 + t
. (16.19)

The reduced temperature t measures the proximity to the critical point. When t is small (16.17)
becomes

m2 = 3(1 + t)3
(

1

1 + t
− 1

)

= −3t+O(t2) . (16.20)

Thus

T > Tc m = 0

T < Tc m ≃ ±(3|t|)1/2 +O(|t|3/2) . (16.21)

We now proceed to compute the susceptibility

χ =
∂m

∂h

∣

∣

∣

∣

h=0

, (16.22)

and we should now expand (16.9). To capture the leading order behaviour in t, h it suffices to
expand to first order in h:

m = m
Tc
T

+ βh− m3

3

(

Tc
T

)3

. (16.23)

There is also a term ∝ hm2 but since near the critical point m = 0 or m ∝ t1/2, this term will not
contribute or will give a correction higher order in t. You should check this once you’ve understood
how to obtain (16.25). Taking the derivative wrt h yields

χ = χ
Tc
T

+ β − χm2

(

Tc
T

)3

, (16.24)

or

χ =
β

(

1− Tc

T +m2
(

Tc

T

)3
) . (16.25)

Then we find for t small and using the appropriate expression for m (m = 0 or (16.17))

T > Tc : χ =
β

1− Tc

T

∼ βc
t

(16.26)

T < Tc : χ =
β

1− Tc

T + 3(Tc

T − 1)
≃ βc

2|t| . (16.27)
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Again we have just identified the leading behaviour as t→ 0; if we had taken the m = 0 solution
below Tc in (16.25) we would have obtained a negative response function which is unphysical. The
critical behaviour is sketched in Fig. 19. Note how |m| > 0 emerges in a non-analytic way since
∂|m|/∂t diverges at t = 0. Also note the divergence in χ (the response function to the applied
field) at t = 0.

t

|m| χ

00 t

Figure 19: Sketch of the critical behaviour of |m| and χ as functions of the reduced temperature t.

16.3 Limitations of mean-field theory

The essence of the mean-field assumption is the neglect of correlations between spins i.e. we
effectively replace

〈SiSj〉 ≃ 〈Si〉〈Sj〉 i 6= j . (16.28)

Note we can write the energy in the form

E({Si}) = E0 − h
∑

j

Sj , (16.29)

where E0 = −J
∑

〈ij〉 SiSj , which is the same form as that which we used to discuss the fluctuation
response theorem in Section 6 if we identify f = h and A =

∑

j Sj . Then we know that

χAA =
∂〈A〉
∂f

= β
[

〈A2〉 − 〈A〉2
]

. (16.30)

In our case (χ here is susceptibility per site)

χ =
∂m

∂f
=

1

N
χAA =

β

N

∑

jk

[〈SjSk〉 − 〈Sj〉〈Sk〉] . (16.31)

This equation is exact. But if we now insert the mean field approximation then all terms in the
sum with j 6= k will vanish, leaving

χ = β[1−m2] . (16.32)

Clearly this does not diverge at Tc so the mean-field approximation is inconsistent with regard
to χ. The root of the problem lies in the neglect of correlations, which become important as the
critical point is approached.
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16.4 The correlation length

Let us define the ‘connected correlation function’

Gij = 〈SiSj〉 − 〈Si〉〈Sj〉 (16.33)

= 〈(Si − 〈Si〉)(Sj − 〈Sj〉)〉 . (16.34)

Clearly Gij measures the correlations between the fluctuations ∆Si = Si − 〈Si〉: a positive Gij

implies that the fluctuations of the spins about their mean value are correlated. Let Rij be the
distance between spins i and j. For large Rij we expect

Gij ≃ C(Rij)e
−Rij/ξ , (16.35)

where C is some slowly varying function but e−Rij/ξ ‘cuts off’ the correlation function at the
correlation length ξ. Thus ξ is the scale at which correlations decrease significantly.

When T > Tc so that 〈Si〉 = 0 a typical microstate will consist of clusters of up and down
spins with the overall magnetisation being zero. Intuitively the correlation length gives a measure
of the (linear) size of the largest clusters of correlated spins. See Fig. 20 for a one-dimensional
illustration. As the temperature is decreased to the critical temperature the size of the clusters
diverge and we expect ξ to diverge.

