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Textbooks
These notes are intended to be self-contained, but there are many excellent textbooks on the
subject. The following are especially recommended for background reading:

• Hobson, Efstathiou & Lasenby (Cambridge): General Relativity: An introduction for Physi-
cists. This is fairly close in level and approach to this course.

• Ohanian & Ruffini (Cambridge): Gravitation and Spacetime (3rd edition). A similar level
to Hobson et al. with some interesting insights on the electromagnetic analogy.

• Cheng (Oxford): Relativity, Gravitation and Cosmology: A Basic Introduction. Not that
‘basic’, but another good match to this course.

• D’Inverno (Oxford): Introducing Einstein’s Relativity . A more mathematical approach,
without being intimidating.

• Weinberg (Wiley): Gravitation and Cosmology . A classic advanced textbook with some
unique insights. Downplays the geometrical aspect of GR.

• Misner, Thorne & Wheeler (Princeton): Gravitation. The classic antiparticle to Weinberg:
heavily geometrical and full of deep insights. Rather overwhelming until you have a reason-
able grasp of the material.

It may also be useful to consult background reading on some mathematical aspects, especially
tensors and the variational principle. Two good references for mathematical methods are:

• Riley, Hobson and Bence (Cambridge; RHB): Mathematical Methods for Physics and Engi-
neering

• Arfken (Academic Press): Mathematical Methods for Physicists

1 Overview

General Relativity (GR) has an unfortunate reputation as a difficult subject, going back to the
early days when the media liked to claim that only three people in the world understood Einstein’s
theory. But while there are occasional mathematical challenges to negotiate, GR is in many ways
one of simplest and most natural parts of physics, where the mathematical aspects emerge from
a foundation built on simple but powerful intuitive insights.

GR is a completion of the logic of Special Relativity (SR), which states that there is no
preferred standard of rest, so that space and time as experienced locally by all different observers
must provide equally valid descriptions of the universe. As a consequence, Newton’s absolute
space and time must be abandoned. SR considers only observers moving at constant velocity; but
if there is no absolute standard of motion, then surely the viewpoint of all observers should be
equally valid? The core aim of GR is therefore to show how the laws of physics can be set up in
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a way that is completely independent of the state of motion of the observer. We will see that this
leads to the three main elements that characterise GR:

(1) GR is a theory of spacetime as experienced by (in general) accelerated observers;

(2) As a consequence, spacetime must be curved, and the curvature affects particle trajectories;

(3) GR is also a relativistic theory of gravity, but where matter influences curvature rather than
just determining a Newtonian gravitational force.

All this was memorably captured by John Archibald Wheeler: “matter tells spacetime how to curve
and curved spacetime tells matter how to move”. From these fundamental insights, we obtain
an impressive list of applications: gravitational time dilation; velocity-dependent gravitational
forces; gravitational deflection of light; gravitational waves; black holes, where spacetime becomes
singular; and the spacetime of the expanding universe. This course will touch on all of these
topics.

2 Elements of Special Relativity

2.1 4-vectors and the Lorentz transformation

We start with a brief review of Special Relativity, aiming to set the scene for what follows. The key
concept is that we are concerned with events in spacetime, and in particular the spacetime

interval between them. This can be written as a 4-vector:

dxµ = (c dt, dx, dy, dz) µ = 0, 1, 2, 3. (1)

The interval does not have to be infinitesimal, but it will often be convenient to focus on this
case. This vector has a norm, which is a quantity that is independent of reference frame, i.e. is
the same for all observers – known as an invariant. This is obtained by defining another vector
with the index ‘downstairs’:

dxµ = (c dt,−dx,−dy,−dz), (2)

so that the squared norm is

c2dτ2 = c2dt2 − dx2 − dy2 − dz2 = dxµdxµ = ηµν dx
µdxν . (3)

The matrix ηµν is diag(1,−1,−1,−1); note the use of the summation convention on repeated
indices, as usual. We have written the invariant in terms of dτ , the proper time interval,
which clearly means the time interval between two events at the same spatial location – it is just
the ticking of the clock that the observer carries along with them.

The interval is zero for events that are connected by light signals, and one of the key steps to
SR was requiring that this should hold for all observers, so that the speed of light is just a property
of empty space, which all observers experience in equivalent ways (as was proved empirically by
the Michaelson–Morley experiment, but Einstein considered the result inevitable). Now assume
that the spacetime intervals measured by different observers have a linear relation:

dx′µ =
∂x′µ

∂xν
dxν ≡ Λµ

ν dx
ν . (4)

It is then not too hard to show that the requirement of constant c leads to the transformation
matrix of the Lorentz transformation:

Λµ
ν =









γ −γβ
−γβ γ

1
1









, (5)
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where β = v/c, γ = (1− β2)−1/2 and the boosted observer is assumed to move at velocity v along
the x direction. Given this matrix, it is easy to verify that dxµdxµ is unchanged by a Lorentz
transformation, so that the proper time interval is indeed a relativistic invariant, as asserted above.

Why are we going to the trouble of having two different kinds of vectors? This does not
appear in the familiar treatment of vectors in Euclidean space, but this is only because we are
usually able to define the components of vectors using a set of basis vectors that are orthonormal.
But this doesn’t have to be the case, and we can use a skew basis. We can express any vector
as a linear superposition:

V =
∑

i

V
(1)
i ei, (6)

where ei are the basis vectors. But we are used to extracting components by taking the dot
product, so we might equally well want to define a second kind of component by

V
(2)
i = V · ei. (7)

These numbers are not the same, as can be seen by inserting the first definition into the second:
if the basis is not orthogonal, then a given type-2 component is a mixture of all the different
type-1 components. The two types of component are named respectively contravariant and
covariant components, and both are required in order to get the modulus-squared of a vector:

V 2 = V ·V = V ·
(

∑

i

V
(1)
i ei

)

=
∑

i

V
(1)
i V

(2)
i . (8)

This is exactly the manipulation we needed in order to obtain invariants in SR.

A common example of a covariant 4-vector is the 4-derivative: ∂µ ≡ ∂/∂xµ: having the
upstairs index downstairs amounts to having a downstairs index. We can see that this is sensible:
the change in a scalar field is dφ = (∂φ/dxµ) dxµ = ∂µφ dx

µ, which will be invariant as desired
(a scalar quantity is unchanged under Lorentz transformation). Explicitly, ∂µ = (∂/∂ct,∇) and
∂µ = (∂/∂ct,−∇), so that ∂µ∂

µ = (1/c2)∂2/∂t2 −∇2 ≡ . The RHS here is the d’Alembertian
wave operator, and its relativistic form means that a scalar function of space and time that solves
the wave equation in one frame solves it in any frame. A further nice example of the 4-derivative
at work is in the description of conserved quantities, such as charge. Define the 4-current in
terms of the charge density and current density, Jµ = (cρ, j); this allows us to write the invariant
equation ∂µJ

µ = 0, which is a compact form of the continuity equation, ρ̇+∇ · j = 0.

2.2 Relativistic dynamics

To obtain laws of physics that are valid in SR, we are thus naturally led to write equations in
terms of 4-vectors. This reflects the principle of general covariance, which says that
valid laws of physics should be independent of coordinates – i.e. should hold for all observers.
A 4-vector law Aµ = Bµ is naturally covariant as both sides of the equation change in the same
way under Lorentz transformations: if the law holds in one frame of reference, it holds in general.
Note the unfortunate historical baggage here: ‘covariance’ of physical laws has no direct relation
to ‘covariant components’.

A good example of this reasoning is supplied by the 4-momentum. Suppose we have a collision
between a set of free particles, for which we would say there is no change in total momentum:
∆
∑

i pi = 0. How can we write this in an observer-independent fashion? A natural 4-vector to
construct is rest mass times 4-velocity:

Pµ = mUµ = mdxµ/dτ = mγ dxµ/dt = m(γc, γv) (9)

3



(note the replacement of d/dτ by γ d/dt; this comes from the Lorentz transformation and is a
common manipulation in SR). If we write ∆

∑

i P
µ
i = 0, this is true in all frames (a zero 4-vector

remains zero under Lorentz transformation). For non-relativistic particles, the spatial part of
this equation gives the desired ∆

∑

i pi = 0, suggesting that γmv should be identified as the
momentum in general. For free, we also get a further conservation law: ∆

∑

i P
0
i = 0 – what does

this correspond to physically?

To see this, consider the proper time derivative of the 4-momentum, which is related to the
4-acceleration:

d

dτ
Pµ = mAµ = (γ d(γmc) /dt, γdp/dt). (10)

We want to keep the usual definition of force as rate of change of momentum, so there is a 4-force,
Fµ = (F 0, γf), which can be used to write the relativistic generalization of f = ma:

Fµ = mAµ. (11)

What is the time component of Fµ? We know it has to satisfy F 0 = mA0 = γ d(γmc)/dt, but
this can also be written in terms of the force f by using the invariant AµUµ = 0. This is proved
in the rest frame of the particle, where Uµ = (U0, 0, 0, 0) and noting that dγ/dt = 0 when the
velocity is zero, so that A0 = 0. Hence we have in general

γcA0 − γv · γd(γv)/dt = 0, (12)

implying
F 0 = mA0 = (γ/c)v·d(γmv)/dt = (γ/c)v · f . (13)

Thus the time component of Fµ = mAµ says

(γ/c)v · f = γ d(γmc)/dt⇒ v · f = d(γmc2)/dt, (14)

leading us to identify γmc2 as the total energy (because v · f is the rate at which the force does
work). This is the famous E = Mc2, but note that we prefer not to introduce the ‘relativistic
mass’: m always means the rest mass. So our relation ∆

∑

i P
0
i = 0 amounts to conservation

of energy: this had to arise if we try to express conservation of momentum in terms of the 4-
momentum Pµ = (E/c,p).

2.3 Distinguishing Special and General Relativity

Reviewing the above logic, it should be apparent that most of SR does not require a restriction
to observers moving at constant velocity. We have in fact already stated the basic premise of
General Relativity, which is general covariance: valid laws of physics should apply for all observers,
whatever their state of motion, and the way to ensure this is to write laws using 4-vectors and
invariants so that both sides of any equation transform in the same way.

The only problem, then, is to figure out how to construct the desired 4-vectors. Some of what
we have done goes through immediately: dxµ is a 4-vector by definition, and proper time dτ can
be seen to be an invariant on physical grounds: it is defined by the ticking of a clock in the rest
frame of a particle. Thus the 4-velocity Uµ = dxµ/dτ is a general 4-vector and hence so is the
4-momentum Pµ = mUµ (like proper time, rest mass is also an invariant on physical grounds). So
our law for conservation of momentum and energy in collisions applies in general. But things go
wrong at the next level, when we try to construct the 4-acceleration. Consider the transformation
law for spacetime coordinates: dx′µ = Λµ

νdxν . Dividing by dτ shows that 4-velocity obeys the
same transformation:

U ′µ = Λµ
νU

ν . (15)
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But to perform dynamics we need the 4-acceleration, and this requires us to differentiate with
respect to τ . If the transformation coefficients Λµ

ν are constants, then the differentiation goes
through them and dUµ/dτ obeys the standard 4-vector transformation law. But for general
coordinate transformations, such as boosts to the frame of an accelerating observer, there is no
guarantee that Λµ

ν will be constant as in the Lorentz transformation. In that case, we risk the
appearance of terms involving the derivatives of Λµ

ν , which spoils the transformation law.

Thus we see that Fµ = mAµ cannot be considered a generally valid relativistic law of physics.
Einstein saw how to solve this problem in a tremendous leap of intuition, by thinking about the
case of gravitational forces.

3 The Equivalence Principle

At the core of GR is the Equivalence Principle, which is an elaboration of the simple
observation that objects in a gravitational field fall equally fast, independent of their mass. Al-
though familiar since Galileo, in Einstein’s hands this fact becomes the bridge to the relativistic
generalisation of acceleration, and directly leads to curved spacetime.

3.1 Mass in Newtonian physics

In 1590, Galileo argued that objects made from different materials will all fall at the same rate.
Around the 1670’s, Newton defined force in terms of rate of change of momentum:

F =
d

dt
miv = mi ẍ, (16)

where mI is the inertial mass. For gravity, the force on a particle is proportional to a gravi-
tational acceleration field, g:

F = mgp g, (17)

where mgp is the passive gravitational mass; thus

ẍ =

(

mgp

mi

)

g. (18)

For all objects to fall at the same rate requires that mgp = mi, but there is no reason to expect
this in Newtonian physics.

There is another types of mass in Newtonian physics associated with gravity, the active

gravitational mass:

g = −Gmga

r2
r̂. (19)

Newton’s 3rd law ensures that mga = mgp, since F12 = −F21 ⇒ Gmga1mgp2/r
2 = Gmga2mgp1/r

2,
and hence

mga1

mgp1
=
mga2

mgp2
(20)

and the value of G can be adjusted so that the active and gravitational masses are not just
proportional, but equal. Henceforth we shall simply write mgp = mga = mg.
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3.1.1 Eötvös experiments (∼ 1890)

The difference between inertial and gravitational mass can be measured usingTorsion Balance

experiments. These torsion balance experiments use masses of different materials, but the same
gravitational mass mg (which can be checked with a spring balance). The force on each is the sum
of the gravitational force and the force from the fibres making up the balance. But these forces
do not match exactly, because the balance rotates around the Earth, with a weak acceleration a,
so the difference in force must supply mia for each mass. But if the inertial masses are different,
then these differences are not equal and the torsion balance must rotate a little in compensation.
Because a changes with period 24h, the balance would then have to oscillate with the same
period. From the lack of such oscillations, Eötvös and his team showed that gravitational and
inertial masses were equal to 1 part in 20 million. Present-day experiments of this type allow
variations in the ratio of no larger than about 10−13.

3.2 Inertial frames and inertial forces

A further puzzle regarding Newtonian mechanics is that F = ma only applies in inertial frames of
reference. What exactly are these? The definition is circular, with inertial frames being defined as
involving those sets of observers for whom F = ma applies. But having somehow found an inertial
frame, it is easy to generate an non-inertial one by considering the point of view of an observer
who accelerates relative to that frame. As is well known, additional so-called fictitious forces

or inertial forces then appear in the equation of motion. In respectively linearly accelerating
and rotating frames, we would write

F = ma+mg

F = ma+mΩ∧(Ω∧r)− 2m(v∧Ω) +mΩ̇∧r.
(21)

The latter expression adds the Euler force to the familiar centrifugal and Coriolis forces.

All physicists are taught at school that these extra forces are not real, but this should make
us deeply unhappy from a relativistic point of view. If there is no absolute rest, why shouldn’t the
viewpoint of an accelerating observer be valid? No physicist should be happy to say that although
such observers see forces, these have no known cause. The relativist’s attitude will be that if our
physical laws are correct, they should account for what observers see from any arbitrary point of
view. The ‘fictitious’ forces must be real – as is well-known to anyone who has ever experienced
them.

The mystery of inertial frames is deepened when we note that an inertial frame is one in which
the bulk of matter in the universe is at rest. This observation was taken up in 1872 by Ernst Mach.
He argued that since the acceleration of particles can only be measured relative to other matter in
the universe, the existence of inertia for a particle must depend on the existence of other matter.
This idea has become known as Mach’s Principle, and was a strong influence on Einstein in
formulating general relativity. In fact, Mach’s ideas ended up very much in conflict with Einstein’s
eventual theory – most crucially, the rest mass of a particle is a relativistic invariant, independent
of the gravitational environment in which a particle finds itself.

But for the present purpose, the key observation is that the inertial forces are proportional
to mass, just as gravitational force is. This suggests the following powerful insight:

Perhaps fictitious forces can be understood as gravitational effects – or,
equivalently, gravity is a fictitious force too.
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3.3 Inertial forces can be transformed away

Following this insight, and noting that inertial forces appear via the transformation to an accel-
erating frame, we can see that a suitable transformation can also remove such forces – including
gravity.

Consider a particle inside a freely-falling box in a gravitational field g: its equation of motion
is

m
d2x

dt2
= mg + F, (22)

where F represents non-gravitational forces. Now move to the rest frame of the box, i.e. make
the non-Galilean spacetime transformation

x′ = x− 1

2
gt2

t′ = t. (23)

Then

m
d2x′

dt2
= m

d2x

dt2
−mg = F. (24)

In other words, an experimenter who measures coordinates with respect to the box will finds that
Newton’s laws are obeyed, but does not detect the gravitational field.

This argument is fine if g is uniform and time-independent. If it is not uniform, then a large
box can detect it, through the tidal forces which would, for example, draw together two particles
in the Earth’s gravitational field. Nevertheless, we can remove gravity to any required accuracy
in a sufficiently small region and over a short enough period of time. This leads us to the Weak

Equivalence Principle (WEP):

At any point in spacetime in an arbitrary gravitational field, it is possible to
choose a freely-falling ‘local inertial frame’, in which the laws of motion are
the same as if gravity were absent.

Note that there are infinitely many LIFs at any spacetime point, all related by Lorentz transforma-
tions. The WEP clearly only holds if mg = mi, and so it seems to amount just to a restatement of
the unexplained fact that inertial and gravitational masses are exactly equal. But in 1907 Einstein
took a radical further leap of intuition: if the gravitational field is undetectable in a local inertial
frame, this is effectively saying that the field does not exist in this frame. He thus proposed the
Strong Equivalence Principle (SEP):

In a local inertial frame, all SR laws of physics apply.

Hereafter, we shall assume this to be true and refer to it just as the ‘EP’. It is a radical new
perspective on gravity, which now appears almost as an illusion caused by viewing things in a frame
that differs from the simple natural perspective of the freely-falling observer. The EP gives us
one piece of solid ground to which we can always retreat: even in the strongest gravitational fields
near a black hole, there is still a LIF, and we can assume we know all the laws of physics in that
frame. One caveat is needed here, however. As we have seen, the gravitational acceleration (−∇Φ
in terms of the Newtonian potential) can always be transformed away – but this is not true for
the tidal quantity ∂2Φ/∂xi∂xj , so this is the true gravitational field. The EP therefore implicitly
smuggles in something we should state explicitly: the principle of minimal gravitational

coupling. This states that the SR laws of physics as we deduce them in a laboratory on Earth
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include no explicit terms that depend on the magnitude of the gravitational tidal force. This
cannot be guaranteed in advance, so it is partly a statement of preference for simple laws of
physics; in the end, this has to be tested by experiment.

3.4 Gravitational time dilation

An an immediate illustration of the power of the EP, we can use it to learn an important new
aspect of gravity, via the following thought experiment. Consider an accelerating frame, which
is conventionally a rocket of height h, with a clock mounted on the roof that regularly disgorges
photons towards the floor, as in Figure 1. If the rocket accelerates upwards at g, the floor acquires
a speed v = gh/c in the time taken for a photon to travel from roof to floor. There will thus be a
blueshift in the frequency of received photons, given by ∆ν/ν = gh/c2, and it is easy to see that
the rate of reception of photons will increase by the same factor.

c
g

c
g

�����������������
�����������������
�����������������
�����������������
�����������������
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�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

Figure 1: Illustrating how an apparent gravitational field generates time dilation.

Now, since the rocket can be kept accelerating for as long as we like, and since photons cannot
be stockpiled anywhere, the conclusion of an observer on the floor of the rocket is that in a real
sense the clock on the roof is running fast. When the rocket stops accelerating, the clock on the
roof will have gained a time ∆t by comparison with an identical clock kept on the floor. Finally,
the equivalence principle can be brought in to conclude that gravity must cause the same effect.
Noting that ∆Φ = gh is the difference in potential between roof and floor, it is simple to generalize
this to

∆t

t
=

∆Φ

c2
. (25)

The same thought experiment can also be used to show that light must be deflected in a gravita-
tional field: consider a ray that crosses the rocket cabin horizontally when stationary. This track
will appear curved when the rocket accelerates. We will return to this point later.

The experimental demonstration of the gravitational redshift by Pound & Rebka (1960) was
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one of the main pieces of evidence for the essential correctness of the above reasoning, and provides
a test (although not the most powerful one) of the equivalence principle.

A striking application of this concept is the resolution of the twin paradox in SR. The twin
on a rocket experiences an accelerating frame of reference while it turns, so that clocks on the
Earth undergo a gravitational speeding up, accounting exactly for the fact that the rocket-borne
twin is younger on return to Earth. We will explore this calculation in the tutorials.

4 GR spacetime and equations of motion

We are now in a position to use the EP to obtain deep new information about the structure of
spacetime and the GR equation of motion. We will do this by transforming motion from a locally
flat (LIF) spacetime to an arbitrary coordinate system.

4.1 Exploiting the equivalence principle

Consider a freely-moving particle in a gravitational field. According to the EP, there is always
a Local Inertial Frame (LIF) coordinate system ξα = (ct,x) in which the particle follows an
unaccelerated trajectory. We can write write this trajectory parametrically, as a function, for
example, of the proper time, ξα(τ). The SR expression of zero acceleration is

d2ξα

dτ2
= 0. (26)

To this, we should add the SR spacetime interval:

c2dτ2 = c2dt2 − dx2 = ηαβ dξ
αdξβ , (27)

where the proper time interval, τ , is the time measured by a clock moving with the particle
through spacetime. The spacetime of Special Relativity is called Minkowski spacetime. As
before, ηαβ ≡ diag(1,−1,−1,−1). Here and throughout Greek indices on 4-vectors will run from
0 to 3, while spatial parts of the 4-vectors will be denoted by Latin indices that run from 1 to
3. The Einstein summation convention, where repeated indices are summed over, applies unless
otherwise stated. Note that the repeated (dummy) indices normally have to be of opposite kinds
(one upstairs, one downstairs): AµAµ is an invariant scalar, but AµAµ would not be. Where there
is a non-dummy index, it should match on either side of the equation: Aα = Bα just says that
the 4-vectors A and B are the same, and it doesn’t matter what the index is called.

Now consider any other arbitrary frame of reference, which may be accelerating or rotat-
ing, in which the particle coordinates are xµ(τ). Using the chain rule we can expand a small
displacement in the local Minkowski spacetime in terms of the arbitrary coordinate system

dξα =
∂ξα

∂xµ
dxµ. (28)

A time derivative in the LIF can also be expanded in terms of the arbitrary coordinate system,

d

dτ
=

(

dxµ

dτ

)

∂

∂xµ
. (29)
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The SR equation of motion (26) becomes

d

dτ

(

∂ξα

∂xµ
dxµ

dτ

)

= 0,

⇒ ∂ξα

∂xµ
d2xµ

dτ2
+
dxµ

dτ

d

dτ

(

∂ξα

∂xµ

)

= 0,

⇒ ∂ξα

∂xµ
d2xµ

dτ2
+

∂2ξα

∂xν∂xµ
dxµ

dτ

dxν

dτ
= 0. (30)

We see that the acceleration will be zero if the ξα are linear functions of the new coordinates xµ,
since ∂2ξα/∂xν∂xµ then vanishes. This is the case for Lorentz transformations. For a general
transformation this term is non-zero. Note some subtleties of notation: there is a general trans-
formation between coordinate systems ξα and xµ, so the partial derivatives exist everywhere. The
specific path of the particle is ξα(τ) or xα(τ), thus the appearance of total derivatives of these
quantities w.r.t. τ .

To find the acceleration in the new frame, multiply by ∂xλ/∂ξα and use the product rule,
which follows directly from the chain rule (28):

∂xλ

∂ξα
∂ξα

∂xµ
= δλµ, (31)

where the right hand side is the Kronecker delta (=1 if λ = µ and zero otherwise). This gives
us the equation of motion for a free particle, known as the geodesic equation:

d2xλ

dτ2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0 (32)

where Γλ
µν is the affine connection:

Γλ
µν ≡ ∂xλ

∂ξα
∂2ξα

∂xν∂xµ
. (33)

Note that Γ is symmetric in its lower indices, and, for future reference, it is not a tensor. The

affine connection is sometimes written as
{

σ
λµ

}

and called a Christoffel symbol.

