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General Relativity (U01429)

1. (a) Define the Weak and Strong Equivalence Principles. Explain why the ob-
served equivalence of inertial and gravitational mass implies the curvature of
spacetime. [5]

(b) Starting from the Weak Equivalence Principle show that the equation of
motion for a particle moving freely in an arbitrary gravitational field obeys the
geodesic equation,

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0,

where Γλ
µν is the affine connection. [7]

(c) By considering two nearby points in a gravitational field separated by ∆xλ,
use the geodesic equation to derive the geodesic deviation equation,

D2∆xλ

dτ 2
+
(

Rλ
ανβ ẋ

αẋβ
)

∆xν = 0,

where Rα
µβν = ∂βΓ

α
νµ − ∂νΓ

α
βµ + Γα

βηΓ
η
µν − Γα

νηΓ
η
µβ is the Riemann tensor.

How does this result connect gravitation to spacetime curvature? [8]

(d) The stress-energy tensor for a pressureless fluid, T µν = ρuµuν, is a covariantly
conserved quantity,

∇µT
µν = 0.

By contracting this with 4-velocity covector, uν, show that the mass-density
current, jµ = ρuµ, is also conserved in a gravitational field [You may use that
the covariant derivative of the expression uνuν = c2 implies uν∇µu

ν = 0].

Hence, show that covariant conservation of the stress-energy tensor implies the
motion of a pressureless fluid in a gravitational field obeys the geodesic equation.

[5]
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2. (a) The spacetime line element outside a static spherically symmetric mass
distribution with mass M is

c2dτ 2 = (1− β)c2dt2 − dr2

1− β
− r2

(

dθ2 + sin2 θdϕ2
)

,

where β = rS/r and rS = 2GM/c2 is the Schwarzschild radius. Using the Euler-
Lagrange equations derive the conservation equations (1− β)ṫ = k and r2ϕ̇ = h
for a particle moving in an equatorial orbit (θ = π/2) around this object. [5]

(b) Show that the radial motion of a massive particle in this spacetime is governed
by the energy equation

ṙ2 − rsc
2

r
+

h2

r2
− rsh

2

r3
= c2(k2 − 1).

Define the effective potential for orbits in this spacetime. [8]

(c) Use the effective potential to find the radius of stable and unstable orbits in
the Schwarzschild spacetime.

Explain what the last stable orbit is. Show that the angular momentum of
a particle on the last stable orbit is h =

√
3rsc, and hence that its radius is

r = 3rs.

Use the energy equation to show that k = 2
√
2/3 for this particle. [7]

(d) The energy of a particle in a gravitational field isE = p0c, where p0 = m0g00u
0

and m0 is its rest-mass. Using the conservation of particle energy show that in
the gravitational field of a black hole E = km0c

2.

Black hole accretion occurs when the angular momentum of free particles is low
enough that there is no stable circular orbit and particles infall. Assuming that
all of the energy of the particle is released when it falls in, argue that the efficiency
of energy release from black hole accretion is ǫacc ≡ ∆E/E = 1− k.

Estimate the magnitude of ǫacc. How does this compare with the 0.7% efficiency
of nuclear burning of hydrogen to helium in stars? [5]
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3. (a) Explain the Principle of General Covariance and the importance of tensors.
[5]

(b) Explain briefly why the Einstein equations,

Gµν =
8πG

c4
T µν ,

are the relativistic generalisation of Newtonian gravity allowing for spacetime
curvature. [5]

(c) The Einstein equation for empty-space is Rµν = 0, where Rµν = Rα
µαν is

the Ricci tensor. Assuming a weak gravitational field, gµν = ηµν + hµν where
|hµν | ≪ 1, and the Lorentz gauge condition, ∂αh

α
ν = ∂νh/2, show that the

variations in the metric obey the wave equation

�
2hµν = 0.

Describe the solutions of this equation and their relation to gravitational waves.
[10]

(d) Consider two black holes of equal mass, M , in circular, non-relativistic orbit
of radius a about their common centre of gravity with an angular speed of Ω =
√

GM/(4a3). Assuming they orbit in the plane (x1, x2, 0) with the origin at the
centre of mass, and can be considered as point-masses, write down the coordinates
of the black holes as a function of time.

Hence show that the quadrupole moment, I ij(t) = c2
∫

d3x ρ(x, t)xixj , for the
black hole is given by

I ij(t) = Mc2a2





1 + cos 2Ωt sin 2Ωt 0
sin 2Ωt 1 + cos 2Ωt 0

0 0 0



 ,

where the density of black holes can be written using Dirac -delta functions. [3]

(e) Given that gravitational waves are generated by a changing quadruple in the
matter distribution,

hij(x, t) = −2G

c6r

[

d2I ij(t′)

dt′2

]

t′=t−r/c

,

where the term in the square brackets is evaluated at the retarded time, t′, and
r is the distance to the source, derive the expression for the gravitational wave
generated by the two black holes.

If the orbital radius of the black holes is slowly changing explain why the LIGO
experiment could estimate the orbital radius a, the mass M , and the distance,
r, to the black holes from gravitational waves. [2]
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