College of Science and Engineering School of Physics and Astronomy

Radiation and Matter SCQF Level 11, U01439, PHY-4-RadMatt Thursday, 30th April 2009 9.30 - 11.30 a.m.

Chairman of Examiners

Professor J A Peacock

External Examiner

Professor S Rawlings

Answer **TWO** questions

The bracketed numbers give an indication of the value assigned to each portion of a question.

Only the supplied Electronic Calculators may be used during this examination.

Anonymity of the candidate will be maintained during the marking of this examination.

Printed: July 27, 2009 PHY-4-RADMATT

1. State the Born-Oppenheimer approximation as it applies to small molecules.

State the rigid-rotor approximation for the rotational behaviour of the CO molecule and describe how it follows from the Born-Oppenheimer approximation.

[3]

[2]

The rigid-rotor Hamiltonian is

$$H = \frac{\mathbf{J}^2}{2I}$$

where **J** is the angular momentum operator and I the moment of inertia. Derive an expression for the reduced mass of the CO molecule. Taking the atomic nuclei of CO to be separated by R=1.1 Å on average, and the atomic masses to be integer multiples of the mass of the hydrogen atom, calculate the reduced mass of $^{12}\mathrm{C}^{16}\mathrm{O}$ and the moment of inertia.

[4]

Given that the eigenvalues of J^2 are $J(J+1)\hbar^2$, calculate the frequency of the $J=1\to 0$ transition.

[5]

What are the wavefunctions appropriate to the rotational states?

[2]

Given that the permanent electric dipole moment is $|e|\mathbf{d}$, where e is the electronic charge and \mathbf{d} is a vector of length 0.023 Å, calculate the spontaneous emission rate of the $J=1\to 0$ transition from the formula

$$w_{\text{spon}} = \frac{4\omega^3}{3\hbar c^3} \frac{e^2}{4\pi\epsilon_0} | < \text{upper } |\mathbf{r}| \text{ lower } > |^2$$

given that the lowest spherical harmonics are

[5]

$$Y_{0,0} = \sqrt{\frac{1}{4\pi}}, \quad Y_{1,\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta \ e^{\pm i\phi}, \quad Y_{1,0} = \sqrt{\frac{3}{4\pi}} \cos \theta.$$

Calculate the transition frequency and spontaneous emission rate of the $J=1\to 0$ transition in the next most abundant isotopomer, $^{13}\mathrm{C}^{16}\mathrm{O}$.

[4]

Page 1

2. Given that in the wave zone the vector potential may be written in the general form

$$\mathbf{A}(\mathbf{r},t) = \mathbf{F}(t - \frac{\mathbf{r}.\mathbf{n}}{c})/R$$

where **F** is an arbitrary vector-valued function of a single argument (the retarded time), R (assumed constant) is the distance from the centre of the emitting region to the field point at **r**, and **n** is a unit vector in that same direction, derive expressions for $\nabla \wedge \mathbf{F}$ and $\nabla \cdot \mathbf{F}$ in terms of $\frac{\partial \mathbf{F}}{\partial t}$.

[2]

From Maxwell's equations in empty space

$$\nabla \wedge \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \wedge \mathbf{B} = \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$$

and the fact that the scalar potential $\phi = 0$ in the wave zone, show that $\mathbf{n} \wedge \mathbf{E} = c\mathbf{B}$ and $c\mathbf{n} \wedge \mathbf{B} = -\mathbf{E}$. Infer that \mathbf{E}, \mathbf{B} and \mathbf{n} form a right-handed triad like x, y and z.

[2]

Define the Poynting vector S.

[2] [2]

Show that

$$\mathbf{S} = \epsilon_0 c \mathbf{\dot{A}}_{\perp}^2 \mathbf{n}$$

[4]

Given the Liénard-Wiechert potential in the wave zone for radiation from a single particle of charge q and velocity \mathbf{v} in the non-relativistic limit

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0 q \mathbf{v}}{4\pi R}$$

show that

$$\mathbf{S} = \frac{1}{4\pi R^2} \frac{q^2}{4\pi c^3 \epsilon_0} \dot{v}^2 \sin^2 \alpha \, \mathbf{n}$$

[4]

where α is the polar angle. Finally, integrate this over the sphere to obtain Larmor's formula for the power radiated by an accelerated charge

$$P = \frac{q^2 \dot{v}^2}{6\pi c^3 \epsilon_0}$$

[3]

A particle of mass m and charge Q initially moves with a velocity \mathbf{v} perpendicular to a uniform magnetic field of strength \mathbf{B}_0 . Show that the trajectory is a circle, and derive the radius of the circle r and the angular frequency ω .

[2]

Show that the particle radiates electromagnetic waves at a rate

$$P = \frac{q^4}{6\pi c^3 \epsilon_0} \left(\frac{vB_0}{m}\right)^2$$

[2]

and that the resulting loss of kinetic energy causes the velocity to decrease as

$$v = v_0 \exp(-t/T)$$

giving an expression for T.

[2]

Radiation and Matter (U01439)

Define the specific intensity I_{ν} and give its (MKS) units. [3]Which two aspects of the radiation field does I_{ν} not encapsulate? [2]The equation of radiative transfer in standard notation is $\frac{dI_{\nu}}{dl} = -\kappa_{\nu}I_{\nu} + \epsilon_{\nu}.$ What are κ_{ν} and ϵ_{ν} called, and what are their units? [4]Show that I_{ν} is constant in empty space. [1]It follows that I_{ν} measured by an observer looking at the centre of the solar disc is independent of his distance from the Sun; how is this consistent with the inverse-square law? [2] κ_{ν} and ϵ_{ν} for any spectral line in any astrophysical setting both depend on the frequency as some function $\phi(\nu)$. How is this usually normalized? [1]Describe all the processes you can think of that can contribute to the form of $\phi(\nu)$ in various astronomical environments, indicating where appropriate the standard form $\phi(\nu)$ might take if that process were acting alone. [5][1]Show that these processes fall into two main classes. A uniform interstellar cloud of thickness L along the line of sight absorbs and emits radiation with constant κ_{ν} and ϵ_{ν} at a certain frequency ν . Solve for the observed I_{ν} assuming that no light is incident on the far side of the cloud. [3]How does the solution behave in the limits: a) $L\kappa_{\nu} \ll 1$ and b) $L\kappa_{\nu} \gg 1$? [2]

How would b) be affected if there were a uniform source on the far side of the

[1]

cloud?