O(ξ)

Figure 20: Sketch of a typical configuration of spins above Tc which consists of clusters of correlated spins
but zero overall magnetisation. ξ is the length of the largest clusters.

One can refine mean-field theory to include the calculation of the ‘two-point’ correlation
function Gij . This is similar in spirit to the Debye–Hückel theory but is rather more technical.
The result is that a correlation length is predicted which grows like

ξ ∝ |t|−1/2 , (16.36)

diverging at Tc. However the mean-field theory is still inconsistent due to the neglect of three-point
and higher order correlations. Correlations and fluctuations on all scales and all orders become
important as criticality is approached.

16.5 Summary of mean-field picture and comparison with experiment

The mean-field theory predicts

• The critical temperature Tc = zJ/k at h = 0
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• The singular, critical behaviour is described by

m ∼ m−|t|β̃ (T < Tc) (16.37)

χ ∼ χ±|t|−γ (16.38)

ξ ∼ ξ±|t|−ν (16.39)

β̃, γ, ν are known as critical exponents and take mean-field values β̃ = 1/2, γ = 1, ν = 1/2.

(The standard notation for the order parameter (magnetisation) exponent is β and there is an
obvious clash with inverse temperature so we use a tilde to be clear.)

The precise meaning of, for example, m ∝ |t|β̃ is

lim
|t|→0

lnm

ln |t| = β̃ . (16.40)

Actually there are even more critical exponents. For example,

• one can define the zero-field heat capacity

Ch =
∂E

∂T

∣

∣

∣

∣

h=0

∝ |t|−α , (16.41)

• near and below Tc one can characterise the discontinuity in the m order parameter across
the coexistence line by

h ∝ |m|δ sgn(m) . (16.42)

Mean-field values are α = 0 and δ = 3 (see tutorial sheet).

The set α, β̃, γ, δ, ν characterise the critical point. It turns that some of these exponents are
implied by the others and in fact there are only three independent exponents which we can take
as β̃, γ, ν.

Now experimental data reveal that

• Systems do exhibit such singularities

• But the critical exponents differ from the mean-field values

• However critical exponents are system independent e.g. for fluids, binary alloys and many
magnets it has been found that β̃ ≃ 0.31, γ ≃ 1.25, ν ≃ 0.64 in three dimensions. Thus
apparently unrelated systems share the same set of critical exponents. This is referred to as
Universality and remained a mystery for many years.

To summarise, mean-field theory is successful in that it qualitatively describes the critical be-
haviour but is quantitatively incorrect. Moreover as we shall find next section it is qualitatively
incorrect in one dimension. On the other hand as we shall discuss later mean field theory does
in fact give the correct critical exponents in high enough space dimension (d ≥ 4 for the Ising
model).
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17 Exact results for the Ising model

In one dimension the total Ising energy becomes

E = −h
N
∑

i=1

Si − J
N
∑

i=1

SiSi+1 . (17.1)

Note that we have assumed periodic boundary conditions which mean we take SN+1 = S1 i.e.
the spins are on a ring. Although at first this seems completely bizarre, it is a standard device
to make things simple and is harmless – one can consider other boundary conditions but it won’t
alter the physics. Note that we only consider pairs connecting i to i + 1, which deals with the
overcounting problem.

17.1 Solution in 1D for h = 0

↑↑ · · · ↑↑↓↓ · · · ↓↓↑↑ · · · ↑↑ (17.2)

Example of two domain walls in a one-dimensional system of N Ising spins.

As seen in the last section, a microstate consists of clusters or domains of spins of the same
sign separated by domain walls. In the absence of an external field there are two possible
ground states that contain no domain walls (the all up and all down configurations of spins). The
number of domain walls in a microstate specifies the energy relative to the ground state i.e. each
domain wall costs energy 2J . We can thus view the properties of the system more fruitfully in
terms of the statistics of domain walls. Let

ni =
1

2
(1− SiSi+1) =

{

1 if domain wall present
0 if no domain wall present

(17.3)

Then

SiSi+1 = 1− 2ni (17.4)

and

E = −NJ + 2J
N
∑

i=1

ni . (17.5)

The first term is the energy in the case that all spins are aligned (no walls); this is just a constant
which can be ignored. But each wall changes the interaction energy from −J to +J at that site,
and the system thus becomes a non-interacting set of domain walls with states ni = 1 (domain
wall) with energy ǫ = 2J and ni = 0 (no domain wall) with zero energy.

