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General Relativity (U01429)

1. (a) What is the Strong (Einstein) Equivalence Principle? [2]

(b) By considering a freely-moving particle in a gravitational field, show that the
Equivalence Principle leads to the geodesic equation:

d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0,

where

Γλ
µν ≡

∂xλ

∂ξα
∂2ξα

∂xµ∂xν
.

[5]

(c) By considering the change in frames implied by the Equivalence Principle, or
otherwise, show that the affine connection is related to the metric tensor, gµν , by

Γλ
µν =

1

2
gλη (∂µgην + ∂νgηµ − ∂ηgµν) ,

where ∂µ ≡ ∂/∂xµ. [5]

(d) Show that in the stationary, weak-field limit, where gµν = ηµν + hµν with
|hµν | ≪ 1, the Newtonian equation of motion for a particle is recovered and that

h00 = 2Φ/c2,

where Φ is the Newtonian gravitational potential. [5]

(e) Explain in this weak-field limit why an observer at large distances from a
massive body will see a stationary clock near to the body running slow. Why
does this imply there will be a gravitational redshifting of light sent between
two stationary observers in the gravitational field? Illustrate the effect of time
dilation seen in the stationary frame. [5]

(f) Keeping terms which are first-order in v/c, assuming the metric is stationary
and h0i = Bi is non-zero, show the equation of motion for a test particle is

ẍi ≈ −∂iΦ + c(∂jBi − ∂iBj)v
j .

[3]
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General Relativity (U01429)

2. (a) The Schwarzschild line element for a compact, spherically symmetric mass
is

c2dτ 2 = αc2dt2 −
dr2

α
− r2

(

dθ2 + sin2 θdφ2
)

,

where α ≡ 1−2GM/(rc2). Write down the Lagrangian-squared, L2, for a particle
moving in this spacetime. [2]

(b) Using the Euler-Lagrange equations, or otherwise, show that αṫ = k and
r2φ̇ = h, for a particle moving in an equatorial orbit, where k and h are constants
and a dot indicates derivative with respect to an affine parameter. What do these
equations express? [5]

(c) Hence show that the radial motion of a massive particle is governed by

ṙ2 −
2GM

r
+

h2

r2
−

2GMh2

r3c3
= c2(k2 − 1).

Explain what each of these terms refers to. [6]

(d) For a photon travelling on a radial trajectory towards a black hole show that

ṙ2 = c2k2.

Hence, using ṫ = k/α, show that the apparent velocity of the photon seen by a
distant observer is dr/dt = ±αc. [5]

(e) Integrate the photon velocity to find t as a function of coordinate radius in
the regime r ≫ rs and r ≪ rs, where rs = 2GM/c2 is the Schwarzschild radius.
Sketch these trajectories in the t− r coordinate plane of a distant observer and
indicate what happens to light-cones in each regime. [5]

(f) Describe what a distant observer would see as objects fall into black hole. [2]

Printed: February 22, 2011 Page 2 Continued overleaf. . .



D
R

A
FT

General Relativity (U01429)

3. (a) What are the correspondence principle and the principle of general covari-
ance? [4]

(b) In Special Relativity the tensor describing a perfect fluid of density ρ, pressure
p and 4-velocity Uµ = dxµ/dτ , is

T µν = (ρ+ p)UµUν − pηµν

and has zero 4-divergence, ∂νT
µν = 0.

The 4-velocity satisfies the normalisation condition UνUν = c2. Show the dif-
ferential of this condition, with respect to ∂/∂xµ, can be used to find the con-
servation of matter current, jµ = ρUµ, for a pressureless fluid, starting from the
expression Uν∂µT

µν = 0. [5]

(d) Using the principle of general covariance explain how the SR conservation
of energy and momentum can be generalised to ∇νT

νµ to be valid in the non-
inertial frames considered in General Relativity. Explain what the operator ∇ν

means here. [3]

(e) Argue, without detailed mathematics, why the Einstein equations may be
written

Gµν = Rµν −
1

2
gµν =

8πG

c4
Tµν .

[3]

(f) Given the Riemann tensor is

Rα
µβν = ∂βΓ

α
νµ − ∂νΓ

α
βµ + Γα

βηΓ
η
µν − Γα

νηΓ
η
µβ

and its contraction is Rµν = Rα
µαν , show the Einstein equations can be reduced

to the Poisson equation of Newtoniran gravity in the weak-field limit, where
gµν = ηµν + hµν with |hµν | ≪ 1, and in the slow-motion regime where v ≪ c.
Note that Γi

00
= δij∂jh00/2 and U0 = c in this limit. [6]

Show in the weak-field limit that the Riemann tensor can be written in terms of
a small perturbation in the metric tensor, hµν , as

Rαµβν =
1

2
(∂β∂µhνα − ∂ν∂µhβα + ∂ν∂αhµβ − ∂β∂αhµν).

Hence contract this to find Rµν and R. Using the Lorentz Gauge where ∂µh
µν =

ηνµ∂µh, show the linearized Einstein equation is

ηαβ∂α∂β

(

hµν −
1

2
hηµν

)

= −
16πG

c4
Tµν .

[4]
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