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General Relativity (U01429)

1. (a) Explain what the Weak and Strong Equivalence Principles of General Rela-
tivity are. Why does the observed equivalence of inertial and gravitational mass
imply the curvature of spacetime? [5]

(b) Use the Weak Equivalence Principle to show that the equation of motion for
a particle moving freely in a gravitational field obeys the Geodesic Equation,

duλ

dτ
+ Γλ

µν u
µuν = 0,

where uλ = dxλ/dτ is the 4-velocity vector and Γλ
µν is the affine connection. [5]

(c) By considering the derivatives of the metric, or otherwise, derive the rela-
tionship between the affine connection and the metric. [5]

(d) What are vectors and co-vectors and how do they transform under a general
coordinate change? What is the relationship between vectors and co-vectors?

Show that the Geodesic Equation leads to the co-vector 4-acceleration equation,

duλ

dτ
=

1

2
∂λgµν u

µuν .

The 4-momentum co-vector for a particle of mass m is pλ = muλ. What sym-
metry must the metric exhibit for this to be conserved? What does this imply
about the symmetries of the Lagrangian-squared? [7]

(e) Consider the Robertson-Walker spacetime for a spatially flat universe,

c2dτ 2 = c2dt2 − R2(t)(dx2 + dy2 + dz2),

where R(t) is a cosmic scale factor and (x, y, z) are co-moving spatial coordinates.
What are the conserved 4-momentum co-vectors for this spacetime? Show the
corresponding 4-momentum vector decays and suggest a reason for this. [3]
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2. (a) The Schwarzschild spacetime outside a static black hole with mass M is
described by the line element

c2dτ 2 = (1− β)c2dt2 −
dr2

1− β
− r2

(

dθ2 + sin2 θdϕ2
)

,

with β = rS/r, where rS = 2GM/c2 is the Schwarzschild radius. Using the Euler-
Lagrange equations, or otherwise, derive the conservation equations (1−β)ṫ = k
and r2ϕ̇ = h for a particle moving in an equatorial orbit (θ = π/2). [5]

(b) Show that the radial motion of a massive particle in orbit in this spacetime
obeys the energy equation

ṙ2 −
rSc

2

r
+

h2

r2
−

rSh
2

r3
= c2(k2

− 1).

Define the effective potential for orbits in this spacetime, explaining what each
term represents. Illustrate the possible orbits using the effective potential and
the motion of the particle in the equatorial plane. [10]

(c) Assume a particle is in a stable, circular orbit in the Schwarzschild spacetime.
What is the radius of this orbit? Show that Kepler’s third law for this particle,

(

dφ

dt

)2

=
GM

r3
,

holds in General Relativity. [Hint: use dΦ/dr = 0 to find h, and then the radial
energy equation to find k.] [5]

(d) A massive particle falls radially into the black hole. Assuming the particle
is at rest as r → ∞, find the particle’s trajectory, r(τ), in terms of its proper
time, τ . What happens to the observed particle velocity as the particle reaches
r = rS? [3]

(e) The Schwarzschild line element is manifestly invariant under time reversal,
t → −t. However, an infalling particle crossing r = rS cannot re-emerge. Suggest
how to resolve this apparent paradox. [2]
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3. (a) Define the Principle of General Covariance and tensors and explain why
tensor equations are of importance in General Relativity. [5]

(b) Explain why the Riemann tensor, Rα
µβν , is the Generally Covariant extension

of the Newtonian tidal field. Hence, by analogy with the Laplace equation,
∇

2Φ = 0, show that the Einstein Field Equations in empty space are given by
Rµν = 0, where Rµν is the Ricci tensor.

Explain briefly why the Einstein equations,

Gµν =
8πG

c4
T µν ,

are the relativistic generalisation of Newtonian gravity. [10]

(c) Einstein introduced his Cosmological Constant, Λ, a 100 years ago in February
1917. Why can a Cosmological Constant be added to the Einstein Equations?

Show that in a universe with a Cosmological Constant and no matter or radiation,
so that Gµν − Λgµν = 0, the Einstein equations can be written

Rµν = Λgµν . [5]

(d) The cosmological Lemaitre models include a Cosmological Constant. The
Friedmann equation for these models can be written

(

dR

dt

)2

= H2

0(ΩmR
−1 + ΩΛR

2 + ΩK),

where H0 is the current value of the Hubble parameter, Ωm = 8πGρm,0/(3H
2
0
)

is the current matter density parameter, ΩΛ = Λ/(3H2
0), and ΩK = −kc2/H2

0 is
the curvature parameter, while R(t) is the cosmological scale factor. Interpreting
this as an energy equation, sketch the effective potential and expansion histories
for this model, indicating when different terms dominate. Note Λ and k can be
positive or negative.

Show that the transition from matter to Λ-domination happens atR∗ = (Ωm/2ΩΛ)
1/3.

Hence show these models can enter a “coasting” phase with no expansion when

ΩK = −3

(

Ω2
mΩΛ

4

)1/3

.

Explain, using the effective potential, how this solution arises. [5]
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