As the system is non-interacting we can immediately write down the Boltzmann distribution
for the single domain wall problem, which is given by

p(ni) =
e−2βJni

1 + e−2βJ
. (17.6)

The probability p(1) = p that a domain wall is present then has the behaviour in the high and
low temperature limits

p ≃
{

e−2βJ + . . . → 0 as β → ∞ (T → 0)

1
2 − 1

2βJ + . . . → 1
2 as β → 0 (T → ∞)

(17.7)
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So we get the expected limits of no domain walls at T = 0 and a disordered state where spins
are randomly up or down as T → ∞. However already we can see that p(1) goes smoothly
between these two extremes and there is no phase transition. Thus for T > 0 we are always in
the paramagnetic phase.

To understand better what is happening physically we should consider the two-point correla-
tion function and examine the correlation length. Let j and k be two sites separated by distance
ℓ = |j − k| and let m be the number of domain walls between the two sites. Then

SjSk =

{

+1 if m even
−1 if m odd

= (−1)m (17.8)

and we can average this to obtain

〈SjSk〉 =
∑

m

pm(−1)m , (17.9)

where pm is the probability that there are precisely m domain walls between the two sites. pm is
given by the binomial distribution for having m domain walls in the ℓ possible locations between
the two sites with a domain wall present with probability p so

pm =

(

ℓ

m

)

pm(1− p)ℓ−m ,
ℓ
∑

m=0

pm = (p+ 1− p)ℓ = 1 . (17.10)

Thus

〈SjSk〉 =
ℓ
∑

m=0

(

ℓ

m

)

pm(1− p)ℓ−m(−1)m = (−p+ 1− p)ℓ = (1− 2p)ℓ . (17.11)

We can write this as

〈SjSk〉 = eℓ ln(1−2p) = e−ℓ/ξ , (17.12)

where the correlation length is

ξ =
1

| ln(1− 2p)| =
{

1
2e

2βJ → ∞ as β → ∞ (T → 0)

1
| ln(βJ)| → 0 as β → 0 (T → ∞)

(17.13)

So the correlation length gets longer as T decreases but only diverges as T → 0. From this we
conclude that

lim
|j−k|→∞

〈SjSk〉 = 0 ∀T > 0 , (17.14)

which implies that we are always in the paramagnetic phase. For a ferromagnetic phase we would
obtain a non-zero limit and there would be long-range order.

Thus we have shown that there is no long-range order (ferromagnetic phase) and no phase
transition in the 1D Ising model. This directly contradicts our mean-field prediction of a phase
transition (for z = 2) at Tc = 2J/k. Mean-field theory is disastrously wrong in one dimension.

17.1.1 General solution of 1D Ising model

For the general case (h 6= 0) we wish to calculate the partition function

Z =
∑

{Si=±1}

e−βE({Si}) =
∑

S1=±1

∑

S2=±1

. . .
∑

SN=±1

e−βE({Si}) . (17.15)
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Now let us write the energy in the following way

E({Si}) = −h
2

∑

i

Si −
h

2

∑

i

Si+1 − J
∑

i

SiSi+1 . (17.16)

Then

exp(−βE) =
∏

i

exp

[

βh

2
(Si + Si+1) + βJSiSi+1

]

, (17.17)

and we have

Z =
∑

{Si=±1}

∏

i

T (Si, Si+1) , (17.18)

where

T (Si, Si+1) = exp

[

βh

2
(Si + Si+1) + βJSiSi+1

]

. (17.19)

Write the values T (Si, Si+1) as a 2× 2 symmetric matrix – the Transfer Matrix

T =

(

eβ(J+h) e−βJ

e−βJ eβ(J−h)

)

, (17.20)

where the first (second) row corresponds to Si = +1 (−1) and the first (second) column corre-
sponds to Si+1 = +1 (−1).