The proper time interval can be written in terms of dxµ through the line element:

c2dτ2 = ηαβ dξ
αdξβ = ηαβ

(

∂ξα

∂xµ
dxµ

)(

∂ξβ

∂xν
dxν
)

⇒ c2dτ2 = gµν dx
µdxν (34)

where gµν is the metric tensor for an arbitrary spacetime (note it is symmetric):

gµν ≡ ∂ξα

∂xµ
∂ξβ

∂xν
ηαβ . (35)

4.1.1 Massless particles

For massless particles, we cannot use dτ , since it is zero. Instead we can use σ ≡ ξ0 (ct in the
LIF). Following similar logic, the condition d2ξα/dσ2 = 0 becomes

d2xλ

dσ2
+ Γλ

µν

dxµ

dσ

dxν

dσ
= 0 (36)

In neither this nor the massive particle case do we need to know what σ or τ are explicitly, since
we have 4 equations to solve for e.g. xµ(τ), and τ can be eliminated to obtain the 3 equations
x(t). Indeed, we see that the equation of motion will be the same replacing τ by any affine

parameter that is linearly related to τ .
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4.2 Physical implications

The above analysis is a straightforward change of variables applied to simple equations in a LIF,
but the implications for physics are profound. We have learned two important things:

(1) Gravitational forces are velocity dependent.

(2) Spacetime is (probably) curved.

The first of these statements follows by noting that the 4-acceleration in the transformed frame is
quadratic in the 4-velocity, so there will be at least terms linear in the velocity. This is encouraging,
as it makes gravity more like electromagnetism, where the force on a charged particle is the
Lorentz force, v = q(E+ v∧B). The analogy between Newtonian gravity and electrostatics
works very well, and so we should expect that a relativistic theory of gravity would extend this
analogy so that we also have gravomagnetic fields generated by the motion of mass. We
also expect that there should be gravitational waves, so that gravitational effects propagate at
the speed of light, rather than being an instantaneous action-at-a-distance. As we will see, this
expectation is correct.

But the more radical item is the second one. Using the EP, we have shown that spacetime
must have a metric structure c2dτ2 = gµν dx

µdxν , where the metric tensor is some matrix
that differs from the simple constant Minkowski metric, ηµν . The existence of a non-trivial
metric is a big step towards showing that spacetime is curved. Think of a simple example like
the element of length on the surface of a unit sphere in spherical polar coordinates, (θ, φ): this is
dℓ2 = dθ2+sin2 θ dφ2. The idea that spacetime ‘lengths’ may have to be described with a similarly
complicated metric is a big hint that we should be thinking about spacetime curvature. The hint
falls short of a proof, however, as one can always rewrite something that lacks curvature using a
more complicated coordinate system. For example, lengths on a flat 2D plane can be written using
(r, θ) polars as dℓ2 = dr2 + r2dθ2, but the appearance of this more complicated metric doesn’t
mean that the plane has suddenly become curved. We need a way to describe spacetime curvature
in a way that is independent of coordinates, and this will be dealt with later in the course.

But again things seem to be going in a desirable direction, as Einstein had an expectation
that GR would involve spacetime curvature right from the start. He was heavily influenced by the
example of the rotating disc. Consider a stationary disc at radius r, where a transverse element
of length is dℓ = r dθ. Integrating round in θ, we learn that the circumference is 2πr. But now set
up a rotating disc, containing observers with metre rulers that they set down tangentially. As we
in the rest frame observe them, each ruler is length contracted by a factor γ (the Lorentz factor
based on the rotational velocity at a given r) – so now we need more of these rulers to fit round
the circumference. Hence an observer living in the disc will conclude that its circumference is
γ2πr, so that the geometry in the rotating frame is non-Euclidean.

4.3 The metric as the gravitational field

At present, both the metric and the affine connection are expressed in terms of some unknown
coordinate transformation. But we now show that this transform can be eliminated, so that the
affine connection and hence particle dynamics is determined once the metric is given. From (35),

gµν ≡ ∂ξα

∂xµ
∂ξβ

∂xν
ηαβ , (37)

we have
∂gµν
∂xλ

=
∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
ηαβ +

∂ξα

∂xµ
∂2ξβ

∂xλ∂xν
ηαβ , (38)
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and from the definition of the affine connection (33), we see that

∂2ξα

∂xν∂xµ
= Γλ

µν

∂ξα

∂xλ
. (39)

So (38) becomes
∂gµν
∂xλ

= Γρ
λµ

∂ξα

∂xρ
∂ξβ

∂xν
ηαβ + Γρ

λν

∂ξα

∂xµ
∂ξβ

∂xρ
ηαβ . (40)

Using (35), this simplifies to
∂gµν
∂xλ

= Γρ
λµgρν + Γρ

λνgµρ. (41)

Now relabel indices: first µ↔ λ:

∂gλν
∂xµ

= Γρ
µλgρν + Γρ

µνgλρ. (42)

Second: ν ↔ λ:
∂gµλ
∂xν

= Γρ
νµgρλ + Γρ

νλgµρ. (43)

Add the first two of these, and subtract the last, and use the symmetry of Γ w.r.t. its lower
indices, to get

∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

= 2Γρ
λµgρν . (44)

Now we define the inverse of the metric tensor as gσρ, by

gσρgρν ≡ δσν , (45)

where δσν is the unit matrix: 1 if ν = σ and 0 otherwise. Note that gσρ and gσρ are both
symmetric. Hence

Γσ
λµ =

1

2
gνσ

(

∂gµν
∂xλ

+
∂gλν
∂xµ

− ∂gµλ
∂xν

)

. (46)

We thus see that the gravitational term in the geodesic equation depends on the gradients
of gµν , justifying the description of the metric components as gravitational potentials (cf.
g = −∇Φ in Newtonian gravity). Note that there are 10 potentials, instead of one in Newtonian
physics (why 10 and not 16?). If we have gµν(x

α), we can then solve the geodesic equation and
determine the orbit. In general, this is the way to proceed, but if the problem has some symmetry
to it, then a variational approach is easier, as explained below.

Thus everything in gravitational dynamics derives from the metric: but where does the metric
come from? We will postpone the answer to this question for a while, but the ultimate answer
is that gµν is obtained from the solution of Einstein’s field equations, which are the relativistic
generalisation of Poisson’s equation for the Newtonian potential, ∇2Φ = 4πGρ.

4.4 Newtonian limit of the geodesic equation

If speeds are ≪ c, and the gravitational field is weak and stationary, then the geodesic equation
(32),

d2xλ

dτ2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0, (47)

can be approximated by ignoring the dx/dτ terms in comparison with d(ct)/dτ . Then

d2xλ

dτ2
+ Γλ

00c
2

(

dt

dτ

)2

≃ 0. (48)
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For a stationary field, ∂gµν/∂t = 0, so the affine connection (33) is

Γλ
00 =

1

2
gνλ

(

∂g0ν
∂x0

+
∂g0ν
∂x0

− ∂g00
∂xν

)

= −1

2
gνλ

∂g00
∂xν

. (49)

For a weak field, we write
gµν = ηµν + hµν (50)

and assume |hµν | ≪ 1. To first order in h,

Γλ
00 = −1

2
ηνλ

∂h00
∂xν

, (51)

so gravitational forces in the Newtonian limit are determined entirely by gradients in g00. For a
stationary field the above sum only involves the spatial indices (ν = 1, 2, 3) of η, which have the
value −1 just along the diagonal (ν = λ). Thus

ηνλ
∂h00
∂xν

= −∂h00
∂xλ

. (52)

The geodesic equation (48) then becomes

d2xλ

dτ2
= −1

2
c2
(

dt

dτ

)2 ∂h00
∂xλ

, (53)

with spatial parts
d2x

dτ2
= −1

2
c2
(

dt

dτ

)2

∇h00 (54)

From the λ = 0 equation, we find Γ0
00 = 0. The equation of motion is then d2x0/dτ2 = 0

which has solution dt = Adτ , where A is some constant. We can substitute dτ for dt/A in equation
(54) and cancel the factors of A on both sides, and using dt/dt = 1, we find

d2x

dt2
= −1

2
c2∇h00. (55)

Comparing with the Newtonian result d2x/dt2 = −∇Φ, we conclude that

h00 =
2Φ

c2
, (56)

plus a constant, which we take to be zero if we follow the convention that Φ → 0 far from any
masses (where the metric approaches that of SR and h→ 0). Hence, in the weak-field limit,

g00 = 1 +
2Φ

c2
, (57)

which as we saw above is the only one of the gµν ‘potentials’ that contributes in Newtonian
gravity. But in general gradients in all of the gµν contribute to the affine connection and thus to
the effective gravitational force in a more general situation. Thus for stronger gravitational fields
the effects of spatial curvature may also become important.
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4.5 Gravitational time dilation and redshift

The fact that g00 is not unity relates to our earlier discussion of gravitational time dilation.
Consider a moving particle that carries a clock: as before, the proper time is the time elapsed
on this clock in the rest frame of the particle. We know that this time is given by the metric
relation

c2dτ2 = gµνdx
µdxν , (58)

so for a stationary clock (whose spatial coordinates are fixed, so dxi = 0, i = 1, 2, 3),

c2dτ2 = g00 c
2dt2 (59)

so that dτ =
√
g00 dt. For a clock in a gravitational field, in the weak-field case, where g00 =

1 + 2Φ/c2,

dτ ≃
(

1 +
Φ

c2

)

dt (60)

and we see that t coincides with τ only if Φ = 0.

Now, here is a subtle point. Although we are considering events taking place inside a grav-
itational potential well, xµ = (ct, x, y, z) is presumed to be a global coordinate system – so the
spacetime interval between a pair of events at one location can be agreed on by observers at
all locations (in principle: in practice measuring such intervals would require allowance for the
propagation of light signals). Thus we can say that dt is the time elapsed on a stationary clock at
infinity, where Φ = 0. We see that, from the point of view of this observer, the stationary clock
deep inside the potential well runs slow, by exactly the amount we deduced using the equivalence
principle.

In our direct argument from the equivalence principle, we showed that time dilation was
accompanied by gravitational redshifting of the frequency of received photons. We can now derive
this effect more formally, as follows. Consider a stationary light emitter at position x1 and a
stationary observer at x2. Let the emitted EM field be at a maximum at time t1 and again
at t1 + dt1 (i.e. dt1 is the period of the emitted radiation. The EM signal propagates at the
speed of light and these two peaks arrive at times t2 and t2 + dt2. Now, radiation must follow
a null trajectory with dτ = 0. If the metric is time independent, then the line element can
be integrated to find the time interval: t2 − t1 =

∫

f(x) dx, where f(x) is some spatial function
derived from the metric. Now, because the metric is time independent, this coordinate time
interval must be the same for all journeys, and so we learn that dt1 = dt2 = dt. We can write this
in terms of the proper time intervals measured at the two points as

dτ1
√

g00(x1)
= dt =

dτ2
√

g00(x2)
⇒ dτ1

dτ2
=

√

g00(x1)

g00(x2)
. (61)

This is a ratio of emitted and observed periods, so it is the ratio of observed and emitted frequen-
cies. The factor

√
g00 is the same one that dilates the apparent ticking of clocks, as expected. In

weak gravitational fields, g00 ≃ 1 + 2Φ/c2 (equation 57), so to O(Φ) we have

ν2
ν1

≃

√

√

√

√

(

1 + 2Φ1

c2

)

(

1 + 2Φ2

c2

) ≃ 1 +
Φ1

c2
− Φ2

c2
(62)

and the gravitational redshift , defined here as 1 + zgrav = ν1/ν2, is

zgrav =
ν1
ν2

− 1 ≈ Φ2 − Φ1

c2
. (63)
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Since Φ is negative near massive bodies, a photon will then lose energy (be redshifted) by climbing
out of a gravitational well (or gain energy and be blueshifted when travelling into one). This is
small for most astronomical bodies (∼ 10−6 for the Sun), and often masked by Doppler effects
e.g. convection in Sun, which gives systematic effects that are larger than this.

5 Variational formulation of GR

Dynamical equations in the form of differential equations may be written as a variational principle.
This approach is used extensively in classical mechanics and can readily be applied in General
Relativity. This approach offers some powerful advantages in calculations.

5.1 Stationary intervals

A particle follows a worldline between spacetime points A and B. Let p be a parameter that
increases monotonically along the worldline, so that the proper time elapsed is

c τAB = c

∫ B

A
dτ = c

∫ B

A

dτ

dp
dp =

∫ B

A
L(xµ, ẋµ) dp. (64)

Here we have written the integral in a way that makes it look like the action integral of
Lagrangian mechanics,

∫

Ldt, where L = T −V is the difference of kinetic and potential energies.
When the starting and ending points A & B are fixed, classical mechanics in the Lagrangian
formalism is recovered if we require that the particle trajectory is stationary, i.e. unchanged
when we make small perturbations in the particle trajectory x(t). Variational calculus then
requires the Euler-Lagrange equation for each degree of freedom, q:

∂L

∂qi
− d

dt

(

∂L(q, q̇)

∂q̇i

)

= 0. (65)

For a single particle, the degrees of freedom are the spatial positions xi: with parameter p = t
and L = m|ẋ|2/2− V , we get mẍi = −∂V/∂xi, as required.

In SR, it is easy to show that something similar is going on, and that the integral for the
proper time interval is stationary (actually a maximum). Here, the equivalent of the Lagrangian
is

L = c
dτ

dp
=

√

ηµν
dxµ

dp

dxν

dp
=
[

(cṫ)2 − (ẋ)2 − (ẏ)2 − (ż)2
]1/2

, (66)

where ṫ ≡ dt/dp etc. – note we will frequently find it convenient to use dots to denote parameter
derivatives in this way. For a free particle, we would expect the Euler-Lagrange equation based
on this L to give the trajectory xi = A + Bt, i.e. linear motion. In tutorial sheet 2, you are
encouraged to prove this working from the above expression for L. But the square root makes this
slightly awkward, and there is an simpler way, which is to replace L by L2 in the Euler-Lagrange
equation. The justification for this is easy, if a little odd: since c∆τ =

∫

c dτ , then L = c if
we use τ as the parameter p, in which case L2 = c2. Then we have ∂(L2)/∂xµ = 0, and so the
Euler-Lagrange equation can be integrated immediately to get xµ = A+Bτ , where A and B are
different coefficients for each coordinate – so all are linearly related to each other and hence the
particle moves in a straight line at constant velocity. Any accelerated trajectory that deviates
from this will thus have a shorter proper time. This is the SR ‘solution’ of the twin paradox,
although it is actually an evasion, since it refuses to analyse things from the point of view of the
accelerated observer.
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By the Equivalence Principle, and because τ is an invariant, we would expect the idea of
stationary proper time to be maintained – i.e. particles should in general travel on geodesics:
stationary trajectories in spacetime. It is immediately obvious how to generalise the SR analysis,
since we have seen that the spacetime interval involves the general metric: c2dτ2 = gµνdx

µdxν .
Therefore the geodesic principle is

δ

∫

Ldp = 0; L2 = gµν
dxµ

dp

dxν

dp
. (67)

As before, we argue that it is possible (and more convenient) to use the Euler-Lagrange equation
with L2 instead of L. We can make the justification of this a little more formal. Consider the
Euler-Lagrange equation for L:

∂L

∂xµ
− d

dp

(

∂L

∂ẋµ

)

= 0, (68)

where again ẋµ ≡ dxµ/dp. Now consider the same equation for L2:

∂L2

∂xµ
− d

dp

(

∂L2

∂ẋµ

)

= −2
dL

dp

∂L

∂ẋµ
. (69)

We can make the RHS zero by noting that since L = cdτ/dp, we have dL/dp = cd2τ/dp2, which
can be made to vanish if we choose p to be an affine parameter, which is any parameter that
increases linearly with τ . You might wonder why we are going to all the trouble of considering
a parameter p that differs from τ in this simple way, and the reason is photons. Since massless
particles obey the null condition τ = 0, we need a different parameter to distinguish points on
their trajectories, as we saw earlier in discussing the geodesic equation.

So in summary we expect free particles to travel along geodesics in spacetime. Given an affine
parameter p, the trajectory should obey the L2 form of the Euler-Lagrange equation:

∂L2

∂xµ
− d

dp

(

∂L2

∂ẋµ

)

= 0. ELII (70)

We will use this ‘ELII’ equation extensively for computations, as it is often more practically
convenient than considering the geodesic equation and evaluating the affine connection directly
from equation (33). It can in effect be regarded as a short-cut for computing these coefficients.
For completeness, we should really check that the statement that τAB is stationary is indeed
equivalent to the geodesic equation (32). We have taken this result as obvious through the
equivalence principle; to prove it directly is a slightly messy exercise, and it is given as a problem
in Tutorial 2.

5.2 Calculating the affine connection

We now illustrate the use of the variational route to obtaining the affine connection. In detail,
the procedure is:

• Write down the relativistic line element for the spacetime.

• Convert this to L2 (dxµ → ẋµ).

• Write down the ELII equation for each variable (recall xµ and ẋµ are independent variables).

• Rearrange ELII to get it in the form: ẍλ + [ something ]λµν ẋ
µẋν = 0.

• Read off the affine connection terms, Γλ
µν = [ something ]λµν (ensure to match the indices).
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• If µ 6= ν, divide by 2. Γλ
µν = Γλ

νµ and µ and ν are summed over in the geodesic equation,
but your expression probably won’t have a sum.

• Any Γ not appearing is zero.

Example: A geodesic arc on the 2D surface of a sphere of radius R (this example does not
involve time, but the approach is general). The line element between points with coordinates θ, φ
separated by dθ, dφ is

dℓ2 = R2dθ2 +R2 sin2 θ dφ2

⇒ L2 = R2θ̇2 +R2 sin2 θ φ̇2. (71)

Apply the ELII equations, first to θ:

∂

∂θ

(

R2θ̇2 +R2 sin2 θ φ̇2
)

− d

dp

[

∂

∂θ̇

(

R2θ̇2 +R2 sin2 θ φ̇2
)

]

= 0

⇒ 2R2 sin θ cos θφ̇2 − 2R2θ̈ = 0. (72)

Hence θ has an ‘equation of motion’ (but no motion, in this case)

θ̈ − sin θ cos θ φ̇2 = 0. (73)

We can simply read off the affine connection, noting the φ̇ factors tell us the lower indices,

Γθ
φφ = − sin θ cos θ. (74)

Now, for φ:

∂

∂φ

(

R2θ̇2 +R2 sin2 θ φ̇2
)

− d

dp

[

∂

∂φ̇

(

R2θ̇2 +R2 sin2 θ φ̇2
)

]

= 0

⇒ 2R2
(

2 sin θ cos θ θ̇φ̇+ sin2 θ φ̈
)

= 0, (75)

and so the equation of motion in the φ-direction is

φ̈+ 2 cot θ θ̇φ̇ = 0. (76)

Remembering to divide by 2, we can again read off the affine connection terms, Γφ
φθ = Γφ

θφ = cot θ.
Equations (73) and (76) are the equations describing a geodesic arc on the sphere, i.e. a great
circle. The non-trivial form (deviation from a linear relation of the coordinates) arises from the
curvature of the space. It will be convenient for later purposes to write the affine connection as
two 2× 2 matrices (Γθ)

α
β ≡ Γα

θβ :

Γθ =

(

. .

. cot θ

)

Γφ =

(

. − sin θ cos θ
cot θ .

)

. (77)

6 Example application: the Schwarzschild metric

We now illustrate the application of the tools acquired so far to a specific interesting case –
leaving until later the critical question of how we know what the metric is in a given situation.
The Schwarzschild metric is the GR gravitational field of a point mass in empty space. It is
commonly used as a model for a static Black Hole, or for the metric outside of a star or neutron
star where the gravitational field can be large. The Schwarzschild metric has a greater significance
in GR, since Birkhoff’s Theorem shows that it describes the spacetime outside any general
spherically symmetric mass distribution. This is interesting because this includes distributions
that have any radial profile and which are time-dependent. This last feature implies that a time-
dependent spherical system cannot induce a time-dependency in the surrounding spacetime. More
of this later.
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6.1 Distances on the 2-sphere

Before we delve into the Schwarzschild spacetime, it is worth pausing for a moment to consider
that the coordinate freedom implied by General Relativity allows us to express the same spacetime
in different ways. This freedom allows us some choice in the coordinate system, so we can select
coordinates that simplify the representation of a spacetime. We shall make use of this coordinate
freedom in our choice of coordinates in the Schwarzschild spacetime.

As a simple example, let us again consider the 2D surface of a sphere. Previously we used
spherical angles θ and φ to label the surface, giving equation (71). If we let r ≡ Rθ (r is called
the geodesic distance), then

dℓ2 = dr2 +R2 sin2
( r

R

)

dφ2. (78)

Here the first term is as simple as we can make it, but the second is complicated (except when
R → ∞, when we get the flat plane in polar coordinates dr2 + r2dφ2). But there are infinitely
many alternatives. For example, we can try to make the coefficient of dφ2 as simple as possible,
by taking ρ ≡ R sin(r/R), so dρ = cos(r/R) dr =

√

1− ρ2/R2 dr, and

dℓ2 =
dρ2

1− κρ2
+ ρ2 dφ2, (79)

where κ ≡ 1/R2 is the curvature of the sphere. In this case the radial term is complicated by the
curvature of the surface, while the angular part now looks like a flat plane. In these coordinates
the radial coordinate ρ is called the angular diameter distance, defined so that the angle
subtended by a rod of length dℓ⊥ perpendicular to the line-of-sight is dφ = dℓ⊥/ρ.

Note that equation (79) applies to spheres (κ > 0), flat surfaces (κ = 0), but also to hyper-

bolic negatively-curved surfaces (κ < 0), which are less easy to visualise in 3D. Horse saddles
have negative curvature at a point, and it is possible to construct surfaces such as the trumpet-like
pseudosphere that have constant negative curvature – although these are not unbounded in
the same way as the positive-curvature sphere. A distinctive feature of the sign of the curvature
is the effect on a triangle. On a flat surface the interior angles of a triangle add up to 180◦. On a
sphere the interior angles are > 180◦, while on a negatively curved surface they add up to < 180◦.

6.2 SR metric in spherical coordinates

The line element in Special Relativity is c2dτ2 = c2dt2 − dℓ2, where the spatial part of the line
element dℓ2 = dx2 + dy2 + dz2 in Cartesian coordinates, or dℓ2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 in
spherical coordinates (r, θ, φ). It is instructive to note that

dℓ2 = dr2 + r2dψ2, (80)

where dψ2 = dθ2 + sin2 θdφ2 is the square of the angle between radial lines separated by (dθ, dφ).
The SR metric may therefore be written

c2dτ2 = c2dt2 −
[

dr2 + r2
(

dθ2 + sin2 θ dφ2
)]

. (81)

6.3 Schwarzschild metric in spherical coordinates

The Schwarzschild metric describes the empty but curved spacetime around a general spherically-
symmetric mass distribution, for example around a point mass. The spherical symmetry of the
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situation specifies much of the form of the metric. Firstly, the symmetry suggests the use of
spherical polars. For r we choose to use the angular diameter distance, so the perpendicular
part of the metric is r2dψ2 (this defines r). Because spacetime is curved, we do not expect to
see Minkowski spacetime terms like dr2 or c2dt2 (remember we expect g00 to be modified by the
spatially-dependent gravitational potential in weak fields), but rather

c2dτ2 = e(r)c2dt2 −
[

f(r)dr2 + r2
(

dθ2 + sin2 θ dφ2
)]

. (82)

By isotropy, e and f cannot depend on direction. If we assume that the metric is stationary, then
they won’t depend on t either (as mentioned earlier, the metric can be stationary even if the mass
distribution is not). At large distances from the point mass we will impose the physically sensible
boundary condition that the metric tends to SR, so e, f → 1 as r → ∞. A dimensional analysis
also implies that e and f depend on GM/(rc2), and we already know that in the weak field limit,
g00 ≃ 1 + 2Φ/c2.

