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General Relativity (U01429)

1. (a) Describe how the equivalence of inertial and gravitational mass leads to the
Weak Equivalence Principle. What is the Strong Equivalence Principle? [3]

(b) By transforming from a local inertial coordinate system, ξα, in which

c2dτ 2 = ηαβ dξ
αdξβ

to a general coordinate system, xµ, show that the Strong Equivalence Principle
implies a particle in free-fall obeys the geodesic equation:

ẍλ + Γλ
µν ẋ

µẋν = 0,

where ẋµ ≡ dxµ/dτ and

Γλ
µν ≡

∂xλ

∂ξα
∂2ξα

∂xµ∂xν
.

is the affine connection. [5]

(c) Show how the metric transforms between a local inertial frame and the general
coordinate system. Given the Lagrangian-squared is

L2 = gµν ẋ
µẋν ,

use the Euler-Lagrange equation, or otherwise, to show that the affine connection
is

Γλ
µν =

1

2
gλη(∂µgην + ∂νgηµ − ∂ηgµν).

Explain the role of the affine connection in the geodesic equation. [7]

(d) Defining the 4-velocity uλ ≡ ẋλ, re-write the geodesic equation as a force
equation in terms of uλ. By transforming to the co-vector, uµ = gµλu

λ, derive
the equation of motion

u̇µ =
1

2
(∂µgλν)u

λuν .

Hence, argue that if the metric is stationary with respect to the particles proper
time, ġµν = 0, the equation of motion in terms of the vector uλ has a similar
form. [5]

(e) By using the results of part (d), or otherwise, show that in the slow-motion,
ui ≪ u0 ≈ c, weak-field limit, where gµν = ηµν + hµν with |hµν | ≪ 1, and the
metric is stationary, ġµν = 0, the Newtonian equation of motion for a particle is
recovered with

h00 =
2Φ

c2
,

where Φ is the Newtonian gravitational potential. [5]
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General Relativity (U01429)

2. (a) The line-element around a black hole, of mass M , is

c2dτ 2 = αc2dt2 −
dr2

α
− r2

(

dθ2 + sin2 θdφ2
)

,

where α ≡ 1 − 2GM/(rc2). Write down the Lagrangian-squared for a particle
moving in the orbit of the black hole. [2]

(b) Using the Euler-Lagrange equations, or otherwise, show that αṫ = k and
r2φ̇ = h, for a particle moving in an equatorial orbit, where k and h are constants
and a dot indicates derivative with respect to an affine parameter. What do these
equations express? [5]

(c) Show that the radial motion of a massive particle is governed by

ṙ2 −
2GM

r
+

h2

r2
−

2GMh2

r3c3
= c2(k2 − 1).

Explain what each of these terms refers to. [6]

(d) Define an effective potential for particle moving in the gravitational field of
a black hole. By sketching the effective potential for different angular motions of
a massive particle, sketch and describe the possible orbits of a massive particle
around the black hole in the r − φ plane, and under what conditions it will fall
into the black hole. [4]

(e) The line element around static, infinitely long, thin, cylindrically symmetric
cosmic string in cylindrical coordinates, (t, r, θ, z), is

c2dτ 2 = c2dt2 − dr2 − r2(1− 4Gµ/c2)2dθ2 − dz2,

where G is Newtons constant and µ is the string tension. Assuming a particle
moves in the plane z = 0, use the Euler-Lagrange equation to show that ṫ = k
and r2θ̇ = h for constants k and h. Show for a massive particle moving past the
cosmic string that the radial energy equation is the same as for flat-space, with
a modified angular term. [4]

(f) Solve the radial energy equation to show that a passing massive particle will
be deflected by an angle ∆θ = 4πGµ/c2. Argue that this will be the same for a
massless particle and so the cosmic string will act like a lens. Finally, argue that
the space around the cosmic string is flat but with an angle of 8πGµ/c2 carved
out of it. [4]
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3. (a) Explain what the principle of general covariance is, and how it is used to
find the equations of physics in a gravitational fleld. What is the correspondence
principle and why do we need it? [4]

(b) The Riemann tensor is

Rα
µβν = ∂βΓ

α
νµ − ∂νΓ

α
βµ + Γα

βηΓ
η
µν − Γα

νηΓ
η
µβ

Show that in a local inertial frame this tensor obeys the relation

∂ηR
α
µβν + ∂βR

α
µνη + ∂νR

α
µηβ = 0.

Hence argue that in a general coordinate frame this leads to the Bianchi Identity

∇ηR
α
µβν +∇βR

α
µνη +∇νR

α
µηβ = 0,

where ∇µ is the covariant derivative. [6]

(c) Given that the Riemann tensor is anti-symmetric in its last two indices, and
antisymmetric in its first two indices, show that

∇µR = 2∇αR
α
µ.

Hence, show that the covariant divergence of the Einstein tensor

Gαβ ≡ Rαβ −
1

2
Rgαβ

is zero. [6]

(d) Explain what the stress-energy tensor, T µν , is and argue without detailed
mathematics why the Einstein equation,

Gµν =
8πG

c4
Tµν ,

is the relativistic generalisation of the Poisson equation. [4]

(e) A toy model for exploring quantum gravity is a 2-D spacetime with one time
direction and one space direction. Assuming the metric for a uniform, expanding
2-D spacetime containing a fluid with constant mass-density and zero pressure is

c2dτ 2 = c2dt2 − a2(t)dr2,

find the affine connections for this model from the Euler-Lagrange equations (or
otherwise). Hence calculate the Ricci tensor, Rµν and the Einstein tensor, Gµν ,.
Explain why this 2-D toy model must be empty. [5]
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