Now writing out Z, and recalling we are using periodic boundary conditions, we have

Z =
∑

{Si=±1}

T (S1, S2)T (S2, S3) . . . T (SN−1, SN )T (SN , S1) (17.21)

= Tr
[

TN
]

= λN+ + λN− . (17.22)

In going from the first to second line we have used the usual rules of matrix multiplication and
the definition of the trace as the sum of the diagonal elements; in going from the second to third
line we have used the usual properties of the eigenvalues and trace of a symmetric matrix (see
tutorial). Direct calculation (see tutorial sheet) gives λ±, the eigenvalues of T , as

λ± = eβJ coshβh±
√

e2βJ sinh2 βh+ e−2βJ . (17.23)

Then the free energy per spin is

f = −kT
N

lnZ → −kT lnλ+ (17.24)

for large N (as λ+ − λ− > 0, so λ−/λ+ < 1). The thermodynamic properties can be obtained by
taking the various derivatives of f with respect to h, β.

17.2 Absence of long-range order in 1D

Let us consider two phases of a one-dimensional system separated by a domain wall.

AA · · ·AABB · · ·BB (17.25)

Domain wall between two phases A and B
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and assume that the two phases have equal free energies. In the Ising model the two phases are
the ferromagnetic up and down phases. We wish to determine whether a domain wall is favoured
thermodynamically. The energy cost ∆E of the domain wall will be finite if the interactions are
short-ranged. For example the Ising model we have studied has nearest neighbour interactions and
the energy cost is ∆E = 2J . We could also consider an Ising model with next nearest neighbour
interactions etc. The important point is that the energy cost of a domain wall does not depend
on the system size N .

The entropy gain due to the creation of a domain wall can be computed from the Boltzmann
entropy

∆S = k lnΩ , (17.26)

where here Ω = N is the number of possible positions for the domain wall. Thus the free energy
difference of a state of two domains divided by a domain wall over the ordered state of one phase
is

∆F = ∆E − T∆S = ∆E − kT lnN , (17.27)

which for all T > 0 will be negative for sufficiently large N . Thus entropy wins, domain walls are
always created and long range order cannot be maintained in one dimension.

17.3 Existence of a phase transition in 2D

Now consider the Ising model on a square lattice. A domain wall between the up and down phases
becomes an extended object: a chain of links as shown in Fig. 21. Let the length of the chain be

+ + + + + + + +

+ + + + + + +

+

+

+ +

+ +

+

+ +

+ +

Figure 21: In 2D a domain wall between up and down domains is an extended object.

Ñ : then the energy cost of the whole chain is

∆E = 2JÑ , (17.28)

since we have Ñ nearest neighbour pairs of spins of opposite signs.

To evaluate the entropy gain due to a single domain wall forming in the system, we have to
estimate Ω, the number of possible paths for the domain wall. If we start at the left hand side
and the size of the lattice is N = L × L then there are L starting positions. At each step the
domain wall can move to the right, move up or move down. This suggests that the number of
domain walls is approximately

Ω ∼ L× 3Ñ . (17.29)

This is a crude estimate (in fact it is an upper bound), but it is adequate because we take the
logarithm:

∆S = kÑ ln 3 + k lnL ≃ kÑ ln 3 . (17.30)
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Then

∆F ≃ Ñ [2J − kT ln 3] . (17.31)

Clearly for sufficiently low T , namely

kT <
2J

ln 3
, (17.32)

∆F > 0 and a domain wall is not thermodynamically favoured. Thus the ordered phase is stable
for low enough T (but T > 0) and long range order is maintained.

However we know that at large T the domain wall must be favoured and we should have a
disordered phase. This will occur at a critical temperature Tc. The above domain wall argument
can be sharpened (see chapter 14 of Huang) so that it actually gives a rigorous lower bound

kTc >
2J

ln 3
, (17.33)

which compares favourably to the exact value determined from the exact solution of the 2D Ising
model.