This is as far as we can go without resorting to Einstein’s field equations to obtain the exact
solution, and for now we simply quote the result:

c2dτ2 =

(

1− 2GM

rc2

)

c2dt2 − dr2

1− 2GM
rc2

− r2
(

dθ2 + sin2 θdφ2
)

. (83)

We note that:

• t is coordinate time, corresponding to time measured by stationary clocks at ∞. The
proper time elapsed, for a stationary clock at (r, θ, φ) is dτ = dt

√

1− 2GM/rc2 .

• The coefficient of dt2 agrees with our weak-field calculation when r ≫ GM/(c2),

• Not only is time curved, with g00 = 1 + 2Φ/c2, but the spatial curvature has a similar
dependence on Φ to linear order: −grr ≃ 1− 2Φ/c2.

• Something strange happens at r = 2GM/c2 ≡ rS, the Schwarzschild radius. Putting
dτ = 0, we see that the coordinate speed of light, dr/dt, is zero at r = rS. So there is an
event horizon and light signals apparently cannot reach r < rS. More on this later.

7 Orbits in the Schwarzschild metric

We are now in a position to derive the equations of motion for a test particle moving in the
Schwarzschild metric, and study its possible orbits. We start by applying the Euler-Lagrange
equations (70) to the Schwarzschild metric:

∂L2

∂xµ
− d

dp

(

∂L2

∂ẋµ

)

= 0. (84)

As before for matter particles we take p = τ , for which L2 = c2(dτ/dp)2 = c2 along the correct
path. In general, L2 is

L2 =

(

1− 2GM

rc2

)

c2ṫ2 − ṙ2

1− 2GM
rc2

− r2
(

θ̇2 + sin2 θ φ̇2
)

, (85)
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where the dot indicates now d/dτ . If we write α ≡ 1 − 2GM/(rc2), then the ELII equations for
variables t, θ, and φ are respectively

− d

dp

(

2c2αṫ
)

= 0

2r2 sin θ cos θ φ̇2 − d

dp

(

−2r2θ̇
)

= 0

− d

dp

(

−2r2 sin2 θ φ̇
)

= 0. (86)

The time equation of motion gives

αṫ = constant = k, (87)

which says that there is time dilation. We can see that the form makes sense by considering
non-relativistic weak fields. We would expect Doppler and gravitational time dilation, so ṫ =
γ(1+GM/c2r) ≃ 1+ v2/2c2+GM/c2r. Since v2/2−GM/r = E, the total energy per unit mass,
we get something equal to the GR equation to first order, with k = 1 +E/c2 – or just k = E/c2,
if we include the rest mass in the total energy.

Without loss of generality we can define the orbit to lie in the equatorial plane, θ = π/2
and θ̇ = 0; this choice satisfies the 2nd geodesic equation, and is intuitively reasonable given the
spherical symmetry of the metric. With this choice, the third ELII equation gives

r2φ̇ = constant = h, (88)

which clearly expresses conservation of angular momentum.

The radial coordinate, r, in the ELII equation will yield the radial acceleration equation.
However, a more useful form is the radial ‘energy’ equation, which we can derive directly from
the Lagrangian-squared. We use the fact that L2 = c2 for a massive particle, so

c2 = c2α
k2

α2
− ṙ2

α
− r2

h2

r4
,

⇒ ṙ2 + α
h2

r2
= c2(k2 − α) = c2k2 − c2 +

2GM

r
. (89)

Compare this with Newtonian orbits,

d2r

dt2
= −GM

r2
+
v2⊥
r

= −GM
r2

+
h2

N

r3
, (90)

where hN = v⊥r is the Newtonian specific angular momentum. Multiplying by dr/dt and inte-
grating gives

1

2

(

dr

dt

)2

+
h2

N

2r2
− GM

r
= constant. (91)

We can compare this Newtonian radial equation with the GR result (89) which can be cast as

ṙ2

2
+

h2

2r2
− GM

r
− GMh2

r3c2
= c2(k2 − 1)/2 = constant. (92)

So we see the form of these equations is the same (but note the different formal definitions of
t, τ , r and h in the Newtonian and GR cases), but there is an extra term in the GR equations
that couples the gravitational field to the angular momentum. This has the same sign as the
gravitational potential and so is an extra attractive radial force. If we trace the origin of this
extra force, it arises from the α factor in the radial term of the line element, i.e. the fact that the
Schwarzschild metric contains spatial curvature in addition to the g00 6= 1 that is required by the
Equivalence Principle.
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Figure 2: The effective GR potential around a point mass, and its Newtonian counterpart (dashed
lines). These are plotted for different values of the dimensionless angular momentum, H =
r2φ̇c/GM . From bottom to top, the lines are H = 1, 2,

√
12, 4, 5, 6. Circular orbits live at minima

in Veff , and are plotted as points (open for Newtonian). For H <
√
12, Veff has no minimum, and

so there is an innermost stable orbit, at r = 6GM/c2.

7.1 Effective potentials

We have arrived at a set of equations of motion for the orbits of massive particles in a Schwarzschild
spacetime that look similar to those of Newtonian gravity, but with a more complicated potential.
We can therefore find the solutions to orbits using the intuitively familiar apparatus of potential
fields. But the additional potential means that the solutions will be more complicated than the
Newtonian ones. We have

ṙ2

2
+ Veff = constant, (93)

where

Veff = −GM
r

+
h2

2r2
− GMh2

r3c2
(94)

We can make this more appealingly dimensionless if we define a ‘gravitational radius’ rg ≡ GM/c2

(so the Schwarzschild radius rS = 2rg), giving a dimensionless radius R ≡ r/rg and a dimensionless
angular momentum H ≡ h/rgc:

Veff
c2

= − 1

R
+
H2

2R2
− H2

R3
. (95)

As we saw earlier, the last term is new, and adds an attractive potential at small r, proportional
to the squared angular momentum. As a result orbits now depend qualitatively on the value of H.

The equation for the ‘radial kinetic energy’ with an effective potential is highly informative.
The simplest orbits will be circular ones with ṙ = 0, and these will lie at minima of the effective
potential. For the Newtonian case, there is always a minimum: as we come in from∞, the potential
becomes progressively more negative; but eventually the centrifugal barrier H2/2R2 will
come to dominate, so that a particle can never reach the origin. For these circular orbits, the
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’energy’ from the sum of ṙ2/2 and Veff is Vmin – and this is also true in GR. If we raise the
energy above this minimum, which keeping H fixed, there will be radial oscillations, leading to an
elliptical orbit in the Newtonian case but (as we shall see) something more complicated in GR.

For a better understanding of circular orbits, it is helpful to differentiate the radial energy
equation to get a force law. Since d/dr = (ṙ)−1d/dτ , we get r̈ = −dVeff/dr, so the condition
for a circular orbit is not just ṙ = 0: we also need the gradient of Veff to vanish. Solving for
dVeff/dr = 0 gives H = R/

√
R− 3, or R = (H2 ±

√
H4 − 12H2)/2, as compared with R = H2

in the Newtonian case. This looks puzzling: a given R requires a fixed H, and for a given H,
there are two possible values of R. We can see what is going on by differentiating again, and we
find that the two stationary points for given H have opposite 2nd derivatives: the outer one is
a minimum and hence is stable. The inner one is a maximum, and hence circular orbits there
would not be stable. For H =

√
12, these two merge, and for smaller H there is no minimum

in Veff . Hence there is an innermost stable orbit at this point: R = 6. Anyone trying to
orbit inside this radius risks an instability that would take them spiralling in to r = 0. This is
illustrated in Figure 2, where we can also note that for H = 4 there is a marginally bound

orbit at R = 4, where Veff = 0 at the orbit. Finally, the extreme limit of the unstable orbits at
high H is R = 3: within this radius, circular orbits are not possible.

The significance of the innermost orbit at R = 3 may be guessed from a comparison with the
Newtonian case. Newtonian orbits have a velocity v = L/r, where L is the angular momentum
per unit mass. Since we have seen that L ∝ √

r, so the Newtonian orbital velocity increases as r
becomes smaller. Hence we may guess that the limit at R = 3 corresponds to the orbital velocity
reaching c – i.e. R = 3 corresponds to the photon sphere at which light would orbit a black
hole. We can verify this intuition as follows. The geodesic equations for photons are almost the
same as the ones for massive particles, except that the affine parameter now has to be something
other than τ , which is unchanging. With this change, the first two Euler-Lagrange equations are
identical: αṫ = k and r2φ̇ = h. But for photons the null interval means we replace L2 = c2 for a
massive particle by L2 = 0. Thus the radial energy equation becomes

ṙ2

2
=
c2k2

2
− h2α

2r2
= 0. (96)

So now the effective potential is much simpler: Veff = h2α/2r2. The condition for a circular orbit
is that this has zero gradient, which is easily seen to require R = 3. But even though Veff has
changed, it still has a negative 2nd derivative here, and so is unstable: photons can loiter near
R = 3 but will eventually move away from it. The photon sphere made the headlines in 2019
with the ‘Event Horizon Telescope’ image of the emission around the black hole in M87. This was
modelled by assuming that most of the observed radiation came from photons that were ‘leaking’
away from the photon sphere around the 1012M⊙ black hole at the centre of that galaxy.

7.2 Binding energy and accretion efficiency

The use of a Newtonian analogy for effective potential and total energy can be made more pre-
cise. In the Lagrangian formalism, the lack of an explicit dependence on a coordinate leads to
a conserved quantity: if ∂L/∂q = 0, the ‘momentum’ ∂L/∂q̇ is constant. In the non-relativistic
formalism, time is not a coordinate as such – but a time-independent Lagrangian still leads to the
Hamiltonian as a constant of the motion. In GR, time is a coordinate, so there is an energy-like
conserved quantity when there is no explicit time dependence: ∂L/∂ṫ = constant. This derivative
is (1/2L)∂L2/∂ṫ or (1/2c)∂L2/∂ṫ. Since L2 = gµνU

µUν , we have ∂L2/∂ṫ = 2cg0µU
µ = 2cU0.

In the SR limit, then, ∂L/∂ṫ is just γc, which is 1/c times the energy per unit mass. For the
Schwarzschild case, ∂L/∂ṫ = αcṫ and hence we can identify k = αṫ as giving E/mc2: the ratio of
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the total energy to the the total rest-mass energy. From our previous analysis, we had

α
h2

r2
= c2(k2 − α) ⇒ k =

√

α(1 + h2/r2c2). (97)

Putting in the criteria for the innermost stable orbit (R = 6; H2 = 12), we get

k =
√

8/9, (98)

and so a particle at the innermost stable orbit has a total energy that is about 6% less than
its rest-mass energy. To have reached this point, the particle must have converted the missing
energy into another form. In practice, material around a black hole will probably settle into an
accretion disc that is flattened by rotation. The different orbital angular velocities at different
radii will generate frictional heating of the disc as material slowly spirals inwards – and eventually
the liberated energy escapes as radiation from the disc. It is normally assumed that the disc has an
inner edge at the innermost stable orbit, beyond which material is rapidly captured by the black
hole. Thus in summary accretion of material onto a Schwarzschild black hole has the potential
to liberate 6% of the accreted mass-energy as radiation; even higher efficiencies are possible if we
do the same calculation for the Kerr metric, which corresponds to a black hole endowed with
angular momentum. This calculation has an obvious relevance to the energy release from active
galaxies, where there is a central supermassive black hole

7.3 Advance of the perihelion of Mercury

Having seen the types of orbits we can find in a Schwarzschild spacetime, we now apply this to
the Solar System. This was first done by Einstein in 1916 for Mercury, in order to see if GR could
account for an apparent peculiarity of its orbit. We begin with a simple version of the argument,
using the radial force equation r̈ = −dVeff/dr. Suppose we have an orbit that is very nearly
circular, r = rc + ǫ: then we can approximate the potential using a Taylor series:

ǫ̈ = −d
2Veff
dr2

ǫ, (99)

which shows that the radius undergoes harmonic oscillations, with angular frequency given by
ω2 = d2Veff/dr

2. The second derivative is easy to evaluate, generating three terms. One of these
can be eliminated using dVeff/dr = 0, to yield

d2Veff
dr2

=
h2

r4

(

1− 6GM

c2r

)

. (100)

This says that the orbit is almost an ellipse. For a Newtonian circular orbit with angular frequency
ω, we have r2ω = h, from the definition of h, so ω2 = h2/r4 and the orbital and radial oscillation
frequencies would be the same if the 6GM/c2r term were absent or negligible – as it would be
at large r. In that case, the equality of frequencies means that the orbit keeps the same circular
shape. But the perturbation reduces the frequency of the radial oscillations, so the orbit has to
make more than one rotation between two occurrences of perihelion (closest point to the Sun).
Thus we have a rosette orbit that undergoes precession. Since h2 ≃ GMr, the change in
phase per orbit, δω × (2π/ω) can be written as

∆φ =
6πGM

c2r
radians per orbit. (101)

This is for a very nearly circular orbit. For a substantially elliptical orbit, we have to work a
bit harder. It is convenient to start by changing variable to u ≡ 1/r. We can eliminate time in
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favour of φ as the parameter describing the orbit by using angular momentum:

ṙ =
dr

dτ
=
dr

dφ

dφ

dτ
= − 1

u2
du

dφ
hu2 = −hdu

dφ
. (102)

The geodesic equation (92) then becomes

h2

2

(

du

dφ

)2

+
h2u2

2
−GMu− GM

c2
h2u3 = c2(k2 − 1)/2. (103)

Differentiating w.r.t. φ and dividing by du/dφ gives

d2u

dφ2
+ u =

GM

h2
+

3GM

c2
u2. (104)

In Newtonian physics the last term would be absent, giving the equation of an elliptical orbit:
u(φ) = (GM/h2)(1+e cosφ), where e is the eccentricity or ellipticity of the orbit and φ = 0
is chosen as the point of perihelion.

The last GR correction term is very small for Mercury’s orbit, ∼ 10−7 of GM/h2, so it can
be treated as a perturbation. First make things dimensionless by defining the radius in terms of
the circular Newtonian radius for the same h:

U ≡ u
h2

GM
. (105)

So the equation of motion is now

d2U

dφ2
+ U = 1 + ǫU2; ǫ ≡ 3G2M2/(c2h2). (106)

We can now expand the solution as U = U0 + U1, where U0 is the Newtonian solution for ǫ → 0:
U0 = 1 + e cosφ. The perturbation U1 must be O(ǫ), so to linear order in ǫ, ǫU2 can be replaced
by ǫU2

0 in the equation of motion. Subtracting the unperturbed d2U0/dφ
2 + U0 = 1, we get an

equation for U1:

d2U1

dφ2
+ U1 = ǫU2

0 = ǫ
(

1 + 2e cosφ+ e2 cos2 φ
)

= ǫ

(

1 + 2e cosφ+
e2

2
+
e2

2
cos 2φ

)

. (107)

The complementary function gives nothing new (∝ U0) and the solution is

U1 = A+Bφ sinφ+ C cos 2φ (108)

(extra φ because sinφ is in the complementary function). The solution (exercise) is

U1 = ǫ

[(

1 +
e2

2

)

+ eφ sinφ− e2

6
cos 2φ

]

. (109)

Ignoring everything except the growing term ∝ φ, we find

U ≃ 1 + e cosφ+ ǫeφ sinφ

≃ 1 + e cos [φ (1− ǫ)] , (110)

to O(ǫ). Thus the orbit is periodic, with period (in φ) of

2π

1− ǫ
. (111)
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Hence the perihelion moves forward through an angle 2πǫ per orbit, as before. Notice that, having
gone to all this extra trouble to be able to handle the case of highly elliptical orbits, the answer we
obtain is independent of e when expressed in terms of M and h, and is identical with our simple
argument for the e≪ 1 case.

The advance of the perihelion of Mercury was a known problem from about 1859 and solutions
were sought using classical celestial mechanics. The total observed effect is very nearly 5600
arcseconds per century (1 arcsecond = 1/3600th of a degree). Most of this (5026) arises from the
precession of the Earth’s spin axis. The next largest contribution is gravitational perturbations
from other planets, which contribute about 531 arcseconds per century. However, the observations
showed that there was an additional 43 arcseconds per century remaining. Attempts were made
to account for this with a new planet inside Mercury’s orbit (Vulcan), but this was never seen.
The discrepancy was finally explained by Einstein in 1916. For Mercury’s orbit of T = 88 days,
r = 5.8× 1010m and e = 0.2, the GR prediction is that the advance of Mercury’s perihelion is 43
arcseconds per century. This spectacular agreement did much to establish the credibility of the
new theory.

One can however note in passing that what this mainly establishes is the existence of an extra
term in the potential ∝ 1/r3. This is of the form of a quadrupole, which would arise if the Sun
was flattened – and it doesn’t need to be flattened by very much. So skeptics might not have
been satisfied. But GR shows much larger deviations from Newtonian behaviour when it comes
to light, as we now demonstrate.

7.4 The bending of light around the Sun

In addition to the precession of the perihelion of Mercury, and gravitational redshifting, there
are two other ‘classic’ tests of GR. The first of these is the famous bending of light around the
Sun by Gravitational Lensing. That gravity should bend light can be understood qualitatively
from the Equivalence Principle. Imagine we observe a light beam travelling in a straight line in a
freely-falling laboratory that defines a LIF. Now accelerate the laboratory and observe the same
light beam: the increasing velocity of the observer will alter the apparent direction of the light
beam – the familiar phenomenon of aberration of light (first used to prove that the Earth
moves, by James Bradley in 1727). Thus the light beam appears to take a curved path in the
accelerating laboratory; by the Equivalence Principle, the same must hold in a gravitational field.

But getting the right magnitude for this bending is not so easy. Consider first the following
Newtonian argument (which was how Einstein first reasoned, in about 1912). Treat the photon
as massive particle travelling at c, and apply the EP in the form “all objects fall equally fast”.
For the present purpose, we are interested in light deflection, so we think about the component
of gravitational acceleration perpendicular to the photon path, a⊥. The EP suggests that this
will change the perpendicular momentum of the photon at the same rate as for any particle:
dp⊥/dt = a⊥(E/c

2) = a⊥(p/c), where p is the total photon momentum. So to calculate the angle
by which light is deflected in travelling along some path, we just need to integrate to get the total
perpendicular momentum acquired, and then the deflection angle is

θ =
δp⊥
p

=
1

p

∫

dp⊥
dt

dt =

∫

a⊥ dt/c (112)

(assuming the deflection angle to be small, which is normally the case). For small deflections,
the integral can be evaluated impulsively using the Born approximation, i.e. assuming
that the photon follows some straight unperturbed trajectory and assuming that the acceleration
is very little changed on the nearby exact path. Let’s apply this reasoning to deflection by a
point mass M , for a path with impact parameter (distance of closest approach) R. If x is a
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coordinate along the path with x = 0 at closest approach, then r2 = x2 + R2, and a⊥ = a sinφ,
where sinφ = R/r (see Figure 3). Then a⊥ = (GM/r2)(R/r), so

θ =

∫ ∞

−∞
(GM/r2)(R/r) dx/c2 =

GM

c2R

∫

R2/r3 dx =
GM

c2R

∫

dy

(1 + y2)3/2
, (113)

where y = x/R. The last integral is equal to 2, so we predict

θ =
2GM

c2R
. (114)

Unperturbed orbit

R

phi
r

Figure 3: Light bending round the Sun.

Now, it turns out that this estimate is too low by exactly a factor 2. It was the verification
of this factor 2 by an expedition led by Sir Arthur Eddington in 1919 that convinced the sci-
entific community overnight that GR was correct and Newtonian gravity had to be abandoned.
Eddington’s team photographed a total eclipse of the Sun and measured the angular distance
through which the Sun moved the apparent position of nearby stars. Putting the Sun’s mass and
radius into our formula, and multiplying by two, this deflection is about 1.75 arcseconds – quite
a challenge to detect with the available small telescopes that had to be transported to exotic
locations.

There is a relatively quick and illuminating way of seeing how this factor 2 arises. We are
interested in the limit of weak gravitational fields, where the Schwarzschild metric (equation 83)
looks as follows:

c2dτ2 =

(

1 +
2Φ

c2

)

c2dt2 −
(

1− 2Φ

c2

)

dr2 − r2
(

dθ2 + sin2 θdφ2
)

, (115)

where Φ = −GM/r. A peculiar thing about this is that the spatial curvature seems confined
to the radial direction – but as we discussed previously, this is to do with our choice of radial
coordinate, which is a definition that can be changed. Suppose we put r′ = r(1 + Φ/c2): because
rΦ is a constant, dr′ = dr. But the change of radial coordinate puts the spatial metric into the
form of (1 − 2Φ/c2) times Euclidean space. So we can abandon spherical polars and write the
weak-field metric in the isotropic form:

c2dτ2 =

(

1 +
2Φ

c2

)

c2dt2 −
(

1− 2Φ

c2

)

(

dx2 + dy2 + dz2
)

. (116)

In fact, this metric applies for any static weak-field gravitational field, not just the Schwarzschild
case. When we consider this metric for light with dτ = 0, we see that the coordinate speed

of light varies with position:
∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

= c

(

1 +
2Φ

c2

)

. (117)

In effect, spacetime behaves as a kind of glass, with a varying refractive index, and leading directly
to light deflection as in optics. But what we can notice is that the perturbation to the effective c
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gains equal contributions from the time and space parts of the metric. Our equivalence-principle
argument was based on our previous Newtonian experience where g00 supplied the gravitational
force, but this was flawed because non-relativistic particles are not sensitive to the spatial part
of the metric. Including the effects of these here clearly doubles the effect we would have had if
we had considered g00 only, making it inevitable tha our quasi-Newtonian guess for the deflection
angle would be too low by a factor 2.

We now derive the GR light bending in more detail, using the geodesic equation for a massless
photon. As before, the proper time for the photon is zero (dτ = 0), so we shall use affine parameter
p rather than proper time τ . For massless particles L2 = 0, and so the ELII form still holds. As
before

αṫ = k = constant,

r2φ̇ = h = constant, (118)

where ˙ = d/dp. For light L2 = 0 so

0 = αc2ṫ2 − ṙ2

α
− r2φ̇2. (119)

Rearranging, and writing in terms of u = 1/r as before,

h2
(

du

dφ

)2

= c2k2 − αh2u2 = c2k2 − h2u2 +
2GM

c2
h2u3. (120)

Differentiating as before,

d2u

dφ2
+ u =

3GM

c2
u2. (121)

We treat the RHS as a perturbation to the straight-line orbit u0 = (sinφ)/R, where R is the
distance of closest approach. Letting u = u0 + u1,

d2u1
dφ2

+ u1 =
3GM

c2R2
sin2 φ =

3GM

2c2R2
(1− cos 2φ). (122)

By inspection, the first-order solution is

u =
sinφ

R
+

3GM

2c2R2

(

1 +
1

3
cos 2φ

)

. (123)

At large distances, where u = 0, φ is small, sinφ ≃ φ, and cos 2φ ≃ 1, so

u−∞ = 0 ⇒ φ−∞

R
+

2GM

c2R2
= 0 ⇒ φ−∞ = −2GM

c2R
, (124)

where φ−∞ is the angle of the incoming photon from r → −∞. So the incoming photon comes
in at a slight angle due to the slight repulsion of the general relativistic correction to the angular
momentum term, arising from the distortion of radial distance. Similarly, after the light has
passed the source, it reaches infinite distance at

φ+∞ = π +
2GM

c2R
. (125)

The total deflection is then

∆φGR =
4GM

c2R
, (126)

verifying the expected factor of 2 increase with respect to the Newtonian result.

27



phi

VENUS

EARTH

SUN
R

r

Figure 4: Geometry of the radar time delay between Earth and Venus.

