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General Relativity

Tutorial 7

John Peacock

Institute for Astronomy, Royal Observatory Edinburgh

An exercise in de Sitter Space

(1) A maximally symmetric 4D spacetime is a 4D (hyper)sphere embedded in Euclidean 5D space,
with one coordinate chosen to be timelike:

x2 + y2 + z2 + w2
− v2 = R2,

with the metric
ds2 = −c2dτ2 = dx2 + dy2 + dz2 + dw2

− dv2.

Make the substitutions
v =

√

R2 − r2 sinh(ct/R)

w =
√

R2 − r2 cosh(ct/R),

where r2 = x2 + y2 + z2, and show that the metric becomes

c2dτ2 = (1− r2/R2) c2dt2 − (1− r2/R2)−1dr2 − r2dψ2,

where as usual dψ denotes a ‘sky angle’: element of length on the surface of a unit sphere.

(2) Consider a source of photons that is stationary at radius r. Show that an observer at the origin
receives this radiation with a redshift factor

1 + z = (1− r2/R2)−1/2,

and hence that to lowest order there is a quadratic distance-redshift relation: z ≃ r2/2R2.

(3) Use the Euler-Lagrange approach to derive the equations for a radial geodesic of a massive
particle in this spacetime:

ṫ = k/(1− r2/R2)

ṙ = c
√

k2 − 1 + r2/R2,

where k is a constant. What is the physical significance of k?

(4) A particle is released from rest at r = ri at proper time τ = τi. What is the constant k in this
case? Show that the geodesic equation of motion is solved by

∆τ ≡ τ − τi = (R/c) ln

(

r/ri +
√

(r/ri)2 − 1

)

,

and hence that
r/ri = cosh(c∆τ/R),

so that a free particle will not remain at constant r.

(5) Repeat the calculation of part (2) for photons released by the particle in part (4). First argue
that the relation between changes in received and emitted time is

cδtr = cδte +
δre

1− r2e/R
2
.



Using the expression for ṫ and the result from part (4), show that

δτr
δτe

=

√

1− r2i /R
2

1− r2e/R
2

+

√

r2e/R
2 − r2i /R

2

1− r2e/R
2

.

For ri ≪ re ≪ R, show that the distance-redshift relation is linear to lowest order (a result first
derived by Weyl in 1923, and which was well-known to Hubble before his ‘discovery’ of a linear
distance-redshift relation):

z ≃ re/R.

(6) The static form of the de Sitter metric is similar to the Schwarzschild metric:

c2dτ2 = A(r)c2dt2 −A(r)−1dr2 + r2dψ2.

In applying the field equations to the Schwarzschild metric in tutorial 6, we derived the components
of the Ricci tensor for a metric of this form:

Rt
t = Rr

r = −A′′/2−A′/r

Rθ
θ = Rφ

φ = −A′/r + (1−A)/r2,

where dashes denote d/dr. Show that the field equations for a universe containing only a non-zero
cosmological constant, Λ, are Rµ

ν = Λgµν , and hence show that the de Sitter metric is a solution
of the field equations in such a universe. Give the relation between Λ and the curvature radius, R.

(7) Define comoving radius, r′, using the asymptotic exponential motion of a test particle: r =
r′ exp(ct′/R), where t′ is a new time coordinate that is equal to the proper time of the moving
particle. Write down an expression for dr in terms of dr′ and dt′. In general, dt = Adt′ + B dr′.
Since t′ is the proper time for a particle, we require dτ = dt′ if dr′ = 0. If we also require that
there be no cross terms ∝ dt′ dr′, show that this fixes A and B, and hence that the de Sitter metric
can be cast into the expanding form

c2dτ2 = c2dt′2 − e2ct
′/R(dr′2 + r′2dψ2).

Use the Euler-Lagrange equations to verify that a free particle can remain at a fixed value of r′

indefinitely.