17.4 The exact Ising model in 2D and 3D

The Ising model in 2D was solved exactly by Lars Onsager in 1944. This is a heroic calculation,
which is alas far too long and detailed for this course: chapter 15 of Huang takes 24 pages over
the derivation. Onsager’s result for Tc was

kTc =
2J

ln(
√
2 + 1)

. (17.34)

What the crude argument misses is the existence of small ‘bubbles’ of the minority phase inside
the majority phase at finite (but low) T . The magnetisation of the system for zero applied field
is zero for T > Tc, but for lower T it takes the wonderful form

m =
[

1− (sinh 2βJ)−4
]1/8

. (17.35)

The expression for the specific heat is complicated, but near Tc it is dominated by a logarithmic
singularity. If T = Tc +∆T , then

Ch

k
≃ 2

π

(

2J

kTc

)2

ln

∣

∣

∣

∣

Tc
∆T

∣

∣

∣

∣

. (17.36)

This singularity is sufficiently weak that the internal energy is continuous at Tc, so there is no
latent heat and the transition is second order.

There has been a long history of searches for a corresponding analytic solution of the 3D Ising
model. So far these efforts have been without success – although tantalisingly there is no proof
that such a solution is impossible. But at present, the properties of the 3D Ising model have only
be derived by numerical Monte-Carlo studies. Qualitatively, the behaviour is similar to that in
2D, with spontaneous magnetisation below

kT 3D
c /J ≃ 4.5, (17.37)

as opposed to 2.3 in 2D.
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17.5 Mapping to a lattice gas

The Ising model is isomorphic to a variety of other physical models of interest, including phe-
nomena as broad as neural networks or even economics. In the lattice gas model each site of a
lattice is either occupied by a particle or is empty. Thus each lattice site has associated with it a
variable, ci with occupation number

ci =

{

1
0

. (17.38)

The overall number concentration of the gas is

c = fraction of particles with occupation number unity =

∑

i ci
N

. (17.39)

A hard-sphere repulsion between lattice gas particles is wired in due to the maximum occupancy
ci = 1. A short-range attractive potential is introduced by an energy −ǫ < 0 associated with a
pair of neighbouring particles.

E = −ǫ
∑

<ij>

cicj . (17.40)

Now the canonical partition function for the lattice gas should respect the fact that only mi-
crostates with precisely Nc particles are allowed

Z =
∑

{ci=1,0}

e−βE δ

(

∑

i

ci −Nc

)

, (17.41)

where the δ–function restricts the sum to the allowed microstates. However it is easier to work
with the Grand Canonical Ensemble where we allow the particle number to fluctuate but introduce
a chemical potential µ to tune the average number of particles:

ZLG =
∑

{ci=1,0}

e−β(E−µ
∑

i ci) =
∑

{ci=1,0}

exp



βǫ
∑

<ij>

cicj + βµ
∑

i

ci



 , (17.42)

where the sum over ci = 1, 0 is now unrestricted.

The effective energy E − µ
∑

i ci can be mapped onto the Ising energy (plus a constant) by
the identification

Si = 2ci − 1 = ±1 , J =
1

4
ǫ , h =

1

4
(ǫz + 2µ) . (17.43)

(z is the co-ordination number; the number of nn’s of a site in a 3D cubic lattice is 6). Therefore

ZLG = const.× ZIsing , (17.44)

and on taking logs of this equation the grand potential of the lattice gas and free energy of the
Ising model are the same (up to an unimportant constant)

ΦLG(T, µ) = FIsing(T, h) + const. . (17.45)

Now consider the phase diagram for magnetic system in the h-T plane (Fig. 22). The coex-
istence curve of the lattice gas is now given by

µc = − 1

2
ǫz , (17.46)

(which corresponds to h = 0) and the critical point will be given by the Ising value Tc(J) = Tc(ǫ/4).
Thus for T < Tc we have a discontinuous transition as µ is decreased through µc from a ‘liquid’
phase to a ‘gas’ phase:

cliq = 1

2
(1 + |m|) → cgas =

1

2
(1− |m|) , (17.47)

where ±|m| is the magnetisation in the ferromagnetic phase of the Ising model.
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spin up

spin down
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Tc
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Figure 22: Phase diagram for magnetic system in the h–T plane (left sketch) and of the lattice gas in the
µ–T plane (right sketch).

