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1.

General Relativity (U01429)

(a) Describe how the equivalence of inertial and gravitational mass leads to the
Weak Equivalence Principle. What is the Strong Equivalence Principle?

(b) By transforming from a local inertial coordinate system, £, in which
dr? = nop ddg”

to a general coordinate system, z#, show that the Strong Equivalence Principle
implies a particle in free-fall obeys the geodesic equation:

Y A v
@+ T, a"" =0,

where &* = dx# /dT and

= (‘3_90’\ o
T 9ge Qardzy

is the affine connection.

(¢) Show how the metric transforms between a local inertial frame and the general
coordinate system. Given the Lagrangian-squared is

2 TSN Z
L* = g,,a"2",

use the Euler-Lagrange equation, or otherwise, to show that the affine connection
is

1
Fi\w - 59/\17(8;47171/ + OuGny — OnGpuw)-

Explain the role of the affine connection in the geodesic equation.

(d) Defining the 4-velocity u* = i, re-write the geodesic equation as a force
equation in terms of u*. By transforming to the co-vector, u, = g, u”, derive

the equation of motion
. 1 y
Uy, = 5(8ug)\y)u)‘u )

Hence, argue that if the metric is stationary with respect to the particles proper
time, g,, = 0, the equation of motion in terms of the vector u* has a similar
form.

(e) By using the results of part (d), or otherwise, show that in the slow-motion,
u' < u® =~ ¢, weak-field limit, where g, = 1, + h,, with |h,| < 1, and the
metric is stationary, ¢, = 0, the Newtonian equation of motion for a particle is

recovered with
2®
hoo = 5
c

where ® is the Newtonian gravitational potential.
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2.

General Relativity (U01429)

(a) The line-element around a black hole, of mass M, is

ar?

(%

Adr? = addt® — —7r? (d92 + sin? 0d¢>2) ,
where o = 1 — 2GM/(rc*). Write down the Lagrangian-squared for a particle
moving in the orbit of the black hole.

(b) Using the Euler-Lagrange equations, or otherwise, show that af = k and
7’% = h, for a particle moving in an equatorial orbit, where k and h are constants
and a dot indicates derivative with respect to an affine parameter. What do these
equations express?

(c) Show that the radial motion of a massive particle is governed by

2GM  h?  2GMA?
72— TR e )

r r2 r3c3
Explain what each of these terms refers to.

(d) Define an effective potential for particle moving in the gravitational field of
a black hole. By sketching the effective potential for different angular motions of
a massive particle, sketch and describe the possible orbits of a massive particle
around the black hole in the r — ¢ plane, and under what conditions it will fall
into the black hole.

(e) The line element around static, infinitely long, thin, cylindrically symmetric
cosmic string in cylindrical coordinates, (¢,r,0, z), is

Adr? = Adt® — dr® — r?(1 — AGp/?)?do? — dz=2,

where GG is Newtons constant and g is the string tension. Assuming a particle
moves in the plane z = 0, use the Euler-Lagrange equation to show that f = k
and 720 = h for constants k and k. Show for a massive particle moving past the
cosmic string that the radial energy equation is the same as for flat-space, with
a modified angular term.

(f) Solve the radial energy equation to show that a passing massive particle will
be deflected by an angle Af = 47Gu/c*. Argue that this will be the same for a
massless particle and so the cosmic string will act like a lens. Finally, argue that
the space around the cosmic string is flat but with an angle of 87Gu/c* carved
out of it.
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3.

General Relativity (U01429)

(a) Explain what the principle of general covariance is, and how it is used to
find the equations of physics in a gravitational fleld. What is the correspondence
principle and why do we need it?

(b) The Riemann tensor is
_ 0
Rauﬁv - aﬁrgﬂ - 8’/F§u + anrzv ~ Snruﬁ
Show that in a local inertial frame this tensor obeys the relation

0,R% 5, + 05 R%,,, + O,R%, 5 = 0.

wBv 1%

Hence argue that in a general coordinate frame this leads to the Bianchi Identity

6% e (67 _
V,R wpy T VsR wn T V,R g = 0,
where V, is the covariant derivative.

(c) Given that the Riemann tensor is anti-symmetric in its last two indices, and
antisymmetric in its first two indices, show that

V,.R=2V,R",.
Hence, show that the covariant divergence of the Einstein tensor
af _ paf 1 aff

1S zero.

(d) Explain what the stress-energy tensor, T is and argue without detailed
mathematics why the Einstein equation,

G = 07,

12
A T
is the relativistic generalisation of the Poisson equation.

(e) A toy model for exploring quantum gravity is a 2-D spacetime with one time
direction and one space direction. Assuming the metric for a uniform, expanding
2-D spacetime containing a fluid with constant mass-density and zero pressure is

cdr? = Adt? — a*(t)dr?,

find the affine connections for this model from the Euler-Lagrange equations (or
otherwise). Hence calculate the Ricci tensor, R, and the Einstein tensor, G
Explain why this 2-D toy model must be empty.

nZN
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