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General Relativity

Tutorial 5

John Peacock

Institute for Astronomy, Royal Observatory Edinburgh

A: Core problems

(1) Consider the surface of a cylinder, using polar coordinates (r, φ, z). All components of the
affine connection vanish, and hence the surface of a cylinder is not curved. Prove this in two ways:
(a) directly from derivatives of the metric; (b) using the Euler–Lagrange approach, with arc-length
dℓ = (r2dφ2 + dz2)1/2 as affine parameter.

(2) Consider the operation of parallel transport on the 2D curved surface of a sphere of radius R,
embedded in 3D Euclidean space.

(a) Using the 3D position vector in polar coordinates, r = R(sin θ cosφ, sin θ sinφ, cos θ), obtain
the 2D basis vectors eθ and eφ. Show that these are orthogonal but not orthonormal.

(b) What are the components of the metrics gµν and gµν on the surface of the sphere?

(c) Compute the components of the Affine connections directly from the metric, and check that
these match those deduced from the Euler–Lagrange equations.

(d) Define a tangent plane centred at θ = θT , φ = φT = 0 with Cartesian basis vectors x̂ = êφ,
ŷ = −êθ at the tangent point (note the hats, denoting normalization of the basis vectors). Show
that the 2D components of the basis vectors projected onto this plane are

eθ = R(cos θ sinφ,−[sin θ sin θT + cos θ cos θT cosφ])

eφ = R(sin θ cosφ, sin θ cos θT sinφ).
(1)

In the tangent plane, covariant derivatives of these vectors should be the same as coordinate
derivatives, so ∇iej = ∂iej = Γk

ijek (i.e. differentiating the above 2D forms of the basis vectors
projected into the tangent plane with respect to θ and φ). Hence obtain the components of the
affine connection for the spherical manifold and verify that they agree with those obtained earlier.

(e) Show that changing the θ coordinate does not rotate the parallel-transported basis vectors, but
that a change in φ does cause rotation (hint: consider the projection of the unit basis vectors, and
ask how these change at different points on the tangent plane). Hence show that parallel transport
of a vector around a non-great circle at constant θ causes rotation by an angle 2π cos θ clockwise
on the xy plane – see the animation at https://www.youtube.com/watch?v=8gjm8u-PpsY.

B: Further problems

(3) Let g denote the determinant of gµν , viewed as a matrix (note that g will be negative). The
variation in the determinant can be deduced by using det(AB) = detA detB, so that det(A+δA) =
detA det(A−1[A + δA]). Argue that the determinant of a matrix that is close to the identity is 1
plus the trace of the perturbation to the matrix (to first order in the perturbation) to show that
this is δdetA = detATr(A−1δA), and thus that

δg = g gµνδgµν . (2)



Use this relation to show that
Γµ

µν = ∂ν ln |g|
1/2. (3)

(hint: use the definition of Γ to write an expression for ∂αgµν . We actually started from this
expression in deriving the relation between Γ and the metric – see p12 of the notes). Hence show
that the covariant generalization of the divergence of a vector is

∇µV
µ = |g|−1/2∂µ

(

|g|1/2V µ
)

, (4)

and that the covariant generalization of the Laplacian is

∇µ∇
µφ = |g|−1/2∂µ

(

|g|1/2gµν∂νφ
)

. (5)