18 Landau theory of phase transitions

In the last section we saw that the ferromagnetic transition and the liquid-gas transition are
related in the sense that the Ising model can describe them both. Here a deeper understanding
will be developed with a model-independent theory of why the critical points of different systems
share the same properties i.e. why we have Universality.

18.1 Mean-field theory of Ising model revisited

First we repeat the mean-field theory of the Ising model by constructing an approximate free
energy. In the mean-field approximation the mean total Ising energy becomes

E = −h
N
∑

i=1

〈Si〉 − J
∑

〈ij〉

〈SiSj〉 ≃ −h
N
∑

i=1

〈Si〉 − J
∑

〈ij〉

〈Si〉〈Sj〉 (18.1)

= −hNm− 1

2
JzNm2 , (18.2)

where
∑

〈ij〉 counts Nz/2 independent nearest-neighbour pairs and m is the magnetisation. Fur-
ther we can write

m = 〈Si〉 = {prob. up spin} − {prob. down spin} (18.3)

= c− (1− c) , (18.4)

where c is the mean-field probability of a spin being up. This gives the Gibbs entropy of a system
of N spins as

S = −Nk [c ln c+ (1− c) ln(1− c)] . (18.5)

The Helmholtz free energy as a function of m is then F (m) = E(m)−TS(m), and the free energy
per spin is

f(m) =
F (m)

N
= −1

2
Jzm2 − hm+ kT [c ln c+ (1− c) ln(1− c)] . (18.6)

To find the equilibrium state we should minimise f with respect to m (at constant h), giving the
familiar mean-field equation for the magnetisation:

m = tanhβ(Jzm+ h) . (18.7)

To summarise, the procedure is to approximate the free energy (in this case by using a non-
interacting, mean-field energy) as a function of the order parameter, then minimise.
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18.2 Spontaneous symmetry breaking

Consider the free energy (with h = 0) as a function of m for different T :

f(m)

kT
= −Tc

T

m2

2
+

[(

1 +m

2

)

ln

(

1 +m

2

)

+

(

1−m

2

)

ln

(

1−m

2

)]

. (18.8)

This function is plotted in Fig. 23, normalised so that f(0) = 0.

c

m

f(m) for h=0
T=T T<TT>Tc c

Figure 23: Sketches of f(m) for T > Tc, T = Tc and T < Tc.

• f(m) is symmetric in m i.e. f(m) = f(−m).

• For T > Tc there is a single minimum at m = 0, which is the equilibrium state.

• At the critical point T = Tc

∂2f

∂m2

∣

∣

∣

∣

m=0

= 0 at T = Tc . (18.9)

• For T < Tc two symmetric minima emerge; m = 0 becomes a maximum, which is thus
unstable.

• For T < Tc the symmetry m → −m is spontaneously broken since the system must
select one of the two minima for its equilibrium state.

The structure of f(m) is easier to see if we expand in m around m = 0. Then we have (see
tutorial sheet)

f(m)

kTc
=
m2

2

(

T − Tc
T

)

+
m4

12
+O(m6) . (18.10)

The first two non-zero terms are all that is required to give the characteristic structure of f(m)
above and below Tc as sketched in the figure. Indeed one sees clearly that at the critical point the
coefficient of m2 vanishes and the ferromagnetic phases emerge when the coefficient is negative
(T < Tc).
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18.3 Landau free energy

We now develop a theory where we write down an expression such as f(m) directly, without going
through detailed calculations. The idea is to forget the details of the microscopic model and
consider just the symmetries. The recipe is as follows:

• Identify the order parameter, m say. This should be
– zero in the high temperature disordered phase.
– non-zero in the ordered phase.

• We aim just to analyse the behaviour near to the critical point where m is small.

• We define the free energy density as a power series in the order parameter m.

• The series must only contain terms that respect the symmetry of the order parameter.

• The series is truncated as soon as the physics is captured, i.e. minimisation of free energy is
possible.

