College of Science and Engineering School of Physics

General Relativity SCQF Level 11, U01429, PHY-5-GenRel

???, 2012 9.30a.m. - 11.30a.m.

Chairman of Examiners Prof J A Peacock

> External Examiner Prof C Clarke

Answer \mathbf{TWO} questions

The bracketed numbers give an indication of the value assigned to each portion of a question.

Only the supplied Electronic Calculators may be used during this examination.

Anonymity of the candidate will be maintained during the marking of this examination.

PRINTED: FEBRUARY 17, 2012

- **1.** (a) Describe how the equivalence of inertial and gravitational mass leads to the *Weak Equivalence Principle*. What is the *Strong Equivalence Principle*?
 - (b) By transforming from a local inertial coordinate system, ξ^{α} , in which

$$c^2 d\tau^2 = \eta_{\alpha\beta} \, d\xi^\alpha d\xi^\beta$$

to a general coordinate system, x^{μ} , show that the Strong Equivalence Principle implies a particle in free-fall obeys the geodesic equation:

$$\ddot{x}^{\lambda} + \Gamma^{\lambda}_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} = 0,$$

where $\dot{x}^{\mu} \equiv dx^{\mu}/d\tau$ and

$$\Gamma^{\lambda}_{\mu\nu} \equiv \frac{\partial x^{\lambda}}{\partial \xi^{\alpha}} \frac{\partial^2 \xi^{\alpha}}{\partial x^{\mu} \partial x^{\nu}}.$$

is the affine connection.

(c) Show how the metric transforms between a local inertial frame and the general coordinate system. Given the Lagrangian-squared is

$$L^2 = g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu,$$

use the Euler-Lagrange equation, or otherwise, to show that the affine connection is

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}g^{\lambda\eta}(\partial_{\mu}g_{\eta\nu} + \partial_{\nu}g_{\eta\mu} - \partial_{\eta}g_{\mu\nu}).$$

Explain the role of the affine connection in the geodesic equation.

(d) Defining the 4-velocity $u^{\lambda} \equiv \dot{x}^{\lambda}$, re-write the geodesic equation as a force equation in terms of u^{λ} . By transforming to the co-vector, $u_{\mu} = g_{\mu\lambda}u^{\lambda}$, derive the equation of motion

$$\dot{u}_{\mu} = \frac{1}{2} (\partial_{\mu} g_{\lambda\nu}) u^{\lambda} u^{\nu}.$$

Hence, argue that if the metric is stationary with respect to the particles proper time, $\dot{g}_{\mu\nu} = 0$, the equation of motion in terms of the vector u^{λ} has a similar form.

(e) By using the results of part (d), or otherwise, show that in the slow-motion, $u^i \ll u^0 \approx c$, weak-field limit, where $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $|h_{\mu\nu}| \ll 1$, and the metric is stationary, $\dot{g}_{\mu\nu} = 0$, the Newtonian equation of motion for a particle is recovered with

$$h_{00} = \frac{2\Phi}{c^2},$$

where Φ is the Newtonian gravitational potential.

[5]

[5]

[7]

[5]

[3]

2. (a) The line-element around a black hole, of mass M, is

$$c^2 d\tau^2 = \alpha c^2 dt^2 - \frac{dr^2}{\alpha} - r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right),$$

where $\alpha \equiv 1 - 2GM/(rc^2)$. Write down the Lagrangian-squared for a particle moving in the orbit of the black hole.

(b) Using the Euler-Lagrange equations, or otherwise, show that $\alpha \dot{t} = k$ and $r^2 \dot{\phi} = h$, for a particle moving in an equatorial orbit, where k and h are constants and a dot indicates derivative with respect to an affine parameter. What do these equations express?

(c) Show that the radial motion of a massive particle is governed by

$$\dot{r}^2 - \frac{2GM}{r} + \frac{h^2}{r^2} - \frac{2GMh^2}{r^3c^3} = c^2(k^2 - 1).$$

Explain what each of these terms refers to.