7.5 Time delay of light

The final classical test of GR was proposed by Irwin Shapiro in 1964 and subsequently measured
by him in 1966. The idea is to bounce a radar signal off Venus and measure the time for it to
return. As we saw in discussing light deflection, the coordinate speed of light is slowed by the
Sun’s gravitational field, so the radar pulse takes longer to travel than we would expect from the
geometry of the situation. This is illustrated in Figure 4. Much of the effect comes from light rays
that pass close to the Sun, so we will assume henceforth that the experiment involves Venus being
on the far side of the Sun, so that the distance of closest approach, R, can be almost as small as
the radius of the Sun. Because the fractional change in light speed is 2GM/c2r, the accumulated
time delay is (to linear order in M):

∆t =
2GM

c2r

dx

c
, (127)

where x is a coordinate that runs between the two planets. It is related to the radius by r2 =
R2 + x2, so that dx = r dr/

√
r2 −R2. Hence the time delay is (multiplying by 2 to allow for the

outward and return journey):

∆t =
4GM

c3

(∫ re

R

dr√
r2 −R2

+

∫ rv

R

dr√
r2 −R2

)

, (128)

where re and rv are the orbital radii of Earth and Venus. The integrals are ln(
√

(re/R)2 − 1 +
re/R) and similar for Venus, which become just ln(2re/R) when re ≫ R. Hence a reasonable
approximation for the total delay is

∆t ≃ 4GM

c3
ln

(

4rerv
R2

)

. (129)

This is the dominant effect, but there are other terms of order GM/c3. One comes because
this is the elapsed coordinate time, whereas we want the elapsed proper time on Earth:

c2dτ2 =

(

1− 2GM

rec2

)

c2dt2 − r2edφ
2 (130)
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(treating orbits as circular, so dr = 0). Hence the proper time elapsed on Earth is

τ =

√

α(re)−
r2e
c2

(

dφ

dt

)2

t. (131)

The angular velocity of the Earth obeys (dφ/dt)2 = GM/r3e (a Newtonian approximation is good
enough here), so the time conversion is

τ

t
=

√

1− 2GM

rec2
− GM

rec2
=

√

1− 3GM

rec2
. (132)

Since the total journey time is ∼ re/c, the extra offset is ∼ GM/c3, which is negligible in com-
parison with the main log term.

It may also be objected that we have used the Born approximation and integrated along an
unperturbed trajectory, whereas the true path will be bent. We now repeat the analysis using the
exact geodesic equations. As before, we have the t and φ equations αṫ = k and r2φ̇ = h. The
L2 = 0 ‘energy’ equation is

αc2ṫ2 − ṙ2/α− r2φ̇2 = 0 ⇒ ṙ2 + αh2/r2 = k2c2. (133)

Now, at perihelion, ṙ = 0, so k2c2 = h2α(R)/R2 and hence k can be eliminated from the equation
for ṙ. Finally, we can use the t equation to convert to dr/dt = ṙ/ṫ:

dr

dt
= ± α(r)Rc

α(R)1/2

(

α(R)

R2
− α(r)

r2

)1/2

, (134)

an equation that is pleasingly independent of k and h. For the present purpose, it will suffice
to expand this to get the effect to first order in M , which with a bit of work (or the aid of
Mathematica or equivalent) comes out as

dt

dr
=

r

c
√
r2 −R2

+
(2r + 3R)

(r +R)
√
r2 −R2

GM

c3
. (135)

Integrating from R to r, we get

∆t =

√
r2 −R2

c
+

(√
r2 −R2

r +R
− 2 lnR+ 2 ln(r +

√

r2 −R2)

)

GM

c3
. (136)

The first term is the Newtonian distance. The GR correction for r ≫ R is dominated by a
2 ln(2r/R)GM/c3 term. This is for a one-way trip from R to one of the planets. Allowing for two
planets and a 2-way trip, we get 4 ln(4r1r2/R

2)GM/c3 as before, so the total delay is dominated
by the reduced speed of light.

When R is as small as possible (the radius of the Sun), the total delay is around 200µs.
With 1960s equipment, this could be verified to about 5% precision. Today, using Solar System
spacecraft, the agreement with GR has been shown to work at the 0.002% level.
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8 Mathematical foundations of GR

So far this course has taken a deliberately informal approach, with the aim of emphasising that it
is possible to get quite a long way into GR using the same concepts and mathematical tools that
we employ in SR. But there is a danger in this approach of failing to build a sufficiently secure
foundation. Having gained some first feeling for how GR works, it is time to regroup and think
more generally about the concepts and the mathematics needed to tackle curved spacetime, setting
in place the tools that will let us continue the journey of GR through to Einstein’s gravitational
field equations and their applications.

Our main aim will be to extend the SR language of 4-vectors into the tools of tensor cal-
culus. This presents a challenge of notation, since more mathematically inclined texts prefer a
‘coordinate-free’ approach that can look very different to the more traditional notation – so much
so that different books on GR can seem at first sight almost to refer to different subjects. The
problem is that our approach so far has been insufficiently geometrical. In ordinary vector algebra,
we are familiar with the idea that a vector is an object with a magnitude and direction, which
exists independent of the coordinates used to describe it. In order to turn a vector into a specific
set of numbers, v = (v1, v2, v3), we first have to choose a set of basis vectors, ei, and express the
vector as a superposition of these:

v =
∑

i

viei. (137)

We can decide to use a different basis, and then the components vi will change – so the vector is
definitely more than just a set of components. Vector operations also have a geometrical signifi-
cance, with the dot product projecting one vector along another, and the cross product describing
the area of the parallelogram described by two vectors. All this is missed if we simply write down
the formulae for these quantities in terms of components. And yet practical computations do
require us to work in this way; for this reason, much of the focus in the treatment of GR here will
be on component-based formalism. But we will try to illuminate this material with a geometric
viewpoint, both in the hope of providing a deeper understanding of the key mathematical con-
cepts being used, and also to make it possible to consult a wider range of textbooks. For those
who wish to take this approach further, an excellent reference is Schutz Geometrical methods of
mathematical physics (CUP).

8.1 Manifolds and vectors

The branch of mathematics that discusses vectors in a general coordinate-free fashion is dif-

ferential geometry, and its most fundamental concept is the differentiable manifold.
Informally, a manifold is a space where the points can be parameterized continuously and differ-
entiably as an n-dimensional set of real numbers, xi, which are the coordinates of the point. This
means that points can be connected by a curve governed by some parameter along the curve, λ,
and that the derivatives of the coordinates dxi/dλ exist. Euclidean space is a manifold, but it is
a special one because a manifold need not possess a metric structure, i.e. any notion of distance
between points. Nevertheless, because of its differentiable nature, a manifold can be thought of
locally as being close to Euclidean space.

8.1.1 Tangent vectors and tangent spaces

Given a manifold, how is the general analogue of Euclidean vector algebra generated? How do we
even define vectors, and how are we to write them as a sum over basis vectors? In a manifold, points
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have parameterized curves passing through them, and this can be used to generate tangent

vectors d/dλ, where

d

dλ
=
∑

i

dxi

dλ

∂

∂xi
. (138)

This is an operator relation that applies to any function f(xi), and is just obtained from the chain
rule. This may not look like it has much to do with directions and magnitudes, but d/dλ is a vector
in the sense described above, where ∂/∂xi is the basis. A sum of two vectors a(d/dλ) + b(d/dµ)
(where a and b are scalars) is just a sum over the basis with a different set of coefficients, and so
looks like d/dν, where ν is the parameter of another curve passing through the point of interest.
So now we have vectors on a manifold, and can manipulate them in the usual vector algebra of
addition. The vectors are defined locally, so they inhabit not the full manifold, but a tangent

space. This sounds a rather abstract distinction; we will make it more concrete below.

8.1.2 Differential forms and tensors

The next concept needed is some analogue of the magnitude of a vector – that is, we need something
that will act as a function of a vector to produce a scalar. This entity is called a 1-form, and is
defined by the way it acts on vectors:

ω̃(v) = scalar. (139)

The function is linear with respect to addition of vectors and multiplication by scalars:

ω̃(av + bw) = aω̃(v) + bω̃(w)

(aω̃ + bσ̃)(v) = aω̃(v) + bσ̃(v).
(140)

This latter equation suggests a symmetry: the vector v can equally well be regarded as operating
on the 1-form ω̃. We say that the objects are dual:

ω̃(v) = v(ω̃) ≡ 〈ω̃|v〉. (141)

A pictorial way to visualise 1-forms is to think of a vector as an arrow, indicating direction and
magnitude, while a 1-form is a series of surfaces, similar to contours on a map. The number formed
by contracting the two is the number of contours pierced by the vector arrow; thus a 1-form of
larger magnitude corresponds to a closer contour spacing.

The concept of vectors as machines that ‘eat’ a 1-form to produce a number, or vice-versa,
can be immediately generalized to tensors that may require several meals of each type in order
to yield a scalar. An (n,m) tensor T is an object that operates on n 1-forms and m vectors in
order to produce a number:

T (ω̃1, ω̃2, . . . , ω̃n,v1,v2, . . . ,vm) = scalar. (142)

8.1.3 The metric tensor

In GR, the most important tensor is the metric tensor, which is a symmetric 2-form that
yields a scalar when given two vectors:

g(v,u) = g(u,v) ≡ u · v . (143)

The metric thus provides a way of associating a 1-form g(v, ) with a vector, and defines the notion
of an inner product between vectors. It therefore gives a ‘measuring ruler’ for determining the
‘length’ of a vector, though the quantity

√

g(v,v). Not all manifolds possess a metric structure,
but if we have a Riemannian manifold where a metric does exist, it simplifies the discussion.
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8.1.4 Tangent spaces and embedding

Where we have a metric, it gives a more concrete meaning to a tangent space, which was defined
rather abstractly as a ‘container’ for the tangent vectors. Now we can ask if there exist a set of
coordinates where the manifold is locally Euclidean, in the sense that the metric at a point defines
a Euclidean distance between points, ds2 = dx2 + dy2 + · · · and also that the first derivatives of
the metric vanish. We include here the pseudo-Euclidean case with altered signature, as needed
to accommodate relativity. We will not prove it here, but it is always possible (see e.g. section
2.11 of Hobson, Efstathiou & Lasenby) to choose coordinates in this way. When it is done, these
coordinates define the tangent space. We have already met this phenomenon in GR through the
equivalence principle, where the tangent space is a local inertial frame: the metric is that of special
relativity and its derivatives vanish, as required in order for there to be no gravitational forces.

Some symmetric Riemannian manifolds can conveniently be described as embedded in a
Euclidean space of one higher dimension. Vectors can then be defined as usual via Cartesian
coordinates in the (D+1)-dimensional space. In this picture, the tangent space justifies its name,
and is a D-dimensional subspace. This simple embedding is not always possible, although Nash (of
A Beautiful Mind fame) showed that embedding is always possible – but may require a Euclidean
space of up to 230 dimensions for a general 4D manifold. A familiar simple example of embedding
would be the surface of a sphere of fixed radius R: the r = (x, y, z) coordinates of a point on the
sphere as a function of the 2D coordinates on the manifold can be written down using spherical
polars at constant radius. In this embedded case, coordinate basis vectors are just

ei =
∂r

∂ci
, (144)

where ci is the ith coordinate. This follows the general expression above where we saw that a
coordinate basis vector was supplied by ∂/∂ci.

8.2 Components of vectors and 1-forms

If we expand a vector in (contravariant) components, v = aiei, then the linearity of the 1-form
function can be used to write ω̃(v) = aibi, where we expand the 1-form in the same way as for
the vector: ω̃ = biẽ

i, defining a dual basis

ẽi(ej) = δij . (145)

Note that we naturally introduce upstairs and downstairs indices to distinguish things associated
with vectors and 1-forms. Given a set of coordinates xi, we can write a vector d/dλ as components
dxi/dλ combining with basis vectors

ei =
∂

∂xi
. (146)

It is also possible to conceive of sets of basis vectors not derived from a set of coordinates (although
these are clearly harder to construct); the above basis is therefore called a coordinate basis.
Once we have a basis, components are defined by operating on the members of the appropriate
basis with a vector or a 1-form:

ai = v(ẽi)

bi = ω̃(ei).
(147)

We will not discuss how the dual basis 1-forms might be constructed in general, but will content
ourselves with the case where a metric exists. In effect, g(eµ, ) defines a basis 1-form ẽµ. This
is not a dual basis (unless the metric is diagonal), but it can be made so via appropriate linear
combinations.
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Similarly, the components of a tensor T are derived by inserting n basis 1-forms and m basis
vectors in the appropriate slots of T , and as a result are written with n upstairs indices and m
downstairs indices. An important case is the components of the metric. The metric is also defined
to be bilinear: linear in each argument, and so

g(v,u) = g(eµ, eν) v
µuν ≡ gµν v

µuν , (148)

which defines the components of the metric and shows how they combine with vector components
to make a scalar invariant.

8.2.1 Basis transformations

Only at this stage is it necessary to introduce the concept of coordinate transformations that is
so central to traditional tensor calculus. We approach this by considering a basis transformation,
which should be linear so that the new basis can still be a complete set:

e′j = αi
jei. (149)

The dual basis will have an analogous transformation:

ẽ′j = βji ẽ
i, (150)

where we have to maintain duality:

δij = ẽ′i(e′j) = αk
jβ

i
ℓδ

ℓ
k = αk

jβ
i
k. (151)

Thus the α and transposed β matrices are inverses of each other. For the simplest case of a
coordinate basis, we saw that the basis vectors were ei = ∂/∂xi, so the transformation coefficients
are just derivatives between the new and old coordinates:

αi
j =

∂xi

∂x′j
; βij =

∂x′i

∂xj
. (152)

Since the vector is not changed by the basis transformation, the new components are

v′j = ẽ′j(v) = βjkẽ
k(v) = βjkv

k, (153)

which is opposite to the transformation law for basis vectors and justifies the name contravariant
component. Similarly, the components of 1-forms transform with the α matrix, in the same way
as the basis vectors.

This gives us a clearer idea of why we needed to introduce covariant and contravariant com-
ponents in our earlier discussion: our previous approach missed the key point of the distinct
geometrical roles of a vector and a 1-form, each of which has a separate set of components. This
distinction is obscured if we insist on thinking of covariant and contravariant components as two
equivalent ways of describing the same vector. Furthermore, the conventional discussion of covari-
ant and contravariant vectors in relativity relies on converting one into the other via the metric
tensor, but we have seen the surprising fact that a dual structure of vectors and 1-forms can still
exist even without the existence of a metric.

8.2.2 Affine geometry

A related concept that often arises in discussions of relativity is that of affine geometry.
Consider a set of coordinates over some manifold, and write these in a form that resembles a
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Euclidean position vector, v = (x, y, z, · · · ). The affine transformation of the coordinates
can be written is the general linear change v′ = A · v + b, i.e. a translation in combination with
rotation, shear, and scale change, all specified by the matrix A. The resulting affine space

is more general than a vector space because the translation means that there is no preferred
origin, whereas a vector space has a zero element that combines linearly with a vector to leave
it unchanged. But conversely, affine transformations are not completely general because of the
requirement of linearity: Lorentz transformations in Special Relativity are special cases of affine
transformations, but general coordinate transformations are not. However, locally these trans-
formations are linear, because of the requirement that the manifold must be differentiable; thus
differential geometry is inevitably affine in nature.

A further point of interest is that affine spaces do not require the existence of a metric:
indeed, any initial ‘distance’ defined between two points can be changed after the transformation.
Nevertheless, the transformation keeps parallel lines parallel, so that one can think of distance
along a line and compare distances along different lines that are parallel. A good example of an
affine space without a metric arises in colour vision: the basis vectors are the different colours and
the vi are the intensities in each of red, green and blue; one can compare overall intensities when
the colour balance is unaltered, but this is not meaningful for different colour mixtures.

8.3 Areas and antisymmetric tensors

The 1-form is in fact a special case of an important class of tensors, called differential forms,
which are antisymmetric in all their arguments. The reason for wanting to introduce such objects
is primarily geometrical : it is often necessary to be able to deal algebraically with the area (i.e.
the parallelogram) defined by two vectors. This must clearly be represented by a (0, 2) tensor,
since the magnitude of the area is defined as a bilinear function of two vectors: area(a,b). The
antisymmetry comes about by the reasonable requirement that area(a,a) = 0; write a = b + c
and bilinearity then requires

area(b, c) = −area(c,b). (154)

This naturally generalizes to volumes of parallelepipeds, leading to the introduction of n-forms
of arbitrary order. Symmetric terminology then leads us to define an n-vector as a totally anti-
symmetric (n, 0) tensor. A mechanism for generating these higher-order forms is provided by the
wedge product:

ã∧b̃ ≡ ã⊗ b̃− b̃⊗ ã, (155)

where the direct product or outer product is defined by

ã⊗ b̃(c,d) ≡ ã(c) b̃(d). (156)

This generalizes to larger wedge products ã∧b̃∧c̃ . . . in an obvious way.

In index terms, the non-zero components of an n-form in m dimensions, ωijk..., must have a
set of indices ijk . . . that form a distinct combination drawn from 1, . . .m. Thus, there can be only
mCn independent components and there exists only one m-form in m dimensions. This number
of components is in general different to the number of dimensions; since 3C2 = 3, however, the
area defined by two vectors can be associated with a vector in three dimensions. The vector cross
product is a piece of machinery constructed to exploit this special case, and cannot be defined
in other numbers of dimensions. But we now see that it is a special case of the wedge product,
which defines an orientated area in any number of dimensions (just a single number in 2D).
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9 Tensor analysis in component form

Having gained some important geometrical insights, we must now acknowledge that most practical
tasks in tensor analysis will involve coordinate systems and components. So we now take stock of
the necessary tools from this point of view.

The justification for using tensors is the same as wanting to write relativistic equations in
terms of 4-vectors: to maintain general covariance. As we saw, a 4-vector equation Aµ = Bµ

is guaranteed to hold in all frames, because both sides of the equation change in the same way
under coordinate transformations. But not all physical laws can be written in this simple way.
Two vectors might be related via a matrix multiplication: V = M ·U, and the question is whether
this equation holds for all observers if U and V are 4-vectors. Since the vectors change under
coordinate transformations, the components of the matrix M must also change in a special way
to compensate for this in order that the equation remains valid. Such ‘physical matrices’ are what
we mean by tensors.

One aspect of the previous general discussion will be worth keeping firmly in mind throughout,
and this relates to coordinate transformations. As presented earlier, basis transformations are
something that we carry out fairly arbitrarily, just as in describing Euclidean space we might at any
stage choose to rotate our coordinate system. How does this relate to relativity, and in particular to
SR, where the coordinate transformations of interest are the Lorentz transformation? In fact, it is
important to realize that GR makes no distinction between coordinate transformations associated
with motion of the observer and a simple change of variable. For example, we might decide
that henceforth we will write down coordinates in the order (x, y, z, ct) rather than (ct, x, y, z)
(as is indeed the case in some formalisms). GR can cope with these changes automatically. But
this flexibility of the theory is something of a problem: it can sometimes be hard to see when
some feature of a problem is ‘real’, or just an artefact of the coordinates adopted. Sometimes
a distinction is made between active Lorentz transformations and passive Lorentz

transformations; a more common term for the latter class is gauge transformation. The
term gauge always refers to some freedom within a theory that has no observable consequence,
e.g. the arbitrary value of ∇ ·A, where A is the vector potential in electrodynamics.

9.1 Transformation of vectors and tensors

Scalar fields are objects that have no index, and that do not change under a general coordinate
transformation:

φ′(x′) = φ(x). (157)

Scalars are thus also relativistic invariants, which are the same for all observers. An impor-
tant example of this is the proper time, τ(x). But not all numbers are scalars. Number density,
n, is not because of length contraction. Similarly, an energy density, ρc2, is not a scalar, since
both the volume and energy in that volume will change under a Lorentz boost.

But the components of vectors do change under coordinate transformations. There are two
cases to consider:

(a) Contravariant vectors, V µ (or sometimes simply vectors): These have an upper index
and transform according to

V ′µ =
∂x′µ

∂xν
V ν , (158)

following the application of the chain rule to the 4-vector line element dxµ:

dx′µ =
∂x′µ

∂xν
dxν . (159)
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(b) Covariant vectors, Uµ (or sometimes simply co-vectors); this name has nothing to do
with general covariance. These are the components of the 1-forms discussed above. They have a
lower index and transform according to

U ′
µ =

∂xν

∂x′µ
Uν . (160)

By definition, vectors and co-vectors combine to make an invariant under coordinate trans-
formations:

AµBµ = invariant scalar. (161)

In this process of contraction, the summation convention is assumed when the same index
repeats once upstairs and once downstairs – and an analogous rule is used in the coordinate
transformations. The above transformation laws are set up to guarantee that contraction yields
an invariant, as may be seen by thinking of the transformation in matrix terms: V′ = M ·V. If
the ‘dot product’ of a new pair of covariant and contravariant vectors is to be unchanged after
transformation, we want the product of one transformation matrix times the transpose of the
other to be the identity. The transformation coefficients do satisfy this, through the properties of
partial derivatives:

∂x′µ

∂xα
∂xβ

∂x′µ
= δβα = diag(1, 1, 1, 1). (162)

Notice that different things are being held constant in the two partial derivatives: the x co-
ordinates in the first one, but the x′ coordinates in the second. Taking this step by step,
dxβ = (∂xβ/∂x′µ) dx′µ is the chain rule. Now divide by dxα and use the fact that ∂xβ/∂xα

gives the Kronecker delta by definition.

Example: if φ is a scalar field, then ∂φ/∂xµ is a co-vector, since

dφ =
∂φ

∂xν
dxν (163)

and dφ has to be invariant. This co-vector then transforms as

∂φ

∂x′µ
=
∂xν

∂x′µ
∂φ

∂xν
, (164)

as expected. Building on this, we will commonly use the following notations for coordinate deriva-
tives:

∂µ ≡ ∂

∂xµ
; φ,µ ≡ ∂µφ; (165)

i.e. a comma in the subscript denotes a coordinate derivative. Similarly, ∂µ ≡ ∂/∂xµ, although
we have yet to show how to relate coordinates xµ to xµ.

Equation (163) is a good example of the need for both vectors and co-vectors in generating
invariants. These elements are said to be dual to each other, and they have equal significance. A
familiar example of dual quantities is column and row vectors. Both are needed to form a number
by matrix multiplication (inner product). Here, when we represent vectors and co-vectors in
terms of components, we distinguish the two types of object by indices that are either upstairs or
downstairs. When we carry out contraction to make an invariant, it is therefore essential for this
to involve pairs of indices of each type: AµA

µ is invariant, but AµAµ is not.

9.1.1 Tensors of arbitrary rank

Tensors have components governed by a number of indices. The rank of the tensor is the number
of indices – so scalars are rank-0 tensors and vectors are rank-1 tensors. A tensor with upper

36



indices α, β . . . and lower indices µ, ν, . . . transforms like a product of vectors of different types
UαV β . . .WµXν . . . . e.g.,

T ′µ
αν =

∂x′µ

∂xσ
∂xκ

∂x′α
∂xρ

∂x′ν
T σ

κρ. (166)

T can be vector-like (all indices up), co-vector-like (all down), or mixed. A good example is the
Kronecker delta: we wrote this with one index of each kind, so it transforms as

δ′µν =
∂x′µ

∂xα
∂xβ

∂x′ν
δαβ , (167)

from which we can see that the Kronecker delta is unchanged after transformation, as is necessary.

Note that in principle the location of the various indices matters: a given tensor may have a
number of indices, and any one of them might be up or down. Thus, for example, Xαβ

γ is not
the same as Xγ

αβ , so it would be ambiguous just to list the up and down indices in order, as
Xγ

αβ . But where there are only two indices, and where the tensor is symmetric, it is possible to
be sloppy: there is no ambiguity if we write δαβ rather than δαβ.

