College of Science and Engineering School of Physics

General Relativity SCQF Level 11, U01429, PHY-5-GenRel

???, 2011 9.30a.m. - 11.30a.m.

Chairman of Examiners Prof J A Peacock

> External Examiner Prof C Clarke

Answer \mathbf{TWO} questions

The bracketed numbers give an indication of the value assigned to each portion of a question.

Only the supplied Electronic Calculators may be used during this examination.

Anonymity of the candidate will be maintained during the marking of this examination.

PRINTED: FEBRUARY 22, 2011

1. (a) What is the Strong (Einstein) Equivalence Principle?

(b) By considering a freely-moving particle in a gravitational field, show that the Equivalence Principle leads to the geodesic equation:

$$\frac{d^2 x^{\lambda}}{d\tau^2} + \Gamma^{\lambda}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0,$$

$$\Gamma^{\lambda}_{\mu\nu} \equiv \frac{\partial x^{\lambda}}{\partial \xi^{\alpha}} \frac{\partial^2 \xi^{\alpha}}{\partial x^{\mu} \partial x^{\nu}}.$$

where

(c) By considering the change in frames implied by the Equivalence Principle, or otherwise, show that the affine connection is related to the metric tensor, $g_{\mu\nu}$, by

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\eta} \left(\partial_{\mu} g_{\eta\nu} + \partial_{\nu} g_{\eta\mu} - \partial_{\eta} g_{\mu\nu} \right),$$

where $\partial_{\mu} \equiv \partial/\partial x^{\mu}$.

(d) Show that in the stationary, weak-field limit, where $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $|h_{\mu\nu}| \ll 1$, the Newtonian equation of motion for a particle is recovered and that

$$h_{00} = 2\Phi/c^2,$$

where Φ is the Newtonian gravitational potential.

(e) Explain in this weak-field limit why an observer at large distances from a massive body will see a stationary clock near to the body running slow. Why does this imply there will be a gravitational redshifting of light sent between two stationary observers in the gravitational field? Illustrate the effect of time dilation seen in the stationary frame.

(f) Keeping terms which are first-order in v/c, assuming the metric is stationary and $h_{0i} = B_i$ is non-zero, show the equation of motion for a test particle is

$$\ddot{x}_i \approx -\partial_i \Phi + c(\partial_j B_i - \partial_i B_j) v^j$$

[3]

[2]

[5]

[5]

[5]

[5]

2. (a) The Schwarzschild line element for a compact, spherically symmetric mass is

$$c^{2}d\tau^{2} = \alpha c^{2}dt^{2} - \frac{dr^{2}}{\alpha} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right),$$

where $\alpha \equiv 1 - 2GM/(rc^2)$. Write down the Lagrangian-squared, L^2 , for a particle moving in this spacetime.

(b) Using the Euler-Lagrange equations, or otherwise, show that $\alpha \dot{t} = k$ and $r^2 \dot{\phi} = h$, for a particle moving in an equatorial orbit, where k and h are constants and a dot indicates derivative with respect to an affine parameter. What do these equations express?

(c) Hence show that the radial motion of a massive particle is governed by

$$\dot{r}^2 - \frac{2GM}{r} + \frac{h^2}{r^2} - \frac{2GMh^2}{r^3c^3} = c^2(k^2 - 1).$$

Explain what each of these terms refers to.

(d) For a photon travelling on a radial trajectory towards a black hole show that

$$\dot{r}^2 = c^2 k^2.$$

Hence, using $\dot{t} = k/\alpha$, show that the apparent velocity of the photon seen by a distant observer is $dr/dt = \pm \alpha c$.

(e) Integrate the photon velocity to find t as a function of coordinate radius in the regime $r \gg r_s$ and $r \ll r_s$, where $r_s = 2GM/c^2$ is the Schwarzschild radius. Sketch these trajectories in the t - r coordinate plane of a distant observer and indicate what happens to light-cones in each regime.

(f) Describe what a distant observer would see as objects fall into black hole. [2]

[5]

[5]

[2]

[5]

[6]

r -- 1

3. (a) What are the correspondence principle and the principle of general covariance?

(b) In Special Relativity the tensor describing a perfect fluid of density ρ , pressure p and 4-velocity $U^{\mu} = dx^{\mu}/d\tau$, is

$$T^{\mu\nu} = (\rho + p)U^{\mu}U^{\nu} - p\eta^{\mu\nu}$$

and has zero 4-divergence, $\partial_{\nu}T^{\mu\nu} = 0$.

The 4-velocity satisfies the normalisation condition $U^{\nu}U_{\nu} = c^2$. Show the differential of this condition, with respect to $\partial/\partial x^{\mu}$, can be used to find the conservation of matter current, $j^{\mu} = \rho U^{\mu}$, for a pressureless fluid, starting from the expression $U^{\nu}\partial_{\mu}T^{\mu\nu} = 0$.

(d) Using the principle of general covariance explain how the SR conservation of energy and momentum can be generalised to $\nabla_{\nu}T^{\nu\mu}$ to be valid in the non-inertial frames considered in General Relativity. Explain what the operator ∇_{ν} means here.

(e) Argue, without detailed mathematics, why the Einstein equations may be written

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}.$$
[3]

(f) Given the Riemann tensor is

$$R^{\alpha}_{\ \mu\beta\nu} = \partial_{\beta}\Gamma^{\alpha}_{\nu\mu} - \partial_{\nu}\Gamma^{\alpha}_{\beta\mu} + \Gamma^{\alpha}_{\beta\eta}\Gamma^{\eta}_{\mu\nu} - \Gamma^{\alpha}_{\nu\eta}\Gamma^{\eta}_{\mu\beta}$$

and its contraction is $R_{\mu\nu} = R^{\alpha}_{\mu\alpha\nu}$, show the Einstein equations can be reduced to the Poisson equation of Newtoniran gravity in the weak-field limit, where $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $|h_{\mu\nu}| \ll 1$, and in the slow-motion regime where $v \ll c$. Note that $\Gamma^i_{00} = \delta^{ij} \partial_j h_{00}/2$ and $U_0 = c$ in this limit.

Show in the weak-field limit that the Riemann tensor can be written in terms of a small perturbation in the metric tensor, $h_{\mu\nu}$, as

$$R_{\alpha\mu\beta\nu} = \frac{1}{2} (\partial_{\beta}\partial_{\mu}h_{\nu\alpha} - \partial_{\nu}\partial_{\mu}h_{\beta\alpha} + \partial_{\nu}\partial_{\alpha}h_{\mu\beta} - \partial_{\beta}\partial_{\alpha}h_{\mu\nu}).$$

Hence contract this to find $R_{\mu\nu}$ and R. Using the Lorentz Gauge where $\partial_{\mu}h^{\mu\nu} = \eta^{\nu\mu}\partial_{\mu}h$, show the linearized Einstein equation is

$$\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}\left(h_{\mu\nu} - \frac{1}{2}h\eta_{\mu\nu}\right) = -\frac{16\pi G}{c^4}T_{\mu\nu}.$$
[4]

[6]

[5]

[3]

[4]