(d) Define an effective potential for particle moving in the gravitational field of a black hole. By sketching the effective potential for different angular motions of a massive particle, sketch and describe the possible orbits of a massive particle around the black hole in the $r - \phi$ plane, and under what conditions it will fall into the black hole.

(e) The line element around static, infinitely long, thin, cylindrically symmetric cosmic string in cylindrical coordinates, (t, r, θ, z) , is

$$c^{2}d\tau^{2} = c^{2}dt^{2} - dr^{2} - r^{2}(1 - 4G\mu/c^{2})^{2}d\theta^{2} - dz^{2},$$

where G is Newtons constant and μ is the string tension. Assuming a particle moves in the plane z = 0, use the Euler-Lagrange equation to show that $\dot{t} = k$ and $r^2\dot{\theta} = h$ for constants k and h. Show for a massive particle moving past the cosmic string that the radial energy equation is the same as for flat-space, with a modified angular term.

(f) Solve the radial energy equation to show that a passing massive particle will be deflected by an angle $\Delta \theta = 4\pi G \mu/c^2$. Argue that this will be the same for a massless particle and so the cosmic string will act like a lens. Finally, argue that the space around the cosmic string is flat but with an angle of $8\pi G \mu/c^2$ carved out of it. [4]

[6]

[4]

[2]

[5]

- **3.** (a) Explain what the *principle of general covariance* is, and how it is used to find the equations of physics in a gravitational field. What is the *correspondence principle* and why do we need it?
 - (b) The Riemann tensor is

$$R^{\alpha}{}_{\mu\beta\nu} = \partial_{\beta}\Gamma^{\alpha}_{\nu\mu} - \partial_{\nu}\Gamma^{\alpha}_{\beta\mu} + \Gamma^{\alpha}_{\beta\eta}\Gamma^{\eta}_{\mu\nu} - \Gamma^{\alpha}_{\nu\eta}\Gamma^{\eta}_{\mu\beta}$$

Show that in a local inertial frame this tensor obeys the relation

$$\partial_{\eta}R^{\alpha}_{\ \mu\beta\nu} + \partial_{\beta}R^{\alpha}_{\ \mu\nu\eta} + \partial_{\nu}R^{\alpha}_{\ \mu\eta\beta} = 0.$$

Hence argue that in a general coordinate frame this leads to the Bianchi Identity

$$\nabla_{\eta}R^{\alpha}_{\ \mu\beta\nu} + \nabla_{\beta}R^{\alpha}_{\ \mu\nu\eta} + \nabla_{\nu}R^{\alpha}_{\ \mu\eta\beta} = 0,$$

where ∇_{μ} is the covariant derivative.

(c) Given that the Riemann tensor is anti-symmetric in its last two indices, and antisymmetric in its first two indices, show that

$$\nabla_{\mu}R = 2\nabla_{\alpha}R^{\alpha}{}_{\mu}$$

Hence, show that the covariant divergence of the Einstein tensor

$$G^{\alpha\beta} \equiv R^{\alpha\beta} - \frac{1}{2}Rg^{\alpha\beta}$$

is zero.

(d) Explain what the stress-energy tensor, $T^{\mu\nu}$, is and argue without detailed mathematics why the Einstein equation,

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu},$$

is the relativistic generalisation of the Poisson equation.

(e) A toy model for exploring quantum gravity is a 2-D spacetime with one time direction and one space direction. Assuming the metric for a uniform, expanding 2-D spacetime containing a fluid with constant mass-density and zero pressure is

$$c^2 d\tau^2 = c^2 dt^2 - a^2(t) dr^2,$$

find the affine connections for this model from the Euler-Lagrange equations (or otherwise). Hence calculate the Ricci tensor, $R_{\mu\nu}$ and the Einstein tensor, $G_{\mu\nu}$,. Explain why this 2-D toy model must be empty.

[4]

[5]

[6]

[6]

[4]