The tensor transformation law takes its given form because of the need to ensure covariance.
Consider the expression TµνA

µBν = scalar, which we want to hold in all frames:

T ′
µνA

′µB′ν = T ′
µν

∂x′µ

∂xα
Aα∂x

′ν

∂xβ
Bβ ⇒ Tαβ =

∂x′µ

∂xα
∂x′ν

∂xβ
T ′
µν , (168)

where the last result is an example of the tensor transformation law. In effect, we transform each
index separately, as we would if the tensor was just a product of different vectors.

These various effects of coordinate transformations gives us a powerful principle for con-
structing relativistically valid laws of physics: the principle of manifest covariance. If an
equation is written in terms of tensors, and if the free indices match in type on either side, then
we know that it must apply for all coordinate systems. So AαβBαCβD

γ = 17Eγ is manifestly
covariant (but Aα = Bα is not). Conversely, if we are told that an equation is covariant and
everything in it bar one quantity is known to be a tensor or vector, that extra quantity must also
be a tensor – i.e. it must have the right transformation law. Of course, not all covariant equations
are manifestly covariant, such as the geodesic equation of motion dUµ/dτ + Γµ

αβU
αUβ = 0. This

is covariant (we derived it from SR using the equivalence principle), but dUµ/dτ is not a 4-vector,
and the connection Γµ

αβ is not a tensor.

9.2 The metric tensor

Now we can deal with how to change indices from upstairs to downstairs, and vice versa. This is
accomplished using the metric tensor, which we saw was required by the Equivalence Principle
in order to obtain a generally invariant spacetime interval:

c2dτ2 = gµν dx
µdxν . (169)

Earlier, we defined this via a coordinate transformation from a Local Inertial Frame with coordi-
nates ξµ:

gµν =
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ . (170)

We now recognise this as an example of the general tensor transformation law. Because ηαβ is
symmetric, the general metric tensor must also satisfy gµν = gνµ.
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We saw that in SR we wanted to write the spacetime interval as c2dτ2 = dxµdx
µ, so this

suggests that we use the existence of the metric to define co-vector equivalents of vectors:

Vµ ≡ gµν V
ν . (171)

So we always use gµν to lower indices, and this applies to tensors too: Tµν = gµαgνβT
αβ . To go

in the opposite direction, we require the inverse of the covariant metric, gµν :

gµαgνα = δµν . (172)

By manifest covariance, we see that this definition proves gµν to be a tensor, which again is
symmetric.

Note that in SR, the raising/lowering operation simply changes the sign of the spatial parts
(if Cartesian x, y, z coordinates are employed). In GR the operations are more complicated (as
they are in SR if e.g. spherical polar coordinates are used).

10 Parallel transport and covariant differentiation of tensors

Having set up the concept of tensors, it is natural to ask how we will carry out calculus with
these objects. From our earlier discussion, we know that this is problematic in general. If a vector
obeys a coordinate transformation V ′µ = Λµ

νV ν , then differentiating this equation will produce
derivatives of the transformation coefficients, Λµ

ν , which means that the derivative of V µ will not
obey the tensor transformation law. The only exception is when Λµ

ν are constants, as in SR.

v

u

Figure 5: Parallel transport of a vector is straightforward in Euclidean space: given a vector v
defined at some initial point, we move along a curve with tangent vector u to a new point, at
which we create a new vector parallel to the initial v. In a non-Euclidean manifold, we define
parallel transport as a process that applies in the tangent space (where the Euclidean approach is
valid). The parallel-transported version of v is now not in general a vector in the manifold, and
so must be projected back into the manifold. For a small step along the curve corresponding to
u, the effect of this projection is second order in the step (think of cos θ for small θ), but the basis
vectors may change by an amount that is first order, and so the parallel-transported version of v
will rotate in general.
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To see how to evade this problem, we first introduce another. To differentiate a vector with
respect to spacetime coordinates, we need to compare the value of the vector at two different
points, V α(xµ) and V α(xµ+ δxµ). But in curved spacetime it is not obvious how this comparison
is to be carried out. Comparing two different vectors at the same point is fine, but somehow
we need to ‘copy’ the vector at xµ to xµ + δxµ. The tool for carrying this out is the process of
parallel transport.

Imagine an observer travelling along some path, carrying with them some vector that is
maintained parallel to itself as the observer moves. This is easy to imagine for small displacements,
where a locally flat tangent frame can be used to apply the Euclidean concept of parallelism
without difficulty (see Figure 5). But in a curved manifold, the basis vectors can change by an
amount that is first order in the distance transported, and so the transported vector can change
its components – i.e. it undergoes rotation after being transported. The only exception to this,
as we shall see, is when we move along a geodesic and transport a vector that is tangent to the
geodesic.

An example that may help clarify some of this is the surface of a sphere of radius R. The
embedded 3D position vector of a point in the 2D manifold is r = R(sin θ cosφ, sin θ sinφ, cos θ),
which generates basis vectors

eθ = ∂r/∂θ = R(cos θ cosφ, cos θ sinφ,− sin θ)

eφ = ∂r/∂φ = R(− sin θ sinφ, sin θ cosφ, 0).
(173)

Suppose we change θ by a small amount: the change in eθ is perpendicular to eφ, and the change
in eφ is similarly perpendicular to eθ. So transporting these vectors along a geodesic great circle
at constant φ does not rotate the basis. But moving along a non-great circle at constant θ will
have a different effect: the dot product between the change in one basis vector and the other
vector is nonzero if θ 6= π/2. We will explore this example in more detail in the tutorials.

Without going into further detail at this point, we will now simply assume that a means of
parallel transport is available: this allows us to define the covariant derivative of a vector u
(the tangent vector d/dµ to a curve with parameter µ) along the curve with parameter λ (i.e. in
the direction of the tangent vector v = d/dλ):

∇v u(λ) = lim
ǫ→0

[u(λ+ ǫ)− u‖(λ+ ǫ)]/ǫ, (174)

where u‖(λ + ǫ) denotes the vector u(λ) parallel-transported to λ + ǫ. The obvious analogous
definition for scalars (which are trivial to transport) is just ∇vf = df/dλ. Note that the covariant
derivative should not be confused with the Lie derivative, which is just the commutator of
the two tangent vectors involved:

Lv u = [v,u] =
d

dλ

d

dµ
− d

dµ

d

dλ
. (175)

Parallel transport clearly a reversible process: a vector can be carried a large distance and
back again along the same path, and will return to its original state. However, this need not be
true in the case of a loop where the observer returns to the starting point along a different path:
in general, parallel transport around a loop will cause a change in a vector, and this is the intrinsic
signature of a curved space.
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10.1 Components of the covariant derivative

Components of the covariant derivative are introduced in terms of derivatives involving basis
vectors via

∇ei
ej ≡ Γk

ji ek. (176)

For a general vector, v = viei, the effect should be linear in the components, so ∇vu = vi∇ei
u.

The Γ coefficients are in fact the connection coefficients we met earlier. Their occurrence in
the context of relating vectors at two places justifies the name. Using this definition, we can show
that the following definition of a geodesic is equivalent to the equation we had earlier:

∇v v = 0; (177)

i.e. a geodesic curve is one that parallel transports its own tangent vector. We proceed by writing
the covariant derivative in components:

∇v u = vj∇ej
uiei = vjuiΓk

ijek + vj
∂ui

∂xj
ei

=

(

vjuiΓk
ij + vj

∂uk

∂xj

)

ek.

(178)

Here, we have use the fact that covariant derivatives of scalars are the same as ordinary derivatives,
since parallel transport of a scalar leaves it unchanged. So when v = u and u is the 4-velocity,
this is our geodesic equation, (32). To see this, note that uj∂uk/∂xj is just duk/dτ , because
uj = dxj/dτ .

Thus in terms of components, the effect of parallel transport is to produce a change in a
vector proportional both to the vector itself (rotation), and to the distance travelled:

dV µ
‖ = −Γµ

αβV
αdxβ . (179)

This equation could equally well be taken as defining the components of the affine connection,
Γµ
αβ . The total change in going once round a small loop can be written as

δV µ
‖ = −

∮

Γµ
αβ V

α dxβ. (180)

In general, this change does not vanish; this is illustrated in Figure 6 for transporting the basis
vector eφ around a spherical triangle. Because the trajectories are all geodesics, the vector does
not rotate locally – but there is a global rotation on returning to the starting point.

We are now able to construct the components of the covariant derivative of a vector.
Differentiation involves taking the limit of δV µ/δxν , but the observable change of the vector is
V µ(xν + δxν), minus the vector V µ(xν) after parallel transport to the new point. This gives the
definition of the covariant derivative as

∇νV
µ ≡ V µ

;ν ≡ ∂νV
µ + Γµ

ανV
α ≡ V µ

,ν + Γµ
ανV

α, (181)

where we have exhibited the main notation for the covariant derivative, ∇µ as distinct from the
coordinate derivative, ∂µ. Recall that an alternative shorthand for the latter was a comma before
the index: a similar shorthand for the covariant derivative is to use a semicolon.

The covariant derivative of a tensor may be deduced by considering products of vectors, and
requiring that the covariant derivative obeys the Leibniz rule for differentiation:

Tµν
;α = (V µUν);α = V µUν

;α + V µ
;αU

ν = Tµν
,α + Γµ

βαT
βν + Γν

βαT
µβ . (182)
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A
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Figure 6: This figure illustrates the parallel transport of a vector around a closed loop on the
surface of a sphere. For the case of the spherical triangle with all angles equal to 90◦, the vector
rotates by 90◦ in one loop. This failure of vectors to realign under parallel transport is the
fundamental signature of spatial curvature, and is used to define the affine connection and the
covariant derivative

This introduces a separate Γ term for each index (the appropriate sign depending on whether the
index is up or down).

We can use related reasoning to get the covariant derivative of a covector. For a scalar, the
covariant and coordinate derivatives are clearly equal. Consider applying this fact to a scalar
constructed from two vectors:

(UµVµ);α = VµU
µ
;α + UµVµ;α = VµU

µ
,α + UµVµ,α

⇒ Uµ (Vµ;α − Vµ,α) = −Vµ
(

Uµ
;α − Uµ

,α

)

= −Γµ
βαU

βVµ = −Γβ
µαU

µVβ
(183)

(swapping the labels of the two dummy indices in the last step). Since Uµ is an arbitrary vector,
this allows us to deduce the covariant derivative for Vµ (different by a sign and index placement
in the second term):

Vµ;ν ≡ Vµ,ν − Γα
µνVα (184)

10.2 Covariant differentiation along a curve

Vectors might be defined only along a worldline, rather than everywhere – e.g. the momentum
of a particle pµ(τ) has no meaning except on the worldline xµ(τ). We can project the normal
derivative of a vector, Aµ, along a particle path using the 4-velocity, uµ, so that

uλ∂λA
µ =

dAµ

dτ
, (185)

which is the normal time derivative of the 4-vector with respect to the proper time of the particle.
However, this time derivative is not a generally covariant quantity. We can make it a generally
covariant time derivative by replacing ∂λ by ∇λ:

uλ∇λA
µ ≡ DAµ

dτ
=
dAµ

dτ
+ Γµ

νλ

dxλ

dτ
Aν . (186)
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Hence if Aµ(τ) is a tensor, then

DAµ

dτ
=
dAµ

dτ
+ Γµ

νλ

dxλ

dτ
Aν (187)

is a tensor. Similarly, for co-vectors,

DBµ

dτ
=
dBµ

dτ
− Γλ

µν

dxν

dτ
Bλ (188)

is also a tensor.

10.3 The covariant derivative of the metric

To complete the logical structure of this approach, we need to relate the connection to the metric.
This can be done in a number of ways, the first of which is found in the earlier discussion of the
equivalence principle. In the spirit of the discussion here, a more direct route is to argue that
the ‘length’ of a 4-vector should not be changed by the process of parallel transport. Therefore,
define a vector V µ

‖ , which is the result of parallel transport along some trajectory. Since the only
change in V µ

‖ is that due to parallel transport, this means that its covariant derivative is zero by
construction. But we want an unchanged norm: gµνV

µ
‖ V

ν
‖ = constant.

Taking the covariant derivative of this equation and using the Leibniz rule for the covariant
derivative (an extension of the product rule), we see that the covariant derivative of the metric
must vanish:

∇λgµν =
∂gµν
∂xλ

− Γρ
λµgρν − Γρ

λνgµρ = 0. (189)

This property of the metric is extremely convenient mathematically, since it means that the raising
and lowering of indices commutes with covariant differentiation.

We have seen earlier (equation 41) that this key equation can be used to derive the relation
between the connection Γ and the metric. As an alternative, it is more easily proved by working
in a local inertial frame, where the first derivative of the metric and the connection vanishes. This
is just the equivalence principle again, saying that inertial frames are those in which the apparent
gravitational force (as expressed via derivatives of the metric) is transformed away. Saying that
the covariant derivative of g vanishes is a covariant statement, which reduces to zero coordinate
derivatives in a LIF. But if we prove the derivative to be zero there, then by manifest covariance
it must vanish in all frames.

10.4 Gauge freedom and covariant derivatives in electromagnetism

The structure of the covariant derivative in GR is similar to something encountered in a rather
different part of physics: the treatment of the electromagnetic interaction in quantum mechan-
ics. In quantum mechanics, the phase of the wave function is unobservable: only |ψ|2 matters.
Therefore we can make a global phase transformation with no effect:

ψ → eiαψ. (190)

But this makes no practical sense, as it applies everywhere: how is someone on a distant galaxy to
know what value of α we chose? Clearly, this phase transformation ought to be local : α→ α(x, t).
Such a local transformation is called a gauge transformation. But local phase changes mess
up the Schrödinger equation. If we insert eiαψ for ψ into

i~
∂ψ

∂t
= Hψ =

(

p2

2m
+ V

)

ψ =

(

− ~
2

2m
∇2 + V

)

ψ, (191)
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then unwanted derivatives of α are clearly going to appear. The way to fix this is to realise that
α really just affects the derivatives:

∂

∂t
→ ∂

∂t
+ iα̇; ∇ → ∇+ i∇α. (192)

We can cure this problem by adding something to the derivatives that can ‘eat’ the unwanted
evidence of α. The gauge-covariant derivatives are

∂

∂t
→ ∂

∂t
+ f(r, t); ∇ → ∇+ F(r, t), (193)

where the gauge fields need to transform as

f → f − iα̇; F → F− i∇α. (194)

But these transformations are exactly the gauge freedom of the scalar and vector potentials in
electromagnetism: φ and A can be changed in this way without altering the observable E and B
fields. Thus in a sense the electromagnetic interaction exists in order to allow quantum-mechanical
phase to be gauge invariant. The same reasoning applies with other local symmetries of the wave
function that correspond to the nuclear forces: they can only stay hidden if we introduce gauge

fields to accomplish this. The electroweak bosons, W & Z, and the gluons of the strong force,
are all gauge bosons, as is the photon.

The reasoning here is directly parallel to the gravitational case. But rather than having ar-
bitrary local transformations of quantum-mechanical phase, we have arbitrary coordinate trans-
formations to contend with, and we do not want these transformations to show themselves in our
equations of physics. Technically, we want GR equations to obey diffeomorphism invari-

ance. The cure in both cases is the same: we add a piece to the derivative that absorbs the
undesired terms and makes them unobservable. Thus GR can be said to be a gauge theory of
gravity.

10.5 The algorithm for generating covariant equations in GR

Covariant differentiation has two properties:
(1) It converts tensors to tensors.
(2) It reduces to ordinary differentiation in the absence of gravity (Γ = 0).

So we will satisfy the Principle of General Covariance by the following rule:

Take the equations of Special Relativity, replace ηαβ by gαβ and all derivatives
by covariant derivatives.

This procedure will allow us to take any known equation of physics in Special Relativity and
convert it into a generally covariant form appropriate for working in a gravitational field. For
example, we can make the fluid equation, the thermodynamic equations, Maxwell’s Equations
or the Dirac Equation generally covariant and study the properties of fluids, gases, photons or
electrons in an arbitrary (but classical) gravitational field. This works fine – for everything except
gravity, where Newtonian gravity fails even the requirements of SR: ∇2Φ = 4πGρ is not written in
terms of 4-vectors, and it contains completely anti-relativistic elements like action at a distance:
changing ρ changes Φ everywhere in the universe at once, so that information is apparently
propagating at the speed of light. Therefore we will need to construct a relativistic theory of
gravity from scratch.

43



11 Spacetime curvature and gravitation

We now return to the issue of spacetime curvature, whose existence was hinted at by the existence
of a metric, but where we needed an objective way to see whether or not a complicated metric
might just be a rewriting of flat spacetime (as with 3D Euclidean space written in spherical polars).
In some cases, we can use our intuition and experience: e.g. the surface of a sphere is a familiar
and unambiguous example of a curved 2D space. But even here, care is needed, as may be seen
by considering the surface of a cylinder: in an important sense, the surface of a cylinder is not
curved, as it can be obtained from a flat plane by bending the plane without folding or distorting
it. In other words, the geodesics on a cylinder are exactly those that would apply if the cylinder
were unrolled to make a plane. In contrast, one must tear or fold a flat sheet to cover the surface
of a sphere.

The reason that our intuition came adrift here is that we did not distinguish extrinsic

curvature from intrinsic curvature. The former is concerned with the embedding of a
surface in a higher-dimensional space, but the latter is concerned with the local properties of the
surface. Although we commonly visualise curvature in terms of embedded examples such as the
surface of the sphere, it is important to realise that this is not necessary, and that one can approach
curved spaces directly without needing to envisage them as part of any embedding. Gauss was
the first to realize that curvature can be measured without the aid of a higher-dimensional being,
by making use of the intrinsic properties of a surface. For example, the curvature of a sphere can
be measured by examining a (small) triangle whose sides are great circles, and using the relation

sum of interior angles = π + 4π
area of triangle

area of sphere
. (195)

Very small triangles have a sum of angles equal to π, but triangles of size comparable to the radius
of the sphere sample the curvature of the space, and the angular sum starts to differ from the
Euclidean value.

11.1 Parallel transport and the Riemann curvature tensor

We can use parallel transport to define curvature. If vectors that are transported round a closed
loop always return to their starting values, then the surface is flat. But if there is a change in the
vector when we parallel transport it around a closed loop, this gives us a geometrical definition of
curvature.

Parallel-transport a vector V α around a small closed parallelogram with sides aµ and bµ, as
illustrated in Figure 7. You may be concerned about whether this circuit will close, but the vectors
aµ and bµ at either side are in practice just increments of coordinates, so they can be added in
either order. From (179), the change in a vector owing to parallel transport along a displacement
δxβ is

δV µ = −Γµ
αβV

αδxβ . (196)

The total change in going round the parallelogram is the difference between the value of V µ at C
when reached either by the path ABC or ADC:

δV µ = −Γµ
αβ(x)V

α(x)aβ − Γµ
αβ(x+ a)V α

p (x+ a)bβ

+Γµ
αβ(x)V

α(x)bβ + Γµ
αβ(x+ b)V α

p (x+ b)aβ . (197)

Here, we have written a subscript on V α
p (x + a) etc. to emphasise that we need not the value of

some general vector field V α(x), but the value of the vector at x produced by parallel transport

44



µ

b

µ
b

µ
a

A

C

D

B

a

µ

Figure 7: Consider parallel transport of a vector around the anticlockwise loop ABCD. It suffices
to consider a parallelogram, as any general loop can be made up from a collection of such elements.
The overall change in the vector is the change over the path ABC minus the change over the path
ADC.

starting from point A. For small displacements, it is tempting to write this change in V µ in the
form of a first-order Taylor series:

δV µ =
∂(Γµ

νβV
ν
p )

∂xα
bαaβ −

∂(Γµ
νβV

ν
p )

∂xα
aαbβ . (198)

The subtlety in doing so is that the action of the coordinate derivative on Γ is to differentiate a
field, but the action of the derivative on Vp creates the effect of parallel transport:

∂βV
µ
p = −Γµ

αβV
α
p . (199)

Swapping the dummy indices α ↔ β in the second term above, so there is a common factor
aβbα, and differentiating the products yields

δV µ =
(

∂αΓ
µ
βνV

ν
p + Γµ

βν∂αV
ν
p − ∂βΓ

µ
ανV

ν
p − Γµ

αν∂βV
ν
p

)

aβbα. (200)

Now we can interpret the derivatives of Vp as parallel transport, yielding

δV µ =
(

∂αΓ
µ
βνV

ν − Γµ
βνΓ

ν
σαV

σ − ∂βΓ
µ
ανV

ν + Γµ
ανΓ

ν
σβV

σ
)

aβbα. (201)

Now we can drop the subscript on Vp. Finally, relabelling dummy indices to make all V terms
V σ, we get

δV µ ≡ Rµ
σαβV

σaβbα, (202)

where Rµ
σαβ is the Riemann curvature tensor:

Rµ
σαβ ≡ ∂αΓ

µ
βσ − ∂βΓ

µ
ασ + Γµ

ανΓ
ν
σβ − Γµ

βνΓ
ν
σα . (203)

Because the connections are not tensors, it is not immediately obvious that this expression is a
tensor. To prove this, a little manipulation will demonstrate that the definition of Rµ

σαβ can be
written in terms of a commutator of covariant derivatives:

[∇γ∇β −∇β∇γ ] Vα = Rµ
αβγVµ. (204)
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Since everything here has a tensor character except Rµ
αβγ , manifest covariance requires that this

be a tensor also. Alternatively, the Riemann tensor may be defined geometrically as follows:

R(v,u, , ) = [∇v,∇u]−∇[v,u], (205)

denoting commutators by square brackets. There are two empty slots here, one for a vector, one
for a 1-form; the covariant derivative ∇u maps a vector onto another vector, which then needs
to ‘eat’ a 1-form in order to make an invariant. The Riemann tensor is thus a (1, 3) tensor in its
simplest form.

If the Riemann curvature tensor is zero, then any vector parallel-transported round the loop
will not change, and the space is flat. If the Riemann tensor is non-zero, vectors do change in
general, and we deduce that the space is curved. If it is zero in one frame, then it is zero in all
– i.e. all observers agree on whether space is flat (Riemann tensor zero) or curved (at least some
elements of the Riemann tensor nonzero).

11.2 Gravitational tidal fields: the geodesic deviation equation

The Riemann curvature tensor depends on the second derivatives of gµν , and we now show that
this suggests a possible link between spacetime curvature and gravitational forces.

We know we can remove gravity locally by moving to a LIF in which the metric is as close to
Minkowski as possible: gµν → ηµν , and its first derivatives vanish, ∂αgµν = 0, so that the affine
connections Γ are zero. The gravitational field only reveals itself via non-zero second derivatives
of g, leading to tidal forces in which neighbouring points feel different accelerations. In the
Newtonian case, the acceleration is ẍ = −∇Φ, so the relative acceleration of two points with
spatial separation ∆x thus depends on the difference in ∇Φ at these two points. Expanding Φ in
a Taylor series, we can write this to lowest order as ∆ẍi = Tij∆xj , where Tij = −∇i∇jΦ is the
Newtonian Tidal Field. This describes how the separation of points becomes stretched and
distorted by the gravitational tidal field. For use later on, we note that the contraction of the
Newtonian tidal field can be used in Poisson’s equation: −Tii = ∇2Φ = 4πGρ.

In the case of GR, we have seen that in the Newtonian limit the metric component g00c
2/2

plays the role of the potential. Thus we can suspect that the signature of tidal forces will arise
when second derivatives of the metric are non-zero: ∂α∂βgµν 6= 0. This is fine in a LIF, but we
will want to make a covariant description of the situation, so that we can handle tidal forces as
seen by any observer. We might think about generating a GR tidal tensor by replacing coordinate
derivatives with covariant ones: ∇α∇βgµν 6= 0, but this won’t get us very far because we know
that the covariant derivative of the metric vanishes. In fact, it can be proved (see section 6.2 of
Weinberg 1972) that there is a unique tensor that can be constructed from the metric and its first
and second derivatives that is also linear in the second derivatives – and this is none other than
the Riemann curvature tensor.