As an example consider a magnetic system with the symmetry m ↔ −m (in zero applied
field). The order parameter is just the magnetisation m and we write down the free energy as

f(m) = const.+ am2 + bm4 +O(m6) . (18.11)

Note that the symmetry m → −m excludes any odd powers of m. The constant is unimportant
and we can set it to zero. As we shall see, we need only consider the m2 and m4 terms. The
coefficients a, b are unknown smooth functions of temperature. Minimising f wrt m, ∂f/∂m = 0,
yields

2am+ 4bm3 = 0 ⇒ m = 0 or m2 = − a

2b
. (18.12)

The transition occurs when a changes sign. Therefore we identify the leading-order temperature
dependence of a as

a(T ) ≃ (T − Tc)× const. = t a0 where t =
T − Tc
Tc

(18.13)

In the presence of a small applied field h (which breaks the symmetry) we add a linear term
in m to f(m)

f(m) = −hm+ am2 + bm4 . (18.14)

We can then understand the discontinuous transition below Tc by sketching the form of f(m)
when h passes through zero – the global minimum of f(m) changes discontinuously from |m| (for
h > 0) to −|m| (for h < 0); see Fig. 24.

18.4 Critical exponents

We can now easily recover the mean-field critical exponents.

• m ∝ ±|t|β̃ (T < Tc with h = 0)

Minimising f(m) in the low temperature ordered phase gives

m =

(

a0|t|
2b

)1/2

⇒ β̃ = 1/2 . (18.15)
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f(m)

mm

f(m)

Figure 24: Sketch of Landau free energy f(m) = −hm+ am2 + bm4 for a < 0 and b > 0, as a function of
the applied field: h < 0 (left) and h > 0 (right).

• h ∝ |m|δsgn(m) (with t = 0)

At Tc, t = 0 and we have

f(m) = −hm+ bm4 . (18.16)

Therefore minimising f yields

h = 4bm3 ⇒ δ = 3 . (18.17)

• χ ∝ χ±|t|−γ (with h = 0)

To work out the susceptibility χ near criticality we first minimise f(m) w.r.t. m, which
yields

0 = −h+ 2am+ 4bm3 . (18.18)

Then take the derivative wrt h to obtain an expression for χ:

0 = −1 + 2aχ+ 12bm2χ . (18.19)

Using the relevant expressions for m at h = 0, we find

χ ∼
{

1
2a0t

for t < 0 (T > Tc)

1
4a0|t|

for t > 0 (T < Tc)
(18.20)

Thus γ = 1.

• ch ∝ |t|−α (with h = 0), or f ∝ |t|2−α (see tutorial sheet)

• ξ ∝ ξ±|t|−ν

In order to obtain ν (the correlation length exponent) we need to generalise to a spatially-
varying order parameter m(r). This is something like Debye–Hückel theory, where the result
is ν = 1/2 as mentioned previously.

Universality The critical exponents at a continuous (second order) phase transition depend
only on

• symmetry of the order parameter

• range of interactions
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• dimension of space

Systems that are equivalent in this sense are said to be in the same universality class.

An example of two physically dissimilar transitions that lie in the same universality class is
the ferromagnetic transition in the Ising model and the liquid-gas transition in a fluid. This is
may not seem surprising, since the lattice gas model maps onto the Ising Model. But there is
more to it than this, because the lattice gas model has a particle-hole symmetry (c→ 1− c) that
is not apparently shared by real fluids. Despite this, the two do indeed lie in the same universality
class.

Unfortunately, the critical exponent values actually predicted from the Landau expansion
are, in most cases, not correct. For example, we can compare the Landau predictions for Ising
magnets, which are the same in both two and three dimensions, with those of Onsager’s exact 2D
solution and the best estimates in 3D from experiment and simulation:

Landau β = 1/2 δ = 3 α = 0 γ = 1
Ising 2D β = 1/8 δ = 15 α = 0 γ = 7/4
Ising 3D β = 0.31 δ = 5.2 α = 0.12 γ = 1.24

(18.21)

The reason for the failure of Landau theory is the fact that it is a mean-field theory and thus
neglects correlations and therefore fluctuations near the critical point.

