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General Relativity (PHYS11010)

1. (a) Explain what is meant by the term inertial force in Newtonian mechanics,
and show that such a force can be created by a coordinate transformation to
the frame of an accelerating observer: (t′,x′) = (t,x − at2/2). Define inertial
and gravitational mass, and discuss how their observed equality led Einstein to
postulate the Weak and Strong Equivalence Principles. [4]

(b) Write down the equation of motion in Special Relativity for a free particle
in a local inertial frame. Using the Weak Equivalence Principle, show that this
becomes the Geodesic Equation in a general frame of reference:

dUλ

dτ
+ Γλ

µν U
µUν = 0.

Define all terms carefully. [4]

(c) Show that this approach also requires spacetime to have a metric tensor, gµν ,
and that the additional coefficient in the Geodesic Equation is

Γλ
µν =

1

2
gλη(∂µgνη + ∂νgµη − ∂ηgµν),

where ∂µ = ∂/∂xµ. [4]

(d) Explain the concept of parallel transport and how it can be used to define the
covariant derivative of a vector in General Relativity: ∇νV

µ
≡ ∂νV

µ + Γµ
ανV

α.
Hence show that the Geodesic Equation can be written as Uν

∇νU
µ = 0. [5]

(e) By considering suitable products of 4-vectors, derive an expression for the
covariant derivative of a covector, ∇νVµ. What is the covariant derivative of the
tensor T α

µν? [3]

(f) Prove the following relation for the commutator of covariant derivatives:

(∇α∇β −∇β∇α)V
µ = Rµ

ναβ V
ν ,

where the Riemann Tensor is

Rα
σρβ ≡ ∂ρΓ

α
βσ − ∂βΓ

α
ρσ + Γα

ρνΓ
ν
σβ − Γα

βνΓ
ν
σρ

[5]
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2. (a) By considering the rest frame of a freely-falling massive particle, or otherwise,
show that it follows a trajectory of maximum proper time. Hence argue that
it should be possible to obtain equations of motion using a Lagrangian L =
(gµνU

µUν)1/2, where gµν is the metric tensor and Uµ is the 4-velocity. Explain
why it is possible to use the Lagrangian formalism with L → L2, and say how
this approach can be adapted to the case of a massless particle. [5]

(b) For a static and spherically symmetric spacetime, explain why it is possible
to write the line element in terms of two unknown functions A(r) and B(r):

c2dτ 2 = A(r)c2dt2 −B(r)dr2 − r2(dθ2 + sin2 θ dφ2).

Write down the Euler-Lagrange equations of motion and hence obtain the fol-
lowing components of the Affine Connection: Γt

rr, Γ
t
tr, Γ

r
tt, Γ

r
tr. [5]

(c) The resulting non-zero components of the Ricci tensor in this case are

Rt
t = −

A′′

2AB
+

A′B′

4AB2
+

A′2

4A2B
−

A′

rAB

Rr
r = −

A′′

2AB
+

A′B′

4AB2
+

A′2

4A2B
+

B′

rB2

Rθ
θ = Rφ

φ = −
A′

2rAB
+

B′

2rB2
+

B − 1

r2B
.

Assume that we seek a solution for the field of a point mass surrounded by
vacuum, but with a non-zero cosmological constant. Prove that the normal
vacuum field equation Gµν + Λgµν = 0 can be recast as Rµν = Λgµν . Use
appropriate combinations of the above elements of the Ricci tensor to prove that
we can take

A = 1/B = 1−
2GM

c2r
− Λ

r2

3
.

[5]

(d) For this Schwarzschild–de Sitter metric, obtain the Euler–Lagrange equations
for a particle in an equatorial orbit, and show that they imply the conservation
equations

Aṫ = k and r2φ̇ = h,

where k and h are constants. Using these relations, give an expression for the
effective potential that governs the radial motion of a massive particle in orbit
in this spacetime:

ṙ2

2
+ Φeff =

k2c2

2
.

[5]

(e) Now consider the motion of a photon in this spacetime and show that the
effective potential is modified. Show that there is only one circular orbit for a
photon, and say how its radius depends on Λ. Is this orbit stable or unstable? [5]
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3. (a) Explain the relation between the Principles of General Covariance and Man-
ifest Covariance. Illustrate your answer by showing how the behaviour of a
covector, Uµ, under a coordinate transformation can be derived from the trans-
formation of a 4-vector:

V ′µ =
∂x′µ

∂xν
V ν .

[5]

(b) Consider the separation, ∆xλ, of points on two nearby geodesics. Assuming
without proof the geodesic equation of motion, and working in a local inertial
frame, derive the equation of geodesic deviation in the form

D2∆xλ

dτ 2
+
(

Rλ
ανβẋ

αẋβ
)

∆xν = 0,

whereD/dτ is a covariant derivative and the Riemann tensor is Rα
µβν = ∂βΓ

α
νµ−

∂νΓ
α
βµ + Γα

βηΓ
η
µν − Γα

νηΓ
η
µβ. [10]

(c) The relativistic energy-momentum tensor for a perfect fluid is

T µν = (ρ+ p/c2)UµUν
− pgµν ,

where ρ is the rest-frame density, p is the pressure, and Uµ is the 4-velocity of the
fluid flow. Explain why this tensor obeys the following conservation equation:

∂T µν

∂xν
+ Γµ

ανT
αν + Γν

ανT
αµ = 0.

[4]

(d) Consider the energy-momentum tensor for a perfect fluid in Special Relativity,
and show that the conservation law from part (c) yields the following equations
of relativistic hydrodynamics:

d

dt
v = −

1

γ2(ρ+ p/c2)
(∇p+ ṗv/c2);

d

dt

[

γ2(ρ+ p/c2)
]

= ṗ/c2 − γ2(ρ+ p/c2)∇ · v,

where ṗ ≡ ∂p/∂t, γ is the Lorentz factor of the fluid flow, and d/dt ≡ ∂/∂t+v ·∇.
[6]
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