# General Relativity PHYS11010 (SCQF Level 11) 

Monday $23^{\text {rd }}$ May, 2022 13:00-15:00 (May Diet)

Please read full instructions before commencing writing.

## Examination Paper Information

$\square$

## Answer BOTH questions

## Special Instructions

- Only authorised Electronic Calculators may be used during this examination.
- A sheet of physical constants is supplied for use in this examination.
- Attach supplied anonymous barcodes to each script book used.


## Special Items

- School supplied Constant Sheets
- School supplied barcodes

[^0]1.
(a) If a metric is diagonal, show that the affine connection $\Gamma_{\mu \nu}^{\alpha}$ vanishes unless at least two of its indices are equal, and that the only non-zero terms are
$$
\Gamma_{\beta \beta}^{\alpha}=-\frac{1}{2 g_{\alpha \alpha}} \frac{\partial g_{\beta \beta}}{\partial x^{\alpha}} ; \quad \Gamma_{\alpha \beta}^{\alpha}=\frac{1}{2 g_{\alpha \alpha}} \frac{\partial g_{\alpha \alpha}}{\partial x^{\beta}} ; \quad \Gamma_{\alpha \alpha}^{\alpha}=\frac{1}{2 g_{\alpha \alpha}} \frac{\partial g_{\alpha \alpha}}{\partial x^{\alpha}},
$$
where in this instance repetition of indices does not imply summation, and $\alpha$ and $\beta$ are distinct.
(b) The line element on the surface of a sphere of radius $a$ can be written as $d \ell^{2}=$ $d X^{2}+d Y^{2}+d Z^{2}$ with the constraint $X^{2}+Y^{2}+Z^{2}=a^{2}$. Show that this can be written as $d \ell^{2}=d R^{2} a^{2} /\left(a^{2}-R^{2}\right)+R^{2} d \phi^{2}$, giving expressions that show how Cartesian coordinates $(X, Y, Z)$ are related to some new coordinates $R$ and $\phi$.

Assume that a hyperbolic surface of constant negative curvature will have a metric of the same form, but with $a^{2} \rightarrow-a^{2}$. The Klein disc maps this infinite space onto a disc of unit radius, via the transformation $r=R /\left(a^{2}+R^{2}\right)^{1 / 2}$. Show that the line element can then be written as

$$
d \ell^{2} / a^{2}=\frac{d r^{2}}{\left(1-r^{2}\right)^{2}}+\frac{r^{2}}{1-r^{2}} d \phi^{2} .
$$

(c) Carry out a coordinate transformation to Cartesian coordinates in the Klein disk (i.e. with $x^{2}+y^{2}=r^{2}$ ) and show that the metric changes from $g_{r r}=a^{2} /\left(1-r^{2}\right)^{2}$, $g_{\phi \phi}=a^{2} r^{2} /\left(1-r^{2}\right)$ to

$$
g_{x x}=a^{2} \frac{1-y^{2}}{\left(1-r^{2}\right)^{2}} ; \quad g_{y y}=a^{2} \frac{1-x^{2}}{\left(1-r^{2}\right)^{2}} ; \quad g_{x y}=a^{2} \frac{1-x y}{\left(1-r^{2}\right)^{2}} .
$$

(d) Using the Lagrangian formalism, or otherwise, compute the equations obeyed by geodesics on the Klein disc in ( $r, \phi$ ) space, and prove that they are straight lines (hint: for a suitable origin of $\phi$, a straight line in 2D polars is $r \propto 1 / \cos \phi$ ). Given a geodesic passing through a point, A, demonstrate graphically that there are many geodesics passing through a different point, B, which are all parallel to the first (i.e. which do not meet it even when extended without limit).
2. (a) Explain why the 4 -acceleration as defined in Special Relativity, $A^{\mu}=d U^{\mu} / d \tau$ is not a general 4 -vector (where $U^{\mu}$ is 4 -velocity and $\tau$ is proper time). An alternative form using the covariant derivative, $\nabla_{\mu}$, does however permit a covariant generalization of the equation of motion for a freely-falling particle:

$$
A^{\mu}=U^{\alpha} \nabla_{\alpha} U^{\mu}=0 ; \quad \nabla_{\alpha} U^{\mu} \equiv \partial / \partial x^{\alpha} U^{\mu}+\Gamma_{\alpha \beta}^{\mu} U^{\beta} .
$$

Show that this equation reduces to the usual geodesic equation for $d^{2} x^{\mu} / d \tau^{2}$.
(b) Covariant differentiation of a tensor commutes with contraction. Prove this result for the case of a 2 nd-rank tensor $T^{\mu \nu}$, i.e. consider $\nabla_{\alpha} T^{\mu}{ }_{\nu}$, set $\mu=\nu$ after differentiation, and prove that this is the same as $\nabla_{\alpha}\left(T^{\mu}{ }_{\mu}\right)$.
(c) Consider a stationary observer at radius $r$ in the Schwarzschild spacetime and show that their 4-acceleration is

$$
A^{\mu}=\left(0, G M / r^{2}, 0,0\right)
$$

(hint: compute $\Gamma_{t t}^{r}$ from the equation of motion for $r$. Results from Q1 may be relevant here). Now compute the proper acceleration $a=\left(A^{\mu} A_{\mu}\right)^{1 / 2}$. Show that this agrees with the Newtonian expectation for $r \gg 2 G M / c^{2}$ and that stationary observers cannot exist for $r<2 G M / c^{2}$.
(d) A massive particle is projected towards a Schwarzschild black hole of mass $M$, with impact parameter $b$ and non-relativistic velocity $v$ at large distance from the hole. Show that the particle will be captured by the black hole if $b$ is below a critical value, $b_{c}$, and that the capture cross-section is

$$
\sigma \equiv \pi b_{c}^{2}=16 \pi\left(G M / c^{2}\right)^{2} /(v / c)^{2}
$$

(hint: if the particle is not captured, there must be a potential barrier at some minimum radius. How high must this be in the extreme non-relativistic limit where the kinetic energy at infinity goes to zero?).

What is the corresponding capture cross-section for light?


[^0]:    Anonymity of the candidate will be maintained during the marking of this examination.

