
Radiation & Matter: May 2017

1. (a) Write down Maxwell’s equations, and explain how two of these equations lead to a
re-expression of the electric and magnetic fields in terms of vector and scalar potentials,
A and φ. [3]

(b) Explain what is meant by gauge invariance in electromagnetism, and show how it can
be used to enforce the Lorentz condition between A and φ. [3]

(c) Suppose that the electromagnetic fields are to be described in terms of a superpotential,
Z, where A = (1/c2)Ż and φ = −∇ · Z; show that the Lorentz condition is automatically
satisfied in this case. If Z is assumed to satisfy the wave equation Z = −(1/ε0)P, show
that the usual wave equations for A and φ can be obtained, and derive the necessary
relations between the vector P and the charge and current densities. [6]

(d) Write down the general solutions to the electromagnetic wave equations for the po-
tentials, and explain how these apply in the case that the source is a charge q, with
non-relativistic velocity v. Consider only a distant source in the radiation zone. Explain
carefully what is meant by [ρ] and [j], the retarded values of the charge density and cur-
rent density, and hence explain why the volume integral of [ρ] only reduces to q in the
nonrelativistic limit. [5]

(e) A quadrupole source consists of two charges, q, separated by a vector d, with equal and
opposite velocities, oscillating with angular frequency ω. Calculate the vector potential in
the radiation zone at large radii and show that its amplitude is ωn · d/c times the dipole
field of a single charge. Hence obtain the angular distribution of the radiated power from
the quadrupole. [8]

2. (a) The quantum vector potential can be written as

A(r, t) =
∑
k,α

√
h̄

2ε0V ω
ek,α

(
ak,α(t)eik·r + a†k,α(t)e−ik·r

)
;

write down the meaning of the terms in this expression. [3]

(b) If the operators a and a† for a given mode have the commutator [a, a†] = 1 and
the Hamiltonian is

∑
i(a
†
iai + 1/2)h̄ωi summed over all modes, prove that the energy

eigenvalues are E =
∑
i(ni+1/2)h̄ωi, where the ni are independent non-negative integers.

[6]

(c) The theory of supersymmetry proposes that the photon has a Fermion counterpart
that is identical in properties, except that commutators would be replaced by anti-
commutators: aa† + a†a = 1. If eigenstates |n〉 are defined via a†a |n〉 = n |n〉, show
that n is an integer that obeys the exclusion principle, so that n = 0 or n = 1 are the
only allowed values. [6]

(d) If phase in quantum mechanics is to be locally unobservable, show that this requires
a first-order perturbation to the Hamiltonian of a charged particle: ∆H = −(q/m)A · p
in the gauge where φ = 0. Explain why the full perturbation allows the simultaneous
emission or absorption of up to two photons. [4]
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(e) According to the Golden Rule, the spontaneous decay rate from an excited state |Y〉
to a lower state |X〉 is

Γ =
ω dΩ

2πh̄c3m2

e2

4πε0
|MYX|2 .

Write down the matrix element MYX in the dipole approximation and give an expres-
sion for the lifetime of the m = 0 2p level [wavefunction (32πa5)−1/2z exp(−r/2a)] de-
caying to the ground state [wavefunction (πa3)−1/2 exp(−r/a)]. You may assume that∫∞
0 y4 exp(−3y/2) dy = 256/81. [6]

3. (a) The twice-ionized OIII ion has two outer-shell electrons in the 2p state. By factorising
the wave function into a function of total spin and a function of total angular momen-
tum, show that the three possible spectroscopic terms are 3P , 1D and 1S. According to
Hund’s rule, which of these is the ground state, and why? Spectroscopic selection rules
for permitted transitions in this case require zero change in spin; thus explain why the
transitions between 1D & 1S (4363Å) and 3P & 1D (4959/5007Å) are both forbidden
lines. [8]

(b) The above transitions are observed in nebulae as a result of collisional excitation.
Discuss the operation of this mechanism, explaining in particular the reciprocity relation
obeyed by collisional cross-sections, and the concept of a critical density. Explain why
the line emissivity scales in proportion to ion density at high densities, but in proportion
to the square of the density at low densities. [8]

(c) The de-excitation cross-section affecting the 4959/5007Å transition is 8 times larger
than the de-excitation cross-section affecting the 4363Å transition. Hence derive an ex-
pression for the ratio of emissivities in these two lines in the limit of low densities. At
what temperature are they in the ratio 100:1? [6]

(d) Explain how the calculation of part (c) would differ in the case of high densities. In
particular, how does the line emissivity ratio now depend on temperature? [3]
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