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Radiation and Matter (U01439)

State the Born-Oppenheimer approximation as it applies to small molecules.

State the rigid-rotor approximation for the rotational behaviour of the CO molecule
and describe how it follows from the Born-Oppenheimer approximation.

The rigid-rotor Hamiltonian is
J2
H=—
21

where J is the angular momentum operator and I the moment of inertia. Derive
an expression for the reduced mass of the CO molecule. Taking the atomic nuclei
of CO to be separated by R = 1.1 A on average, and the atomic masses to be
integer multiples of the mass of the hydrogen atom, calculate the reduced mass
of 2C10 and the moment of inertia.

Given that the eigenvalues of J? are J(J + 1)h?, calculate the frequency of the
J =1 — 0 transition.

What are the wavefunctions appropriate to the rotational states?

Given that the permanent electric dipole moment is |e|d, where e is the electronic
charge and d is a vector of length 0.023 A, calculate the spontaneous emission
rate of the J =1 — 0 transition from the formula

43 e?
w = —
SPOTL ™ 3503 47eg

| < upper |r| lower > |?

given that the lowest spherical harmonics are

/1 /3 : /3
Yoo=1/—, Yiz1i=TF\ sin ¢ €ﬂ¢, Y10 =1/ cos 0.
A7 8 A7

Calculate the transition frequency and spontaneous emission rate of the J =1 — 0
transition in the next most abundant isotopomer, 3C60.
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Radiation and Matter (U01439)

Given that in the wave zone the vector potential may be written in the general

form
)/R

where F is an arbitrary vector-valued function of a single argument (the retarded
time), R (assumed constant) is the distance from the centre of the emitting region
to the field point at r, and n is a unit vector in that same direction, derive
expressions for VA F and V.F in terms of %—f.

A(r,t) = F(

r.n
t— ——
c

From Maxwell’s equations in empty space

0B OE
ANE=—"" AB = eoo—
V at 5 V €ollo at
and the fact that the scalar potential ¢ = 0 in the wave zone, show that

nANE=cB and cn A B = —E. Infer that E;B and n form a right-handed
triad like z,y and z.

Define the Poynting vector S.

Show that )
S = ¢cAin

Given the Liénard-Wiechert potential in the wave zone for radiation from a single
particle of charge ¢ and velocity v in the non-relativistic limit

HogVv
A(r,t) =
show that )
1 4q I
vsin“an

T 4rR2 4rmcdeq

where « is the polar angle. Finally, integrate this over the sphere to obtain
Larmor’s formula for the power radiated by an accelerated charge

q2@2

67mc3eq

A particle of mass m and charge @ initially moves with a velocity v perpendicular
to a uniform magnetic field of strength By. Show that the trajectory is a circle,
and derive the radius of the circle r and the angular frequency w.

Show that the particle radiates electromagnetic waves at a rate
4 B 2
P= i ()
6mcdeg \ m

and that the resulting loss of kinetic energy causes the velocity to decrease as

v = vy exp(—t/T)

giving an expression for T.
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Radiation and Matter (U01439)

Define the specific intensity I, and give its (MKS) units.
Which two aspects of the radiation field does I, not encapsulate?
The equation of radiative transfer in standard notation is

dI,

W = —I{VL/ +€,.

What are k, and €, called, and what are their units?
Show that I, is constant in empty space.

It follows that I, measured by an observer looking at the centre of the solar
disc is independent of his distance from the Sun; how is this consistent with the
inverse-square law?

k, and €, for any spectral line in any astrophysical setting both depend on the
frequency as some function ¢(v). How is this usually normalized?

Describe all the processes you can think of that can contribute to the form of ¢(v)
in various astronomical environments, indicating where appropriate the standard
form ¢(v) might take if that process were acting alone.

Show that these processes fall into two main classes.

A uniform interstellar cloud of thickness L along the line of sight absorbs and
emits radiation with constant x, and €, at a certain frequency v. Solve for the
observed [, assuming that no light is incident on the far side of the cloud.

How does the solution behave in the limits: a) Lk, << 1 and b) Lk, >> 17

How would b) be affected if there were a uniform source on the far side of the
cloud?
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