Consider, for example, the heat capacity which in three dimensions behaves near the critical
point as

Ch =
∂E

∂T

∣

∣

∣

∣

h=0

∝ |T − Tc|−0.12 . (18.22)

Referring back to our discussion in section 6 this means that even for a thermodynamically large
system, the fluctuations in the energy

〈(∆E)2〉 = kT 2Ch , (18.23)

become formally divergent at the critical point (note that for magnets we have Ch instead of
CV here). Similar remarks hold for other thermodynamic quantities, all of whose fluctuations
would normally be negligible in a large system. This includes the mean magnetisation m. So the
idea of minimising the free energy density f(m) with respect to a single, well-defined value of m
is questionable to say the least. Note that the fluctuations are cooperative: they involve many
spins working in consort and cannot be viewed as the sum of many independent fluctuations of
individual spins.

Let us note here that Landau theory can be extended to include the effect of space dimension
and becomes Landau–Ginzburg theory. Above an upper critical dimension (ucd),
which is d = 4 for the Ising Universality Class, the fluctuations are not important and Landau
exponents become exact.

18.5 Other Landau free energies

One might have the impression from the discussion so far that Landau theory always leads to the
same expansion for f(m). Let us illustrate that this is not the case with a quick look at some
more complicated examples.

• Vector order parameter:

106



Consider a vector magnetic moment m. Where m has components α = 1, 2, . . .. Since the
free energy f is a scalar it involves scalar invariants of m i.e. |m|2

f = a0t|m|2 + b|m|4 . (18.24)

In Fig. 25 we see for m = (m1,m2) that f has a ‘Mexican hat’ form and the ground state
has infinite degeneracy. Thus the system can be moved around the ground state ‘manifold’
with zero free energy cost. These are known as Goldstone excitations.

Figure 25: Sketch of Landau free energy in low T phase for m = (m1,m2).

• Tensor order parameter:

An example of a tensorial order parameter occurs in the study of liquid crystals. These are
rod-like molecules but with no head or tail. The orientation of a molecule is described by a
‘head less’ vector n and the order parameter is given by the correlations between the n

Qij = 〈ninj〉 −
1

3
δij (18.25)

which is a tensor. If the orientations are random then since n is normalised (
∑

i n
2
i = 1),

〈ninj〉 = 1
3δij and the order parameter vanishes in the high temperature ‘isotropic phase’.

However at low temperatures there are nematic phases where the molecules line up.

In the case of the tensor order parameter there is actually a cubic term Tr(Q3) which comes
into play. This term is a scalar invariant and there is no symmetry to exclude it from the
Landau expansion.

• Discontinuous Phase Transitions:

An interesting point is that the presence a cubic term in the Landau expansion

f(m) = am2 + cm3 + bm4 (18.26)

can cause a discontinuous or first order phase transition, and this indeed happens in liquid
crystals. You should try sketching the cubic form of f to see how this can occur.

Similarly a free energy of the form

f(m) = am2 + bm4 + cm6 (18.27)

will lead to a discontinuous phase transition if the coefficient b is negative. Again sketch
f(m) to see how this happens.

18.6 Broader applications

The symmetry-based approach of Landau theory is extremely powerful, and need not be confined
to its initial applications in condensed matter. In subjects as different as particle physics and
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cosmology, heavy use is made of effective field theory, in which again a starting point is
to write down the most general form for quantities of interest, subject to known symmetries.
Spontaneous symmetry breaking is central to modern particle physics, where space is permeated
by a complex Higgs field, φ, with a potential of the same form as Fig. 25 (where the two
coordinates are the real and imaginary parts of φ). Such a potential was well known in condensed
matter (where it also manifests itself in superconductivity), and it was Philip Anderson who
suggested in 1962 that the phenomenon might also apply in particle physics. It then took until
1964 for Higgs and others to realise that the idea both allowed mass to be given to otherwise
massless particles such as the weak-interaction vector boson, W – and that a new massive particle
was predicted, corresponding to quantized oscillations of the Higgs field itself. It is a tribute to
the power of Landau’s ideas that they were able to reach so far across different areas of physics.
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