MPhys Radiation and Matter 2016/17

Tutorial questions 5

(1) Show that the general expression for a stimulated transition rate can be written as $\Gamma = (\alpha \omega / 2\pi m^2 c^2) N_{\gamma} d\Omega_{\gamma} |M_{\rm XY}|^2 = \Gamma_s N_{\gamma}$, where $\alpha = e^2 / 4\pi \epsilon_0 \hbar c$ is the fine-structure constant. Let ρ denote the number of states, $\rho = V/(2\pi\hbar)^3 d^3p$ in terms of momentum, and justify the following two formulae for cross-sections of bound-free transitions:

(a) Ionization: $\Gamma_s N_\gamma \rho_e = \sigma_{ion} \rho_\gamma N_\gamma c/V$. (b) Recombination: $\Gamma_s N_e \rho_e = \sigma_{rec} N_e \rho_e (p_e/m)/V$.

Discuss the need for direction averaging of the cross-sections, and show that the direction-averaged results obey the Milne relation $\sigma_{\rm rec}/\sigma_{\rm ion} = (p_{\gamma}/p_e)^2$ (where the energy relation $p_e^2/2m = p_{\gamma}c$ should be assumed).

(2) Define the angular momentum operators and show that.

 $[j_x, j_y] = i\hbar j_z$, (cyclic); $[j^2, j_z] = 0$.

Define the raising and lowering operators $j_{\pm} = j_x \pm i j_y$ and deduce their commutator with j_z . Hence show that there are 2j + 1 states, with z-component eigenvalues $m = -j, -(j-1), \dots, (j-1), j$ in units of \hbar . Finally, show that the normalized effect of the operators is $j_{\pm}|j, m\rangle = \sqrt{(j \mp m)(j \pm m + 1)}|j, m \pm 1\rangle$.

(3) For the case of two independent angular momenta, j_1 and j_2 , the total can range between $j_1 + j_2$ to $|j_1 - j_2|$. Since there must be $(2j_1 + 1)(2j_2 + 1)$ states in total, verify this gives the correct count in the cases where the two j's are each either 1/2or 1.

(4) For the case $j_1 = j_2 = 1/2$, and assuming that the (S, m) = (1, 1) state must factorise as $|\uparrow_1\rangle|\uparrow_2\rangle$, use the total lowering operator to deduce the other m states, and show that they are all symmetric. The total raising and lowering operators must act on the S = 0 state to give zero. Hence prove that the singlet state is antisymmetric. Repeat for $j_1 = j_2 = 1$: show that (L, m) = (2, 1) is symmetric, and hence that (L, m) = (1, 1) must be antisymmetric, so that L = 1 states are antisymmetric and L = 0 is symmetric.

(5) At what density would an HI cloud 30 pc in line-of-sight extent be optically thick $(\tau_{\text{peak}} = 1)$ if its temperature were 80K?

(6) What are the first few rotational energy levels of CO? (separation of atoms is 1.13Å). Estimate the transition rate Γ_{spon} for the J = 1 to J = 0 rotational transition (permanent dipole/e = 0.0229Å).

(7) Estimate the depth of a cloud (in parsecs) which is just optically thick ($\tau = 1$ at the line centre) in CO 1-0 radiation. The cloud kinetic temperature is 30 K and the density of CO molecules is 10^6 m^{-3} . Assume the levels are thermally populated.