However, it is not necessary to pursue this argument, and it is relatively straightforward to
show directly that the Riemann tensor arises in tidal forces. We will do this by considering how
a pair of nearby free particles move apart or together, i.e. by relative deviations of neighbouring
geodesics. Consider two such geodesics, xµ(τ) and xµ(τ)+ yµ(τ). For arbitrary τ , we will see how
the (small) separation yµ grows. Let P be the spacetime point at xµ(τ).

We now employ a useful general trick that simplifies the algebra. We first work in a local
inertial frame at P ; then we find an equation in this frame; finally we write this equation as a
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tensor equation, which by manifest covariance must give the general solution. Geodesics obey:

ẍµ + Γµ
αβ(x)ẋ

αẋβ = 0,

ẍµ + ÿµ + Γµ
αβ(x+ y)(ẋα + ẏα)(ẋβ + ẏβ) = 0. (206)

Now, in a LIF at P , Γµ
αβ(x) = 0, simplifying the algebra. Until the very end, these equations

now only hold in the LIF. Making a Taylor expansion of the second equation to first order, and
subtracting the first gives

ÿµ +
∂Γµ

αβ

∂xν
ẋαẋβyν = 0. (207)

Now d2yµ/dτ2 is not a tensor, so different observers will generally disagree on whether it is zero
or not. They will all agree on whether the covariant relative acceleration is zero, since is a tensor.

The covariant derivative is

D2yµ

dτ2
=

D

dτ

(

Dyµ

dτ

)

=
d

dτ

[

dyµ

dτ
+ Γµ

αβẋ
αyβ

]

(since Γ = 0)

=
d2yµ

dτ2
+
∂Γµ

αβ

∂xν
ẋν ẋαyβ . (208)

Using (207) and some index relabelling, this simplifies to

D2yµ

dτ2
=

(

∂Γµ
αν

∂xβ
−
∂Γµ

αβ

∂xν

)

ẋαẋβyν . (209)

Now, the term in brackets is not a tensor, but we see from comparison with the definition of the
Riemann curvature tensor (equation 203), that in the LIF, the two are equal. Hence in this frame
we can write

D2yµ

dτ2
=
(

Rµ
αβν ẋ

αẋβ
)

yν . (210)

This is the Geodesic Deviation equation, which describes how two adjacent particles in a
gravitational field move relative to each other. It is the covariant generalisation of the Newtonian
tidal equation.

As this is a tensor relation, it is valid in all frames. Importantly, it establishes the connection
between curvature (Rµ

αβν) and gravity (through D2yµ/dτ2). The meaning of the equation is as
follows. In flat space, the Riemann tensor is zero, and we can use Cartesian coordinates. The
solution is that yµ grows (or reduces) linearly with τ (since Γ = 0 and the covariant derivative is
just ÿµ, which is zero). If the two paths are parallel initially, then they stay parallel. In curved
spacetime, though, geodesics that start off parallel may not remain so, because of the non-zero
RHS. As a 2D example, two close parallel paths heading North from the equator will meet at the
North Pole.

11.3 Calculating the Riemann tensor

Here we consider a useful matrix-handling method for making the calculation of the Riemann
tensor, with its 256 terms, more manageable. This speeds up the book-keeping, as long as you
are slick with matrix multiplication. This is not mandatory, and it is always possible to proceed
by brute force, listing all the non-zero connection coefficients, and assembling the Riemann tensor
by hand, term by term.
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Christoffel symbols Γα
βγ Recall we can construct matrices Γβ , with components (row=α,

column=γ)
(Γβ)

α
γ ≡ Γα

βγ . (211)

Riemann tensor Construct 16 4 × 4 matrices, labelled by ρ and σ, Bρσ, with components
(row=α, column=γ)

(Bρσ)
α
γ ≡ Rα

γρσ. (212)

Hence B are defined by the matrix equation

Bρσ = ∂ρΓσ − ∂σΓρ + ΓρΓσ − ΓσΓρ, (213)

and are clearly antisymmetric in ρ and σ ⇒ we need to compute only 6 B matrices. We can then
read off the Riemann tensor components from the elements of Bρσ. (Note the distinction between
the labels ρ and σ, and the rows and columns α and γ).

Symmetries of R Soon we will need to make use of the symmetry properties of the Riemann
tensor. Here we present these properties, without proof. However, many can be found by consid-
ering the definition of the Riemann tensor in a Local Inertial Frame. Here, the connections vanish
and we only need to consider their derivatives. After quite a bit of work, a simple expression
arises for the LIF Riemann tensor in its all-covariant form:

2Rαβγδ = gαδ,βγ − gβδ,αγ + gβγ,αδ − gαγ,βδ. (214)

This expression leads to the following symmetry properties:

Rα
µρσ = −Rα

µσρ

Rα
ρσµ +Rα

σµρ +Rα
µρσ = 0

Rαµρσ = −Rµαρσ

Rαµρσ = Rρσαµ.

(215)

Because of these symmetries, the number of independent components of the Riemann tensor is less
than the raw 44 = 256. In N dimensions, there are actually N2(N2 − 1)/12 degrees of freedom:
20 for the N = 4 case of spacetime.

Finally, we introduce two important tensors formed from the contractions of the Riemann
tensor:

Rαβ ≡ Rµ
αβµ Ricci Tensor (symmetric),

R ≡ Rα
α Ricci scalar.

(216)

The Ricci tensor will be especially important, and it is convenient to have its explicit components:

Rµν = ∂νΓ
α
µα − ∂αΓ

α
µν + Γα

µβΓ
β
αν + Γα

αβΓ
β
µν . (217)

12 Einstein’s field equations

In Newtonian gravity, there is a field equation that relates the gravitational potential, Φ, to
the matter density, ρ. This is Poisson’s equation:

∇2Φ = 4πGρ. (218)

From a relativistic viewpoint, this equation is unsatisfactory in a number of ways. Most obviously,
it violates causality: if ρ changes with time the gravitational potential alters instantly throughout
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the universe, so that information propagates faster than light. The same problem exists in elec-
trostatics, and by this analogy we may expect that in the time-dependent situation ∇2 should be
replaced by the wave operator −� = −∂µ∂µ:

∂µ∂
µΦ = −4πGρ. (219)

This looks like a good step towards curing the more general problem with Poisson’s equation,
which is that it is not covariant. The above equation would solve this if we replace the coordinate
derivatives by covariant ones, and if Φ and ρ are invariant scalars.

But once again the electromagnetic analogy shows us that this will not be the case. In
electromagnetism charge is indeed an invariant, but the charge density is affected by coordinate
transformations because these alter volume elements. The relativistic electromagnetic field equa-
tions actually involve four potentials, which are the components of the 4-potential Aµ = (φ/c,A):

∂µ∂
µAµ = µ0J

µ, (220)

where Jµ is the 4-current that contains the charge density and the current density: Jµ = (ρc, j).
The 4-current is needed in order to satisfy charge conservation via the continuity equation:

∂µJ
µ = 0 =

∂ρ

∂t
+∇ · j. (221)

We may suspect that a covariant field equation for gravity will probably be of a similar
form: second derivatives of some fields are proportional to some measure of the density and flow
of the matter field. But we cannot expect this equation to involve 4-vectors in the way that
electromagnetism does. First of all, we have already seen that the metric tensor generates the
effective gravitational forces, so we are probably looking for some tensor potential, Φµν . Secondly,
there will not be the analogue of a 4-current for mass. The electromagnetic 4-current governs the
single conserved quantity of charge, but for matter there are four conserved quantities: energy
and the three components of momentum. We will shortly see that expressing these conservation
laws requires a tensor.

But rather than trying to go directly to the final gravitational field equation, we follow the
path trodden by Einstein and start with the case of the vacuum gravitational field – i.e. we are
looking for an equation of the form Tensor = 0, where the tensor contains second derivatives of
the metric. We will now see that it is natural for this tensor to be related to the Riemann tensor
that describes the curvature of spacetime.

12.1 Einstein equations in empty space

Our task is to generalise Newtonian gravity in empty space, for which the field equation is
Laplace’s equation: ∇2Φ = 0. This can be written as

T N
ii = 0, (222)

where

T N
ij = − ∂2Φ

∂xi∂xj
, (223)

(for i, j = 1, 2, 3) is the 3D Newtonian tidal tensor, defined by

∆ẍi = T N
ij ∆xj , (224)

which gives the tidal acceleration of neighbouring particles in a gravitational field.
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We have seen that a covariant generalisation of this in GR is equation (210), the geodesic
deviation equation for the tidal acceleration between two particles separated in spacetime by yµ:

D2yµ

dτ2
= Rµ

αβν ẋ
αẋβyν

≡ T µ
ν y

ν , (225)

where T µ
ν = Rµ

αβν ẋ
αẋβ is the generally covariant tidal tensor. A covariant generalisation of

Laplace’s equation is then
T µ

µ = 0 in empty space. (226)

In other words
Rµ

αβµẋ
αẋβ = 0, (227)

or
Rαβẋ

αẋβ = 0, (228)

where Rαβ = Rµ
αβµ is the Ricci tensor. For this to be true for all ẋα, we need

Rαβ = 0 in empty space. (229)

This gives us 10 Einstein Equations for the gravitational field of empty space.

We have thus finally seen the need to introduce spacetime curvature into our description of
gravity: it has arisen because the equation of geodesic deviation provides a ready-made natural
relativistic generalization of the second derivatives of the Newtonian potential. As stated, this
falls short of a proof: we may wonder if there are other tensors that might play the same role. As
mentioned, it can be shown (see p.133 of Weinberg 1972) that the Riemann tensor is the unique
choice for a tensor that is linear in second derivatives of the metric. But even without this proof,
we clearly have strong motivation to try to base the relativistic theory of gravity on this tensor.

12.2 The source of gravity: the energy-momentum tensor

We now need to take the last step of including the effects of matter. As stated above, the matter
density is not a scalar invariant: if ρ0 is the density of nonrelativistic matter in the rest frame of
a fluid, then the density measured by an observer moving with Lorentz factor γ will be

ρ = γ2ρ0, (230)

where one factor comes from Lorentz contraction, and another from the relativistic increase in
mass of the fluid particles. This can be contrasted with a single factor of γ in the case of charge
density, because charge is an invariant. As we saw earlier, a single conserved quantity obeys the
continuity equation in the form of a vanishing 4-divergence of the 4-current: ∂µJ

µ = 0. But in
dynamics we have four quantities to conserve, which are the four components of the 4-momentum.
Informally, what is needed is a way of writing four conservation laws for each component of Pµ.
We can clearly write four equations of the above type in matrix form:

∂νT
µν = 0. (231)

Now, if this equation is to be covariant, Tµν must be a tensor: it is known as the energy–

momentum tensor (or sometimes as the stress–energy tensor). The meanings of its
components in words are: T 00 = c2 × (mass density) = energy density; T 12 = x-component of
current of y-momentum etc. From these definitions, the tensor is readily seen to be symmetric.
Both momentum density and energy flux density are the product of a mass density and a net
velocity, so T 0µ = Tµ0. The spatial stress tensor T ij is also symmetric because any small volume
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element would otherwise suffer infinite angular acceleration: any asymmetric stress acting on a
cube of side L gives a couple ∝ L3, whereas the moment of inertia is ∝ L5.

For example, a cold fluid with density ρ0 in its rest frame only has one non-zero component
for the energy–momentum tensor: T 00 = c2ρ0. We can write this in covariant form as

Tµν = ρ0U
µUν , (232)

where Uµ = γ(c,u) is the 4-velocity – and from now on we drop the 0 subscript, so that ρ
refers to the rest-frame density. From this expression, we immediately see that indeed the density
transforms as γ2 in SR. The equations of energy and momentum conservation are contained in
the 4-divergence of this tensor: ∂νT

µν = 0. In the limit γ → 1, µ = 0 unpacks to the continuity
equation

∂ρ

∂t
+∇·(ρu) = 0, (233)

where here ∇ is the usual spatial gradient operator; the spatial components give

∂

∂t
(ρui) +∇k(ρuiuk) = 0. (234)

Together with the continuity equation, this can be manipulated into Euler’s equation dui/dt =
(∂ui/∂t) + (u ·∇)ui = 0 for a pressure-free fluid.

For an ideal fluid with pressure, in the rest frame we must have Tµν = diag(ρc2, p, p, p) where
p is the pressure (flux density of x momentum in the x direction etc.). A manifestly covariant SR
form that reduces to this is

Tµν =
(

ρ+
p

c2

)

UµUν − p ηµν . (235)

For GR, we should replace ηµν with gµν , and in the conservation law we should replace ∂µ with
the covariant derivative ∇µ:

∇νT
µν = 0, (236)

which may be written explicitly as

∂Tµν

∂xν
+ Γµ

ανT
αν + Γν

ανT
µα = 0. (237)

12.3 Einstein field equations with matter

We have generalised the source term from the density, ρ, to the stress-energy tensor, Tµν . Now we
have to generalise∇2Φ. We have a second-rank tensor for the source term, so we seek a second-rank
tensor involving derivatives of gµν , which will ideally involve the curvature of spacetime. Given
we have argued the empty space generalisation of the Laplace equation is Rαβ = 0, an obvious
candidate to generalise the Poisson equation is to make the stress energy tensor the source of the
Ricci tensor:

Rαβ = constant Tαβ (wrong), (238)

but this fails because
∇βR

αβ = gαβ∇βR/2 6= 0, (239)

while conservation of the stress-energy tensor means ∇βT
αβ = 0. The important result for ∇βR

αβ

is known as the contracted Bianchi identity, and it will be proved in a Tutorial. With this
identity, we can construct a tensor whose covariant divergence is always zero: it is the Einstein

tensor, defined as

Gµν ≡ Rµν − 1

2
gµνR. (240)
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The simplest consistent alternative to the failed relation given by equation (238) is then

Gµν = aTµν , (241)

where a is a constant. Solving for the constant using the Newtonian limit (next section) gives

Gµν = −8πG

c4
Tµν . (242)

This deceptively simple looking equation was written down by Einstein in 1915, marking the end
of a decade of heroic struggle to incorporate gravitation into the framework of relativity as set
out by him in 1905.

12.3.1 Sign conventions

Regrettably, much of the above varies from book to book; in a situation that makes the difference
between cgs and SI electromagnetism seem like paradise, there are few universal conventions in
GR. The distinctions that exist were analysed into three signs by Misner, Thorne & Wheeler
(1973):

ηµν = [S1]× diag (−1,+1,+1,+1)

Rµ
αβγ = [S2]×

(

Γµ
αγ,β − Γµ

αβ,γ + Γµ
σβΓ

σ
γα − Γµ

σγΓ
σ
βα

)

Gµν = [S3]× 8πG

c4
Tµν .

(243)

The third sign above is related to the choice of convention for the Ricci tensor:

Rµν = [S2]× [S3]×Rα
µαν . (244)

With these definitions, Misner, Thorne & Wheeler (unsurprisingly) classify themselves as (+++);
Weinberg (1972) is (+−−); Hobson, Efstathiou & Lasenby (2006) and Ohanian & Ruffini (2013)
are (−+−); Cheng is (++−); d’Inverno is (−++). These notes are (−+−), although prior to
2020 the course used (−++) and this will be reflected in past exam papers.

12.4 Determining the constant a

The constant of proportionality between the Einstein tensor and the energy–momentum tensor
can be determined by taking the Newtonian limit of slow motion in a weak time-independent field.
The weak-field metric is

gµν = ηµν + hµν , (245)

with |hµν | ≪ 1. The energy-momentum tensor is

T00 = ρc2; Tij ≃ 0 (≪ T00). (246)

To first order in h, the affine connections are

Γσ
λµ =

1

2
gνσ {∂λgµν + ∂µgλν − ∂νgµλ}

≃ 1

2
ηνσ {∂λhµν + ∂µhλν − ∂νhµλ} . (247)

The Riemann tensor, equation (203), is

Rα
σρβ ≡ ∂ρΓ

α
βσ − ∂βΓ

α
ρσ + Γα

ρνΓ
ν
σβ − Γα

βνΓ
ν
σρ (248)
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To O(h) we ignore the ΓΓ terms, and so obtain

Rα
σρβ ≃ 1

2
ηαν {∂σ∂ρhβν − ∂ν∂ρhβσ − ∂σ∂βhρν + ∂β∂νhρσ} , (249)

where two of the h terms cancel. The Ricci tensor is then

Rσβ = Rα
σβα ≃ 1

2
ηαν {∂σ∂βhαν − ∂ν∂βhασ − ∂σ∂αhβν + ∂α∂νhβσ} . (250)

We will use only G00 = R00 − (1/2)g00R to work out the constant of proportionality, so we only
need to determine R00 and R. For a static field, ∂/∂t = 0, so derivatives w.r.t. β and σ vanish,
leaving only the final term in the bracket:

R00 ≃ 1

2
ηαν {∂ν∂αh00}

≃ −1

2
∇2h00, (251)

since h00 has no time derivative. Previously in equation (57) we found g00 ≃ 1 + 2Φ/c2 in this
limit, so

R00 = − 1

c2
∇2Φ, (252)

to O(h).

To get R, we note that, since |Tij | → 0 in the non-relativistic limit, then |Gij | → 0, or

Rij −
1

2
gijR ≃ 0, (253)

and so

Rij ≃
1

2
ηijR ≃ −1

2
δijR. (254)

The Ricci scalar is then

R = Rµ
µ ≃ ηµνRνµ = R00 −Rii = R00 +

3

2
R, (255)

using equation (254) for Rii. Hence R ≃ −2R00 and G00 = R00 − 1
2g00R ≃ 2R00. Finally the

time-time component of the Einstein equations, G00 = aT00, reduces to

− 2

c2
∇2Φ = aρc2 (256)

Since we want this to match Poisson’s equation, ∇2Φ = 4πGρ, the constant has to be a =
−8πG/c4.

13 Cosmology

Now we have the field equations, in principle we can now solve to find the metric corresponding
to a given matter content. This is hardly straightforward, because the field equations are strongly
nonlinear. It is worth remarking why this is. The field equations show the response of spacetime
curvature to the distribution of energy and momentum. But what causes the energy? Rest mass
of particles, certainly, but we should also include energy from electromagnetic fields. Given the
close analogy between gravitation and electromagnetism, we should expect that there is also an
energy density associated with gravitational fields, but where is it? The vacuum field equations,
Rµν = 0, have no right-hand side, so does that mean that there is no gravitational field energy,
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and hence no field? Not so, as we will see: for example, the vacuum field equations admit solutions
corresponding to gravitational waves, which transmit energy quite happily. But this energy is not
present as an explicit contribution to the energy-momentum tensor, but it is hidden within the
nonlinear structure of the equations.

Given this nonlinearity, finding solutions to the field equations is hard. In most cases, progress
is greatly aided by exploiting symmetry to simplify the possible from of the metric before trying
to go any further. A good example of this, and the first practical application attacked by Einstein
himself, is the case of cosmology: the spacetime of the universe on the largest of scales.

13.0.1 The cosmological constant Λ

The field equations (242) do not admit static solutions for the universe, as shown below. The first
evidence for the expansion of the universe, in the sense of a tendency for all galaxy spectra to be
redshifted, was published by Vesto Slipher in 1917. But Einstein was unaware of this, and in the
same year produced a modification of his field equations that permitted a static model. We noted
earlier that ∇νg

µν = 0, so we can add any multiple Λ of gµν to Gµν and still get a quantity whose
covariant divergence vanishes:

Gµν + Λgµν = −8πG

c4
Tµν . (257)

Λ is the cosmological constant: it cannot be too big, to avoid disturbing Newtonian gravity
in the Solar System, but it can be important cosmologically.

What Einstein was doing here was actually addressing a problem that was known to Newton,
and which he failed to solve. What does Newtonian gravity predict for a uniform infinite mass
distribution? If we want it to be static on average, as Newton’s intuition and experience suggested,
then the gravitational force must vanish: Φ = constant. But this doesn’t solve Poisson’s equation.
In order to have Φ and ρ both constant, we must modify the equation:

∇2Φ+ λ = 4πGρ, (258)

where λ = c2Λ/2 in the weak-field limit of the GR equation. Interestingly, Einstein’s paper
actually proposes ∇2Φ + λΦ = 4πGρ, but this is not the correct nonrelativistic limit of his own
field equation! The modified Poisson equation allows for a force that is linearly proportional to
separation. In spherical symmetry, ∇2Φ = (r2Φ′)′/r2, which integrates to give Φ = −λr2/3 −
α/r + β as the vacuum solution – creating a repulsive force proportional to r.

13.1 The expanding universe and the Friedmann-Robertson–Walker metric

Nonstatic cosmological spacetime was first derived in a pair of papers by Alexander Friedmann in
1922 & 1924, by solving Einstein’s equations. Subsequently, in the 1930s, Robertson and Walker
independently showed that Friedmann’s metric is a consequence only of symmetry arguments and
so would stand even if Einstein’s field equations were replaced by something more complicated.
Thus the metric we are about to derive is sometimes named after Robertson & Walker, but more
often after Friedmann also (the FRW metric).

Although the symmetry argument is general, it may help to give a little empirical motivation
for the key steps. The evidence for the expansion of the universe dates back to 1913, and the first
measurements of galaxy radial velocities by Vesto Slipher in Arizona. By 1917, he had accumulated
25 radial velocities, almost all of which were positive. At this point in history, therefore, it was
first possible to see that the universe is expanding in the sense that all galaxies are receding from
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us. This is puzzling in many ways, most of all perhaps because we seem to be at the centre of the
universe. That problem can be disposed of if we guess that we are part of a uniformly expanding
matter distribution, in which all position vectors at time t are just scaled versions of their values
at a reference time t0, in terms of a universal time-dependent scale factor:

x(t) = R(t)x(t0). (259)

Differentiating this with respect to t gives

ẋ(t) = Ṙ(t)x(t0) = [Ṙ(t)/R(t)]x(t), (260)

or a velocity proportional to the radius vector. Writing this relation for two points 1 & 2 and
subtracting shows that this expansion appears the same for any choice of origin: everyone is the
centre of the universe:

[ẋ2(t)− ẋ1(t)] = H(t) [x2(t)− x1(t)]; H(t) = Ṙ(t)/R(t). (261)

We see that an inevitable consequence of uniform expansion is Hubble’s Law, in which re-
cessional velocity is proportional to distance, with the constant of proportionality being H(t),
Hubble’s constant. It is worth noting that this linear relation was a theoretical prediction,
by Hermann Weyl in 1923. Hubble’s 1929 ‘discovery’ of an expanding universe was an attempt to
test this prediction, using Slipher’s redshifts.

This velocity field is isotropic: the same in all directions, about all points, and this isotropy
is what is needed for there to be no special origin. But in order for all observers to be equivalent
in this way, it is reasonable to require that all conditions that they experience should be the same.
In particular, the density of matter should be homogeneous: the same at all points. In fact,
it is easy to see that a matter density that is isotropic (constant at a given radius about any
given point) must be homogeneous; but the opposite does not hold, and the velocity field could
be anisotropic while the matter density remained uniform.

13.1.1 Cosmological time

The requirement of homogeneity is not straightforward, because the situation is non-static. An
expanding matter distribution will have a density that falls with time as the scale factor increases
(proportional to 1/R(t)3 if the matter is pressureless ‘dust’). So it only makes sense to say that
all observers experience the same density, if we specify that this refers to a given fixed time. But
to treat this relativistically, we have to say carefully what the time coordinate is. The answer is
to use the natural clocks defined by observers who are locally at rest with respect to the isotropic
velocity field. These so-called fundamental observers inhabit local inertial frames, and so
their time coordinate is the proper time ticked by freely-falling clocks. Even so, there remains the
question of how to synchronise such clocks, especially if they are widely separated. The answer is
slightly circular, but is consistent: we define the cosmological time, t, such that the density is
purely a function of t. Thus in practice clocks can be synchronised at the point when the density
reaches some reference value.

