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General Relativity (U01429)

1. (a) Define the Weak and Strong Equivalence Principles. Explain why the
Equivalence Principle implies the curvature of spacetime. Why are coordinate
transformations so fundamental to General Relativity? [5]

(b) Starting from the Strong Equivalence Principle, show that the equation of
motion for a freely moving particle obeys the geodesic equation,

ẍλ + Γλ
µν ẋ

µẋν = 0.

Explain each of the terms in this expression. [4]

(c) By considering the transformation properties of the metric, gµν , between a
general coordinate system and the local inertial frame for the relativistic line
element, c2dτ 2 = gµνdx

µdxν , show that it is a tensor. By considering the normal
derivative of the metric tensor, show that

Γλ
µν =

1

2
gλη (∂µgην + ∂νgηµ − ∂ηgµν) .

[5]

(d) Explain what is meant by the slow motion and weak field limits, and the Cor-
respondence Principle. Assuming the gravitational field is also time-independent,
show that the Newtonian equation of motion is recovered in these limits, and that

g00 = 1 + 2
Φ

c2
,

where Φ is the Newtonian gravitational potential. [6]

(e) Global Positioning Satellites (GPS) emit a steady signal which can be used
to measure the distance to a receiver. Assuming a satellite is in a geostationary
orbit above the Earth, find the fractional time delay between the satellite and
receiver. What would the rotation period of the Earth have to be to cancel the
gravitational time delay? [5]
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2. (a) The Reissner-Nordström line element for the spacetime around a charged,
static spherically symmetric black hole of mass M and charge Q is

c2dτ 2 = (1− β)c2dt2 −
dr2

1− β
− r2

(

dθ2 + sin2 θdϕ2
)

,

where β = rS/r − r2Q/r
2, and we define rS = 2GM/c2 and r2Q = GQ2/(4πǫ0c

4).
Write down the Lagrangian-squared for a massive particle moving in the orbit of
the black hole. [2]

(b) By considering the Euler-Lagrange equations, derive the conservation equa-
tions, (1 − β)ṫ = k and r2ϕ̇ = h, for a particle moving in an equatorial orbit
(θ = π/2) around this black hole. What are the conserved quantities in these
relations? [4]

(c) Show that the radial motion of a massive particle in this spacetime is governed
by the energy equation

ṙ2 −
2GM

r
+

GQ2

4πǫ0c2r2
+

h2

r2
−

2GMh2

r3c2
+

GQ2h2

4πǫ0c4r4
= c2(k2

− 1).

By comparing with a Newtonian system, describe what each term means. For
an uncharged black hole, when Q = 0, sketch the effective potential and possible
orbits for a massive particle. [8]

(d) Sketch the effective potential for a massive particle on a radial trajectory
(h = 0) into a charged Reissner-Nordström black hole, and find the zero crossing
and turning point of the potential in terms of rS and rQ. [6]

(e) By considering the time and radial components of the Reissner-Nordström
line element show that there are generally two coordinate singularities, at

r± =
1

2

(

rS ±

√

r2S − 4r2Q

)

,

when rS ≥ 2rQ. For what charge do these coordinate singularities coincide and
how does the radius of the singularity relate to the turning point and zero crossing
of the effective potential? Given that this coordinate singularity is an event
horizon, speculate about the fate of an unbound neutral particle that crosses the
event horizon along a radial path. [5]
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3. (a) Explain what the principle of General Covariance is. Define tensors and
explain, without mathematical detail, what the covariant derivative, ∇µ, is. Ex-
plain the three rules which allow us to write down the equations of physics in a
gravitational field. [5]

(b) In a local inertial frame the electromagnetic field tensor is defined as Fµν =
∂µAν −∂νAµ, where A

µ = (φ,A) is the electromagnetic 4-vector potential. Show
that this form for Fµν remains valid in a gravitational field. Show that the field
tensor obeys the cyclic relation ∂ηFµν + ∂µFνη + ∂νFηµ = 0, and write down this
relation in a gravitational field. Write down the electromagnetic field equation
∂µF

µν = µ0J
ν , where Jν is the 4-vector current, in a gravitational field. [7]

(c) Explain briefly why the Einstein equation

Gµν =
8πG

c4
Tµν

is the relativistic generalisation of Newtonian gravity which allows for the curved
spacetime. The Riemann tensor in a local inertial frame is Rα

µβν = ∂βΓ
α
νµ−∂νΓ

α
βµ.

Show that the derivate of this, ∂ηR
α
µβν , obeys a cyclic relation in the indices η,

β and ν. Write down this relation in a gravitational field and, given Rαµβν =
−Rαµνβ and Rαµβν = Rµαβν , show that ∇αR

α
µ = ∇µR. Hence explain why

Gµν = Rµν −
1

2
gµνR

is the correct form for the Einstein tensor. [8]

(d) A consistent, special relativistic theory of gravity based only on a scalar field
can be written down as,

�
2 Φ = −

4πG

c2
T,

where �
2 = ηµν∂µ∂ν , the stress-energy scalar is T = T µ

µ, and Φ is the gravita-
tional potential. Show that this recovers Newtonian gravity in the non-relativistic
limit. Discuss how such a theory be ruled out on fundamental theoretical and
experimental grounds. [5]
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