With this special global time coordinate (whose existence is only possible through the sym-
metry of the isotropic and homogeneous matter distribution), we can conclude that the metric for
an isotropically expanding universe must take the following form:

c2dτ2 = c2dt2 −R2(t)
[

f2(r) dr2 + g2(r) dψ2
]

. (262)

Because of spherical symmetry, the spatial part of the metric can be decomposed into a radial
and a transverse part. The latter involves the length of an apparent arc on the ‘sky’ seen by an
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observer at r = 0; we will use a common space saving notation for this in spherical polars, where

dψ2 ≡ dθ2 + sin2 θ dφ2. (263)

Distances have been decomposed into a product of a time-dependent scale factor R(t) and a
time-independent comoving radius r. The latter is independent of time by definition; thus a
pair of events taking place at a given fundamental observer have dr = dψ = 0, and we see that the
cosmological time interval is indeed a proper time. The functions f and g are arbitrary; however,
we can choose our radial coordinate such that either f = 1 or g = r2, to make things look as much
like Euclidean space as possible.

13.1.2 Metrics with uniform spatial curvature

Our discussion so far says that the metric separates into a part corresponding to cosmic time,
and a spatial part: c2dτ2 = c2dt2 − dσ2. The spatial part of the metric generally corresponds to
a curved space. From the assumption of homogeneity, the degree of curvature must be the same
at all places, and it turns out that this symmetry requirement is enough to determine the form of
the metric.

The simplest way of constructing a 3D space of constant curvature is to use our intuition with
lower-dimensional spaces. A circle is a uniformly curved 1D space, embedded in 2D, and a sphere
is a uniformly curved 2D space, embedded in 3D. This suggests that we embed an analogous 3D
curved space in 4D, using an extra coordinate, w:

x2 + y2 + z2 + w2 = R2, (264)

where R is the radius of curvature – which will turn out to be our scale factor. We can eliminate
w as follows: write the hypersphere definition as r2 + w2 = R2, so that w dw = −r dr, implying
dw2 = r2dr2/(R2 − r2). The spatial part of the metric is therefore just

dσ2 = dx2 + dy2 + dz2 + r2dr2/(R2 − r2). (265)

Introducing 3D polar coordinates, we have

dx2 + dy2 + dz2 = dr2 + r2
(

dθ2 + sin2 θ dφ2
)

, (266)

so that we get the spatial part of the metric in the form

dσ2 =
dr2

1− r2/R2
+ r2

(

dθ2 + sin2 θ dφ2
)

. (267)

Earlier, we argued that we wanted the spatial part of the metric as a factorisation between the
square of the time-dependent scale factor R2(t) and functions of a time-independent comoving
radius. We can achieve this here by defining a new radial coordinate r′ ≡ r/R(t), in which case

dσ2 = R(t)2
(

dr′2

1− r′2
+ r′2dθ2 + r′2 sin2 θ dφ2

)

. (268)

Note that r′ is a dimensionless coordinate; the dimensions are carried by the time-dependent
curvature radius R(t).

This may seem the end of our search for a space of constant curvature, but Friedmann
(1924) had the critical intuition that this is only one of two possibilities: a space of positive

curvature. It is possible to convert this to the metric for a space of constant negative
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curvature by the device of considering an imaginary radius of curvature, R → iR. If we
simultaneously let r′ → ir′, we obtain

dσ2 = R(t)2
(

dr′2

1− kr′2
+ r′2dθ2 + r′2 sin2 θ dφ2

)

, (269)

where the curvature index is k = +1 for positive curvature and k = −1 for negative curvature. It
is also worth noting that we can take the limit R→ ∞, which is a flat universe with uncurved
spatial sections (not the same as zero spacetime curvature). This can be absorbed into the above
form via k = 0.

Henceforth we shall drop the prime on r′, as it is common to denote the comoving radius by
r. The full form of the FRW metric for an isotropic expanding universe is then

c2dτ2 = c2dt2 −R(t)2
(

dr2

1− kr2
+ r2dψ2

)

, (270)

where dψ2 ≡ dθ2 + sin2 θ dφ2 is the ‘sky angle’ introduced earlier. An alternative common form
of the metric is to define a different radial coordinate, χ, via r = Sk(χ) and defining the useful
function

Sk(χ) =







sinχ (k = 1)
sinhχ (k = −1)
χ (k = 0).

(271)

Then the FRW metric becomes

c2dτ2 = c2dt2 −R(t)2
(

dχ2 + Sk(χ)
2dψ2

)

. (272)

Apart from the different sign of spatial curvature, there is one further critical difference
between these metrics, which can be seen by considering a pair of radial trajectories with some
angular difference dψ, so that the transverse separation is RSk(χ) dψ. Suppose we abandon
causality and trace these paths at fixed t: for the k = +1 metric, we find that the transverse
separation goes to zero as χ → π. This is the 3D analogue of great circles on the surface of
a sphere, which leave the North pole and intersect again at the South pole. For χ = 2π, the
trajectories would return to their starting points. The k = +1 metric thus describes a closed

universe, which like the surface of a sphere is finite in volume, but unbounded. By contrast,
the k = −1 metric describes an open universe of infinite extent.

13.1.3 Distances and redshifts

It would be fair to wonder how cosmological distances are to be measured, and we can see how to do
this by considering a radial geodesic: this is the path taken by a photon that reaches us from some
distant galaxy. For zero proper time, we have R(t)dχ = c dt, and hence χ =

∫

c dt/R(t). Now,
this comoving distance is fixed even though time changes, and therefore the dt/R contributions at
top and bottom of the integral must vanish. If these time intervals are thought of as one period
of EM radiation, we see that the radiation must be redshifted:

νemit

νobs
≡ 1 + z =

R(tobs)

R(temit)
. (273)

So the observed spectroscopic redshift tells us how much the universe has expanded since the
radiation we see was emitted. It is often convenient to define a scale factor re-normalised to unity
today: a(t) = R(t)/R(t0), so that 1 + z = 1/a(temit).
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13.2 The Einstein equations for the universe

Having found the FRW metric for homogeneous and isotropic universes, we now put this into the
Einstein equations, in order to obtain the dynamical equations that the universe obeys – especially
the time dependence of R(t). Unfortunately, this involves a fair amount of effort. Here we sketch
out the derivation; working through this in detail should be regarded as an additional tutorial
exercise.

We begin with the metric, where for convenience we choose coordinates (t, r, θ, φ):

gµν = diag
(

c2,−R2/α,−R2r2,−R2r2 sin2 θ
)

gµν = diag
(

1/c2,−α/R2,−1/(R2r2),−1/(R2r2 sin2 θ)
)

.
(274)

Here, R is the time-dependent scale factor; elsewhere this denotes the Ricci scalar, but we will
not use that symbol here. We also use the shorthand α ≡ 1 − kr2. From the Euler-Lagrange
equations we get the affine connections,

Γµ
αβ =

1

2
gµν

(

∂gνβ
∂xα

+
∂gνα
∂xβ

− ∂gαβ
∂xν

)

. (275)

Because of the simple diagonal form of the metric, only a few of these are non-zero. For example,
consider Γ0

αβ : the factor gµν is only non-zero if ν = 0, so of the 3 terms in brackets the first two
involve derivatives of g00 (which all vanish) and the third involves time derivatives of gαβ , which
are only non-zero for g11, g22 and g33. So there are three non-zero Γ0

αβ . Using similar reasoning,
the complete set of non-zero elements is

Γ0
11 = RṘ/αc2; Γ0

22 = RṘr2/c2; Γ0
33 = RṘr2 sin2 θ/c2;

Γ1
01 = Ṙ/R; Γ1

11 = kr/α; Γ1
22 = −αr; Γ1

33 = −rα sin2 θ;

Γ2
02 = Ṙ/R; Γ2

12 = 1/r; Γ2
33 = − sin θ cos θ;

Γ3
03 = Ṙ/R; Γ3

13 = 1/r; Γ3
23 = cos θ/ sin θ

(276)

(to which should be added the symmetric counterparts Γ1
10, Γ2

20, Γ2
21, Γ3

30, Γ3
31, Γ3

32 – so
19 non-zero components in total: imagine doing this for a non-diagonal metric). Note that here
we use dots for derivatives wrt cosmological time: Ṙ ≡ dR/dt. The dot would have a different
meaning if we were solving for geodesic motion in this spacetime, but the interpretation should
be clear from the context.

The Ricci tensor is

Rµν = ∂νΓ
α
µα − ∂αΓ

α
µν + Γα

µβΓ
β
αν + Γα

αβΓ
β
µν . (277)

Working out every component by hand would be tedious, but the effort can be minimised. First
note that the Ricci tensor must be diagonal because of the form of Einstein’s equations and because
the metric and the energy-momentum tensor are diagonal. But we do not need all 4 diagonal
components because of the spatial isotropy. It therefore suffices to consider only R00 and R11. It
may seem like we need all diagonal components because the Einstein tensor Gµν = Rµν−Rα

αgµν/2
requires the trace of the Ricci tensor. But we can avoid this step by recasting the field equations
through taking their trace:

Rµν −Rα
αgµν/2 + Λgµν = −κTµν ⇒ Rα

α − 2Rα
α + 4Λ = −κTα

α , (278)

where κ ≡ 8πG/c4. So the trace of the Ricci tensor can be eliminated in terms of the trace of
Tµν . It also simplifies things to write things in terms of mixed tensors, where the metric is the
identity matrix. The energy-momentum tensor is Tµν = (ρ+p/c2)uµuν −pgµν , and the 4-velocity
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of the fluid (in comoving coordinates) is uµ = (1,0), uµ = (c2,0), so Tµ
ν = (ρc2,−p,−p,−p) and

the trace is T = ρc2 − 3p. The Einstein equations now become

Rµ
ν = −κ(Tµ

ν − Tgµν /2) + Λgµν . (279)

Because the Ricci tensor is diagonal, R0
0 = g00R00 = R00/c

2, and R1
1 = g11R11 = −αR11/R

2. We
therefore have a pair of equations:

R00/c
2 = −κ(ρc2/2 + 3p/2) + Λ

−αR11/R
2 = −κ(−ρc2/2 + p/2) + Λ.

(280)

We therefore need R00 and R11, and now there is no alternative to the work of taking the expression
for Ricci in terms of connections and inserting the non-zero components. The result is

R00 = 3R̈/R

R11 = −(RR̈+ 2Ṙ2 + 2c2k)/αc2,
(281)

so we have two equations that mix first and second time derivatives of R(t). If we separate these
out, we get a pair of Friedmann Equations:

Ṙ2 − 8πGρ

3
R2 − Λ

3
c2R2 = −kc2

R̈ = −4πG

3
(ρ+ 3p/c2)R+

Λ

3
c2R.

(282)

Notice that these can be simplified to the Λ = 0 form if we define an effective density in terms of
Λ (which we can do immediately at the stage of having the field equations):

ρΛ =
Λc2

8πG
. (283)

This has to be accompanied by a pressure pΛ = −ρΛc2.

These are the fundamental equations that govern the expansion of the Universe. The first
equation has the form of an energy equation, where Ṙ is the velocity. The right-hand side is the
Newtonian potential in a sphere of radius R, while the constant curvature term kc2 serves as the
total energy of the system. The second equation has the form of an acceleration, or force, equation.
The first equation is more important, since the second can be obtained by differentiating the first
and invoking energy conservation. Formally, this comes from the zero covariant divergence of Tµν ,
but the result is easy to obtain physically from a thermodynamic argument: dE = −p dV . If we
say E = ρc2V and V ∝ R3, then

ρ̇c2 = −3(ρc2 + p)Ṙ/R. (284)

We can see that this equation yields ρΛ independent of time: Λ is indeed a cosmological constant.

Alternatively, we can treat this more fully, as an example of the matrix method for obtaining the full
Riemann tensor. In this derivation, we temporarily set c = 1 to make the formulae shorter. To begin, we
write the components of the connection and write them in matrix form, where Γt is the matrix with (µ, ν)
component Γµ

tν etc.

Γt =









. . . .

. Ṙ/R . .

. . Ṙ/R .

. . . Ṙ/R









Γr =









. RṘ/α . .

Ṙ/R kr/α . .
. . 1/r .
. . . 1/r









(285)
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Γθ =









. . ṘRr2 .

. . −αr .

Ṙ/R 1/r . .
. . . cot θ









Γφ =









. . . RṘr2 sin2 θ

. . . −αr sin2 θ

. . . − sin θ cos θ

Ṙ/R 1/r cot θ .









. (286)

The 6 independent Bρσ matrices, (Bρσ)
α
β ≡ Rα

βρσ can be calculated from the matrix equation

Bρσ = ∂ρΓσ − ∂σΓρ + ΓρΓσ − ΓσΓρ , (287)

which yields

Btr =









. R̈R/α . .

R̈/R . . .
. . . .
. . . .









Btθ =









. . R̈Rr2 .

. . . .

R̈/R . . .
. . . .









(288)

Btφ =









. . . R̈Rr2 sin2 θ

. . . .

. . . .

R̈/R . . .









; Brθ =









. . . .

. . r2(Ṙ2 + k) .

. −(Ṙ2 + k)/α . .

. . . .









(289)

Brφ =









. . . .

. . . (Ṙ2 + k) sin2 θ

. . . .

. −(Ṙ2 + k)/α . .









(290)

Bθφ =









. . . .

. . . .

. . . (Ṙ2 + k)r2 sin2 θ

. . −(Ṙ2 + k)r2 .









. (291)

To get the Ricci tensor, first find the non-zero Riemann tensor elements Rα
βρσ = Row α, column β of Bρσ:

Rt
rtr = R̈R/α

Rr
ttr = R̈/R

Rt
θtθ = R̈Rr2

Rθ
ttθ = R̈/R

Rt
φtφ = R̈Rr2 sin2 θ

Rφ
ttφ = R̈/R

Rr
θrθ = (Ṙ2 + k)r2

Rθ
rrθ = −(Ṙ2 + k)/α

Rr
φrφ = (Ṙ2 + k)r2 sin2 θ

Rφ
rrφ = −(Ṙ2 + k)/α

Rθ
φθφ = (Ṙ2 + k)r2 sin2 θ

Rφ
θθφ = −(Ṙ2 + k)r2.

(292)

To get the Ricci tensor, Rαβ = Rµ
αβµ, we need to add elements from the above list, possibly using the

(anti-)symmetry of the Riemann tensor (from anti-symmetry of Bρσ), R
α
βρσ = −Rα

βσρ. After contracting,
we find

Rµν =









3R̈/R . . .
. −A/α . .
. . −Ar2 .
. . . −Ar2 sin2 θ









(293)

where A ≡ RR̈ + 2(Ṙ2 + k). The Ricci scalar is then formed from contraction using the inverse metric,
Rµ

µ = gµνRµν , to give

Rµ
µ = 6

(

R̈

R
+
Ṙ2 + k

R2

)

. (294)

60



The Einstein tensor is then (top-left quarter only), where powers of c are restored:

Gµν =











−3(Ṙ2/c2 + k)/R2 . . .

. α
[

2R̈/Rc2 + (Ṙ2/c2 + k)/R2

]

/R2 . .

. . . . . .

. . . . . .











. (295)

The energy-momentum tensor is Tµν = (ρ + p)uµuν − pgµν , and the 4-velocity of the fluid (in comoving
coordinates) is uµ = (c2,0), so

Tµν =









ρc2 . . .
. αp/R2 . .
. . p/(R2r2) .
. . . p/(R2r2 sin2 θ)









(296)

and so the Einstein field equations Gµν + Λgµν = − 8πG
c4
Tµν come out as before:

Ṙ2 + kc2 − Λ

3
c2R2 =

8πGρ

3
R2

2
R̈

R
+
Ṙ2 + kc2

R2
− Λc2 = −8πGp

c2
.

(297)

13.2.1 Cosmological dynamics

The Friedmann equation reveals the astonishing fact that there is a direct connection between
the density of the universe and its global geometry. The final equation actually looks rather
Newtonian:

Ṙ2/2−GM/R = −kc2/2, (298)

where M = 4πGρR3/3. This is the equation of motion of a particle thrown vertically in the
Earth’s gravity, with −kc2/2 playing the role of the total energy. But the fact that this should
depend on the curvature, k, is an unexpected surprise.

For a given rate of expansion, there is a critical density that will yield k = 0, making the
comoving part of the metric look Euclidean:

ρc =
3H2

8πG
, (299)

where theHubble parameter isH ≡ R′/R. Here, we have absorbed Λ into an effective density
ρΛ = Λc2/8πG, which adds to the total. Because of this, it is common to define a dimensionless
density parameter:

Ω ≡ ρ/ρc =
8πGρ

3H2
. (300)

It is also often convenient to put zero subscripts on these key cosmological parameters, to denote
their present-day values: H0, Ω0. The Friedmann equation can then be rewritten in a more
observational form:

H2(t) + Ω0H
2
0 (ρ(t)/ρ0) = −kc2/R2(t). (301)

We can do two things with this. First, take the equation at t = t0, which gives the curvature
radius of the universe:

R0 = (c/H0) |Ω0 − 1|−1/2. (302)

As Ω0 → 1, the scale factor diverges and the −kc2/2R2 term becomes negligible – so we can in
effect introduce a 3rd solution with k = 0 to represent this limit. Now we can express things in
terms of redshift, since

R(t)/R0 ≡ a(t) = (1 + z)−1, (303)
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where the common notation for the dimensionless scale factor, a(t), has been introduced. We will
also allow for the fact that different constituents of the universe have a different dependence on
scale factor and individual contributions to Ω0. If these scale as some power of R, R−γ , then the
practical form of Friedmann is

H2(z) = H2
0

[

∑

i

Ωi(1 + z)γi + (1− Ω0)(1 + z)2

]

, (304)

where Ω0 is the sum of all the individual Ω’s. H(z) is a critical quantity, since we have seen that
distance is the integral

∫

ct/R(t). Changing variables to redshift, this can be written as

R0χ =

∫

c dz

H(z)
, (305)

so a knowledge of H(z) gives the distance to objects in cosmology.

Thus beyond determining the curvature of the universe, the density also determines the ex-
pansion history. But to solve the Friedmann equation we will need the density as a function of
time, and this evolves. Two obvious constituents of the density are pressureless nonrelativistic
matter and radiation-dominated matter: these have densities that scale respectively as a−3 and
a−4, since the number density of particles is diluted by the expansion, with photons also having
their energy reduced by the redshifting. Finally, we can add a time-independent vacuum den-

sity corresponding to the cosmological constant. Unfortunately, the Friedmann equation cannot
be solved analytically if all three are present, but interesting cases arise with pairs of constituents.
We restrict attention here to the k = 0 flat universe, as the curvature term in the Friedmann
equation is negligible at early times. The solutions look simplest if we appreciate that normaliza-
tion to the current era is arbitrary, so we can choose a = 1 to be at a convenient point where the
densities of two main components cross over. Also, the Hubble parameter at that point (H∗) sets
a characteristic time, from which we can make a dimensionless version τ ≡ tH∗.

Matter and radiation Using dashes to denote d/d(t/τ), we have a′2 = (a−2 + a−1)/2, which
is simply integrated to yield

τ =
2
√
2

3

(

2 + (a− 2)
√
1 + a

)

. (306)

The limits of this expression are

τ ≪ 1 : a = (
√
2τ)1/2.

τ ≫ 1 : a = (3τ/2
√
2)2/3,

(307)

so the universe expands as t1/2 in the radiation era, which which becomes t2/3 once matter domi-
nates. We therefore learn that there must be a big bang: a state of infinite density that lies a
finite time of order 1/H0 in the past – of order 10 billion years. For many years the inability to
say what might have happened before this was the biggest puzzle in cosmology. Today, we have
a candidate theory called the inflationary universe that might answer this question – but it
would take us too far afield to address this here.

Matter and vacuum Here, if k = 0, a′2 = (a−1 + a2)/2, which can be tackled via the substi-
tution y = a3/2, to yield

a =
(

sinh(3τ/2
√
2)
)2/3

. (308)

This transition from the flat matter-dominated a ∝ t2/3 to exponentially expanding de Sitter

space with a ∝ exp(Ht) seems to be the one that describes our actual universe (apart from the
radiation era at z >∼ 104).
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Matter and curvature Here, a dimensionless version of the Friedmann equation is a′2 =
a−1 − k. For k = −1, we get

τ = (a+ a2)1/2 − sinh−1(a1/2), (309)

which tends to undecelerated linear expansion τ = a when both are large. But for k = +1, the
picture is very different:

τ = sin−1(a1/2)− (a− a2)1/2. (310)

So a cannot exceed unity: the universe expands to this maximum value and then recollapses.
Without Λ, closed models recollapse and open ones expand forever.

14 Gravitational waves

Gravitational waves represent distortions of spacetime that can self-propagate: the gravitational
analogue of electromagnetic radiation. We can find them through a weak-field treatment of the
metric, keeping spatial as well as time components. Note: geophysicists get upset if these are
called ‘gravity waves’, which are deep-sea water waves.

Gravitational waves were first detected by aLIGO (advanced Laser Interferometer Gravita-
tional Wave Observatory) in September 2015, heralding a new era in astronomical observations.
This first signal came from two black holes merging, providing direct evidence for the existence
of black holes themselves. A huge effort is currently going into ground and space-based detec-
tors, along with searches for the gravitational wave signature of the Early Universe in the cosmic
microwave background.

We start with a weakly perturbed gravitational field, with gµν = ηµν + hµν where |hµν | ≪ 1,
where in equation (250) we previously derived the first-order approximation to the Ricci tensor:

Rαβ =
1

2
{∂µ∂µhαβ − ∂β∂

µhαµ + ∂β∂αh
µ
µ − ∂α∂µh

µ
β} , (311)

where upper indices are raised by the inverse Minkowski metric, ηαβ . We can write ∂ν∂
ρhβρ =

ηρǫ∂ν∂ǫhβρ = ∂ν∂ǫh
ǫ
β and defining � ≡ ∂ρ∂ρ, we can write

Rβν =
1

2

{

�hβν − ∂ν∂ρh
ρ
β + ∂β∂νh

ρ
ρ − ∂β∂ρh

ρ
ν

}

=
1

2
{�hβν − ∂νωβ − ∂βων} (312)

where

ων ≡ ∂ρh
ρ
ν −

1

2
∂νh

ρ
ρ = ∂ρ

(

hρν −
1

2
ηρνh

)

, (313)

where h denotes the trace hρρ. For a wave propagating through empty space, the Ricci tensor is
zero, Rαβ = 0, and so the equation for the metric perturbation can be written

�hβν = ∂νωβ + ∂βων . (314)

This equation would be simpler and more appealing (just the wave equation) if the terms on
the RHS were absent, i.e. if ων = 0. If we define a new field

h̄µν ≡ hµν − 1

2
ηµνh, (315)

then the condition for making a simplified equation is

∂µh̄
µν = 0. (316)

63



Why should this be so? In general it is a condition that will not hold – but we can make it
so by a suitable coordinate transformation, since we have to satisfy four equations. This is an
example where we exploit the gauge freedom in GR. In the field equations, both Gµν and
Tµν are symmetric, thus defining 10 independent equations for the metric gµν , which also has 10
independent components. But the 10 field equations are not all independent: they are related by
the fact that the 4-divergence of both the Einstein and energy–momentum tensors is zero, We are
then left with four degrees of freedom, reasonably enough: given a solution of the field equations,
we can readily generate another by a change of the coordinate system: xµ → xµ + ǫµ.

An analogous freedom exists in electromagnetism. Maxwell’s equations take the form of
a relativistic wave equation, �Aµ = µ0J

µ, but only if we insist on the Lorenz condition:
∂µA

µ = 0 ⇒ c2∇ ·A = −∂φ/∂t. If we make the same sort of restriction in GR, then the
weak-field gravitational equations take a form very similar to Maxwell’s equations:

�h̄µν = −16πG

c4
Tµν . (317)

This is a wave equation, and it shows that gravitational waves exist and propagate at the speed
of light, as can be argued on very general grounds of causality. In the absence of matter, simple
plane waves h̄µν ∝ exp(ik · x − kct) are a solution to the equation; with matter as a source of
gravitation, the solution is analogous to electromagnetism:

h̄µν = −4G

c4

∫

[Tµν ]

|r− r′| d
3r′, (318)

in terms of the retarded source, indicated by the square brackets.

Although the gauge freedom can be exploited in the case of electromagnetism to impose
∂µA

µ = 0, it is well known that this does not remove the gauge freedom entirely: applying the
transformation Aµ → Aµ + ∂µψ does not change the electric and magnetic fields, and yet any
transformation that satisfies �ψ = 0 will leave the Lorenz condition unchanged. The same situ-
ation exists in GR, where the condition ∂µh̄

µν = 0 is preserved under Lorentz transformations.
We can therefore go further and impose the transverse traceless gauge. This is the gravi-
tational analogue of the Coulomb gauge, which allows electromagnetic radiation in free space to
be described in terms of a vector potential only. In gravity, the corresponding gauge definition is

hµ0 = 0; hµµ = 0. (319)

This name comes from application of the wave equation and the gravitational Lorenz condition
to a wave

h̄µν = Aµνeik
αxα , (320)

which gives respectively
kµkµ = 0

kµAµν = 0.
(321)

The first equation just says that the wave travels at the speed of light (kµ is null); the second
equation says that the wave is spatially transverse, since A00 = 0 in this gauge. Note that, since
h = 0, there is no distinction in this gauge between hµν and h̄µν .

It is interesting to look at the degrees of freedom here. When we factor out the wave behaviour,
we have the 10 constant numbers in the symmetric Aµν matrix. The transverse-traceless gauge
definition supplies 5 constraints on these and the gravitational Lorenz condition supplies 3 (because
the ν = 0 component of kµAµν = 0 is automatically satisfied). Thus there are 2 remaining degrees
of freedom: 2 polarizations of transverse waves.
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14.1 Gravitational waves and tidal strain

Gravitational waves induce tidal forces. We previously saw the equation of geodesic deviation
in the form D2∆xµ/dτ2 = Tµν∆xν , where the tidal tensor is Tµν = Rµαβν ẋ

αẋβ, where ẋα is
the observer’s 4-velocity. We previously obtained an expression for the Riemann tensor in the
weak-field limit (249), which can be written as

Rαµνβ =
1

2
(∂µ∂νhαβ − ∂α∂νhµβ − ∂µ∂βhαν + ∂α∂βhµν) . (322)

Consider a stationary observer, so that Tµν = c2Rµ00ν . The transverse-traceless gauge makes all
terms but the first vanish, yielding

Tµν =
1

2
ḧµν . (323)

Finally, we will take the Newtonian limit of the equation of geodesic deviation by going to a LIF in
which the Γ connection terms in the covariant derivative vanish, and proper time is just the time
coordinate measured at a given particle. Thus the equation of motion for the relative separation
of a pair of particles is

∆ẍi =
1

2
ḧij ∆xj , (324)

and we see that the gravitational wave directly dictates a spatial strain, in which separations
of particles are made to oscillate with an amplitude of order h. Note that the traceless nature of
hij is consistent with the general requirement that the tidal tensor should be traceless (Laplace’s
equation).

For simplicity, choose the propagation direction to be along the z axis: kµ = (ω/c, 0, 0, ω/c).
Then the 0 row and column of T are zero through the TT gauge and the 3 row and column must
be zero to satisfy transversality:

Tµν =









. . . .

. a b .

. b −a .

. . . .









× exp

[

iω

c
(ct− z)

]

(325)

(this form is determined by the requirement that T be traceless and symmetric). The two polar-
isation states correspond to a = 0 and b = 0.

Consider the effect of a passing gravitational wave on a circle of free particles at z = 0, first
with b = 0. The tidal 3-acceleration on the particles is

ẍi = T i
jx

j =





a . .
. −a .
. . .









x
y
z



 exp(iωt)

= a





x
−y
0



 cos(ωt), (326)

where we take the real part of the wave. This wave produces oscillations of the axis of a circle of
free particles along the x and y axes, and is called h+. Figure 8 shows the distortion. We note
that this is the effect on free particles. If the particles are not free, any forces between them will
oppose the force from the gravitational wave.

Similarly, the other polarisation, a = 0, gives

ẍi = T i
jx

j = b





y
x
0



 cos(ωt), (327)
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y

Figure 8: Effect of gravitational wave with + polarisation.

and produces a distortion along directions at an angle π/4 to the axes, as in Figure 9. These are
called h× waves.

x

y

Figure 9: Effect of gravitational wave with × polarisation.

The axes of the polarizations are at an angle π/4 to each other, and the wave is a simultaneous
squashing and stretching, along orthogonal axes, preserving area. As noted, the effect is a strain:
the distortion is proportional to size, motivating large (up to 4 km) detectors on Earth, e.g.
aLIGO. Detectable strains are in the region δx/x ∼ 10−19 − 10−26 for the different experiments,
requiring sophisticated optics. The detection of such small shifts is truly an engineering marvel,
positioning a macroscopic mirror to a precision of about a billionth of the size of an atomic nucleus.
This is achieved by using powerful lasers (so that Poisson errors from finite photon numbers can
be reduced). Along with aLIGO, the French-Italian advanced VIRGO system came online in 2017,
joining LIGO and aiding in sky localisation of gravitational-wave events. Further ground-based
detectors are planned in India and China. These systems are sensitive to waves with frequencies
of around 100–1000 Hz. Lower frequencies are limited by seismic noise and require the stable long
baselines available in space: The European Space Agency (ESA) is developing the eLISA (evolved
Laser Interferometer Space Antenna) mission, which is currently due for launch in 2034.
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14.2 Energy transport by gravitational waves

Through limited lecture time, it is not possible to say too much more about gravitational waves
here. But for completeness it is worth adding a few further details.. The main missing concept in
the treatment so far is the transport of energy by gravitational waves, which clearly happens as the
waves are able to cause the motion of matter particles: the kinetic energy must be created at the
expense of field energy. There ought to exist an energy–momentum tensor that describes the effect
of the waves, but where do we find it in Einstein’s equations? The only explicit energy–momentum
tensor is that of the matter, which vanishes for the case of vacuum radiation, so that the field
equations are then just Gµν = 0. The trick that must be used is to divide the Einstein tensor
into two parts, one of which represents the large-scale properties of spacetime on a scale much
greater than the wavelength of the gravity waves; the remaining part of Gµν can be interpreted
as the energy–momentum tensor of the waves. This is similar to the expansion that was made
previously in obtaining the linear field equations:

gµν = g(B)
µν + hµν , (328)

where (B) denotes the background. The difference now is that the background metric is not
regarded as something static, but as responding to the waves: if Gµν = 0, then the field equation
for the background is

G(B)
µν = −G(h)

µν , (329)

where the rhs is the contribution of the waves to the Einstein tensor. This cannot be accomplished
within linearized theory, since we have previously seen that the linear Ricci tensor vanishes in the
absence of matter. The Einstein tensor is then, to lowest order in h,

Gµν ≃ G(B)
µν +G(2)

µν , (330)

where the (2) superscript denotes the second-order contribution. The effective source term for the
gravity waves is then

TGW

µν =
c4

8πG
G(2)

µν . (331)

This means that it is necessary to expand the Einstein tensor to second order in h, which
is an algebraic exercise that would consume too much space here. The resulting expression for
the higher-order corrections to the Riemann tensor is simplified if it is averaged over several
wavelengths or periods of the waves, to obtain the mean flux of energy (averaging denoted below
by angle brackets), so that terms of odd order in field derivatives vanish (see chapter 35 of Misner,
Thorne & Wheeler 1973). Physically, this means that the energy transport by the waves cannot
be seen clearly on small scales; the same applies in electromagnetism, where the Poynting vector
for a plane wave is not constant, reflecting the oscillating energy density. The final result is the
Landau-Lifshitz pseudotensor

TGW

µν =
c4

32πG

〈

h̄αβ,µh̄
αβ

,ν −
1

2
h̄,µh̄,ν

〉

. (332)

In the TT gauge, things are simpler still, because the second term inside the angle brackets
vanishes. This seems to be on the right lines, as the energy density is quadratic in the field, as we
would expect from the electromagnetic analogy.

Accepting this result, the above linear solutions to the wave equation can be used to obtain
the energy radiated by a given configuration of matter, Tµν . The answer can be made simple in
a general way first by assuming that the observer is in the far field, so that factors of 1/r can be
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taken out of integrals. Also, the fact that the source satisfies the usual conservation law can be
used to recast the source term in terms of the quadrupole moment:

Tµν
,ν = 0 ⇒ T 00

,0 = −T 0i
,i

⇒ T 00
,00 = −T 0i

,i0 = −(T i0
,0 ),i

⇒ T 00
,00 = +T ij

,ij ,

(333)

where roman letters denote spatial components, as usual. The first step uses the time element
of the conservation equation, and the last step uses the spatial elements: T ij

,j + T i0
,0 = 0. Now

[T ijxixj ],ij equals 2T ij + T ij
,ijx

ixj + derivative terms that integrate to zero (because the source
can be made to vanish on the boundary). Using the above result finally yields the quadrupole

formula, which says that the field in terms of the integral over the source is related to the second
time derivative of the inertia tensor:

hij =
4G

c4R

∫

[T ij ] d3x =
4G

c4R

1

2

d2

d(ct)2

∫

[T 00]xixj d3x. (334)

This assembles all the items needed in order to calculate the energy loss rate through gravi-
tational radiation of an oscillating body. The linear solution gives the field in terms of Tµν for the
source, which we have just shown to be related to the time derivatives of the matter quadrupole
moment. Integrating the resulting TGW

µν gives the total energy loss rate. Unfortunately, the amount
of algebra needed to finish the calculation is considerable; see chapter 36 of Misner, Thorne &
Wheeler (1973). The final product is the quadrupole formula, which is the general expression
for the energy lost by an oscillating nonrelativistic source via gravitational radiation:

−Ė =
G

5c5

〈...
I ij

...
I

ij
〉

, (335)

where the 3-tensor Iij is the reduced quadrupole-moment tensor of the source

Iij =

∫

ρ (xixj − r2δij/3) d
3x, (336)

...
I denotes the third time derivative, and the average is over a period of oscillation. It should be
no surprise that the radiation depends on the quadrupole moment; the gravitational analogue of
dipole radiation is impossible owing to conservation of momentum. Whenever a mass is accelerated
in astronomy, another mass or group of masses suffers an equal and opposite change in momentum,
and so any attempt by an individual mass to produce dipole radiation is automatically cancelled.

An important practical application of this is for a binary of massesM1 andM2, orbiting with
separation a around their common centre of gravity. The orbit can be assumed to be circular,
because emission of gravitational radiation will damp any radial oscillations. In this case, the
quadrupole formula reduces to

−Ė =
32

5

G

c5
µ2a4ω6, (337)

where µ = M1M2/(M1 +M2) is the reduced mass, ω is the orbital angular velocity, and Kepler
tells us that ω2 = G(M1 +M2)/a

3. The total energy of the binary is −GM1M2/2a, and the rate
of change in this must equal the power given to gravitational waves. The resulting differential
equation integrates to give

a4 =
256G3

5c5
M1M2(M1 +M2) (−t); (338)

i.e. the binary shrinks to zero size, with a ∝ (−t)1/4, with a suitable origin of time. As a
consequence, the orbital velocity diverges as ω ∝ (−t)−3/8 (although the frequency of gravitational
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waves will be twice this, as the quadrupole moment returns to its starting value after half an orbit).
This can be expressed neatly as

ωGW =
53/8

4

(

GM
c3

)5/8

(−t)−3/8, (339)

where M ≡ ([M1M2]
3/[M1 +M2])

1/5 is the chirp mass, which sets a characteristic timescale
of the process, GM/c3. For M = 30M⊙, this time is about 0.15ms, explaining why the massive
black-hole binaries seen by LIGO involve frequencies of order kHz.

15 Black holes

Although the achievement of detecting gravitational waves is immense, the achievement of LIGO
goes far beyond that, as it is able to probe the operation of gravity in the strong-field regime.
The Newtonian chirp that we derived in the previous section for a binary merger will not persist
to infinite frequency, as the black holes undergoing merging are objects of finite size of order
the Schwarzschild radius, 2GM/c2. When the orbit shrinks to this size, the two black holes
combine into a single more massive object, in a process that can only be calculated by numerical
relativity solving Einstein’s equations in full. The creation of the final object is accompanied
by a ringdown phase, in which the black hole itself oscillates and emits radiation. The
characteristic frequency of this radiation is expected to be of order the Newtonian frequency
where the black holes touch, and the ringdown oscillations damp rapidly, persisting for only a
few periods. Remarkably, all these predicted features were seen in the first LIGO events, taking
the study of GR in one leap from weak fields to strong spacetime curvature, and showing that
Einstein’s theory seems to work even in this regime.

We thus now have abundant evidence that black holes exist and that the Schwarzschild
metric represents a physical reality. In this last Section, we therefore return to this metric and
look in more detail at some of its peculiar properties. We should note that we are studying only
the simplest black holes, which are those characterised purely by mass. Two other degrees of
freedom could be given to the source of the gravitational field: angular momentum (J) and charge
(Q). For Q = 0 but J 6= 0, we have the Kerr metric; for J = 0 but Q 6= 0 we have the
Reissner–Nordstrøm metric; the general case with all three parameters non-zero is the
Kerr-Newman metric. Charge is less important in practice, but the Kerr solution is relevant
for astrophysics, since black holes form by accretion of matter with non-zero angular momentum.
Indeed, LIGO observations have been able to prove that the Kerr solution is required, and not
the Schwarzschild one. The difference between the two solutions depends on the dimensionless
parameter a = Jc/GM2, which has a maximum allowed value of unity; the Schwarzschild solution
is a good approximation if a≪ 1.

The Schwarzschild metric, equation (83), is given by

c2dτ2 =

(

1− 2GM

rc2

)

c2dt2 − dr2

1− 2GM
rc2

− r2
(

dθ2 + sin2 θdφ2
)

, (340)

and its detailed derivation was the subject of a tutorial. You may like to reflect on the fact that
Karl Schwarzschild derived this result in 1915 – when GR was only one month old – while serving
on the Russian front during the First World War; there, he had already contracted the infection
that was to kill him in 1916.

In deriving the metric, we saw that it applied if the matter distribution is (a) spherical;
(b) static; (c) a vacuum at the point of measurement. This general statement, that the static
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spherical vacuum solution of Einstein’s equations is always of the Schwarzschild form, is known
as Birkhoff’s theorem. So really the above equation only applies for radii outside some
minimum defined by the mass distribution. But normally we are happy to let this minimum go
to zero, so that the Schwarzschild metric applies everywhere (except r = 0 itself, where there is
a delta-function in the Einstein tensor). In this case, the metric takes the pithy name coined by
Wheeler in 1967: a Black hole. But even for this point-mass solution, there is a characteristic
length in the form of the Schwarzschild radius,

rs ≡
2GM

c2
. (341)

The behaviour of the metric is rather odd at r = rs, since gtt → 0 and grr → ∞. In fact the
metric is singular at 3 ‘places’: at r = 0 the potential diverges and gtt → ∞ and grr → 0; at
r = rs, gtt → 0 and grr → ∞; and at r → ∞, both gθθ and gφφ → ∞. How should we interpret
these singularities?

The behaviour as r → ∞ is not a problem. Writing the Minkowski metric in spherical polars
gives c2dτ2 = c2dt2 − dr2 − r2

(

dθ2 + sin2 θ dφ2
)

, and we see that two angular metric coefficients
diverge as r → ∞, but these singularities can be removed by using a Cartesian coordinate system.
The singularity as r → ∞ is thus a coordinate singularity. Similarly, we can create coordi-
nate singularities in Minkowski spacetime at small r by using a change of variable: e.g. R = r3/3,
in which case, dr2 = (3R)−4/3dR2, and the metric in terms of R becomes singular at R = 0). In
contrast, a physical singularity would correspond to the divergence of some invariant such as the
Ricci scalar Rµ

µ. We need to look more closely at the remaining Schwarzschild singularities to
see which class they fall into.

15.1 The singularity at rs

15.1.1 Radial trajectories of massless particles into a black hole

Consider the Lagrangian-squared for a photon travelling along a radial (dθ = dφ = 0) null (dτ2 =
0) geodesic:

L2 =

(

1− 2GM

rc2

)

c2ṫ2 −
(

1− 2GM

rc2

)−1

ṙ2, (342)

where as usual a dot denotes differentiation with respect to some affine parameter, p. Using the
ELII equations (70), we get

d

dp

[(

1− 2GM

rc2

)

cṫ

]

= 0,

(

1− 2GM

rc2

)

ṫ = k = constant. (343)

Substituting this into equation (342) for a massless particle, where L2 = 0, we get

ṙ2 = c2k2. (344)

This is the energy equation for a massless particle on a radial trajectory, and hence

ṙ = ±c|k|, (345)

for incoming and outgoing particles. The velocity of the photon measured by a distant observer
is

dr

dt
=
ṙ

ṫ
= ±c

(

1− rs
r

)

, (346)
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Region II

ct

rr=rsr=0

Region I

Figure 10: Geodesics and future light cones, near the Schwarzschild radius.

which has two solutions:
ct = ±(r + rs ln |r − rs|+ constant). (347)

For r > rs, the positive solution is an outgoing photon, the negative solution ingoing.

In a spacetime diagram using the coordinates laid down by a distant observer, we can present
the light cone structure as shown in Figure 10. The set of ingoing and outgoing geodesics
(known collectively as a null congruence) define the boundaries of the light cones in r − t
space. Far from the centre, these take the 45◦ form of Minkowski spacetime. As we approach
r = rs from larger r (region I), the light cones narrow to become parallel to the t axis. Thus in
terms of coordinate time t, light signals in region I take an infinite time to reach rs: information
about what has fallen into a black hole remains on its surface. Conversely, in region II inside the
Schwarzschild radius, the light cones tip over and point towards r = 0. All light signals generated
at r < rs must move towards r = 0 and cannot move outwards to r > rs.

Because light signals cannot escape from region II, r = rs is called an event horizon: it
marks the boundary of events that can ever be detected in the future. In a general spacetime this
can be difficult to compute because of having to consider all possible geodesics; but in the very
simple metric considered here it boils down to

grr → ∞. (348)

Thus for finite time intervals as measured by a local observer at rest, dr → 0 (c2dτ2 = gttc
2dt2 −

grrdr
2 = 0, and gttdt

2 = dt2local). By symmetry, if a geodesic is unable to cross r = 2GM/c2 at
one location, it cannot cross anywhere, so any local condition we deduce will apply to the whole
surface.

It is interesting to look at the two solutions inside rs. For the ingoing congruence, ct decreases
as r decreases (see diagram), which seems paradoxical. But we can define an alternative time
coordinate by

ct′ = ct+ rs ln |r − rs|, (349)

in terms of which the ingoing and outgoing null geodesics are

ct′ = −r + constant

ct′ = r + 2rs ln |r − rs|+ constant. (350)
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Figure 11: Geodesics and future light cones, near the Schwarzschild radius, in Advanced
Eddington-Finkelstein coordinates. [Taken from Hobson, Efstathiou & Lasenby].

The resulting coordinates are called Advanced Eddington-Finkelstein coordinates,
which are plotted in Figure 11. In this system, the light cones look more sensible, tipping over
continuously as they cross the Schwarzschild radius, while the apparent singularity at r = rs
disappears.

15.1.2 The infinite redshift surface

At the Schwarzschild radius the time part of the metric vanishes, so that gtt = 0. For a stationary
emitter at r, its proper time interval dτ is related to the coordinate time interval dt, by

c2dτ2 = gttc
2dt2 = c2dt2

(

1− 2GM

rc2

)

. (351)

At r = rs, gtt → 0, so dτ/dt→ 0, and the ratio of emitted to observed frequency (at infinity) is

1 + z =
dt

dτ
=

νemitted

νobserved
→ ∞. (352)

(Note: the observed dt is the same as the emitted dt – see section 4.5). gtt = 0 is therefore an
infinite redshift surface. This and the event horizon coincide for a Schwarzschild black hole,
but not in general (they do not coincide in the case of the spinning Kerr black hole).

15.1.3 Radial trajectories of massive particles into a black hole

We can get a different perspective on the properties of the event horizon by asking what we would
see if we were unfortunate enough to fall in to a black hole. For a massive particle L2 = c2, so
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equation (342) gives
(

1− rs
r

)

c2ṫ2 −
(

1− rs
r

)−1
ṙ2 = c2, (353)

where now the dot indicates derivative w.r.t. proper time τ . The ELII equation for t gives the
same constraint as equation (343), hence

ṙ2 = c2k2 − c2
(

1− rs
r

)

. (354)

For simplicity, let us choose k = 1 for a particle with zero speed at infinity, for which

(

dr

dτ

)2

= ṙ2 = c2
rs
r
, (355)

which has the solution

cτ = ±2

3
rs (r/rs)

3/2, (356)

where the origin of proper time is chosen to be τ = 0 at r = 0. Nothing strange happens on crossing
the event horizon, confirming the artificial nature of the singularity there, and an observer who
has fallen from infinity reaches the centre in a proper time τ = 2rs/3c after crossing the horizon.
Here, the observer meets a true singularity of divergent curvature, and will be destroyed by infinite
tidal forces. There will also be tides at all points of the infalling trajectory, but if the mass is
large enough (above about 105M⊙) then they will not be a danger to life at r = rs.

In the above equation, the minus sign corresponds to ingoing trajectories – but there is also
the possibility of outgoing trajectories that are the time-reversed versions of the ingoing ones. This
is quite reasonable in general, as the geodesic equation of motion is second order in time. Despite
our discussion of the behaviour of light cones when analysed in coordinate time, it therefore seems
that an observer can escape from inside the Schwarzschild radius. The behaviour in terms of
coordinate time in part reflects the limitations of that coordinate. It is the time ticked by a clock
at infinity, and is a reasonable description of events in region I, but not inside the horizon.

In terms of coordinate time t, the apparent velocity of the infalling observer is

v =
dr

dt
=
ṙ

ṫ
= ±c

(rs
r

)1/2 (

1− rs
r

)

, (357)

which vanishes as r → rs. Since t is the proper time of a stationary observer at infinity, as far
as they are concerned, the particle never crosses the event horizon. In principle, we could verify
that it is still there by programming it to emit a photon radially outwards at some very large
time in the future; but this is not practical, since the body crosses the event horizon after a finite
proper time. If it releases photons at anything like a constant proper rate, there will be a last
photon emitted prior to crossing, and external observers will receive no further information. If
we cannot receive signals that the ‘hovering’ body emits, can we verify its presence directly by
sending a rocket to retrieve the body? The answer is no: even travelling at the speed of light, it
is impossible to catch up with a falling body once it has been left to fall for a critical time. This
is not surprising: time dilation freezes the infall close to the horizon, but as the rescue mission
approaches the horizon, this relative time dilation is lessened, unfreezing the infalling body.

These arguments show that a body undergoing gravitational collapse (such as a massive star
at the end of its lifetime) will rapidly become equivalent in all practical terms to a pre-existing
Schwarzschild black hole. The existence of time-reversed solutions shows that in principle this
Schwarzschild metric may at some time in the future emit material, which would then be termed
a white hole. But this is hardly a practical possibility, as it requires outgoing initial conditions
to be set at r = 0.
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Figure 12: A diagram of the maximally extended Schwarzschild spacetime, as expressed in Kruskal-
Szkeres coordinates. Light cones are all orientated at 45◦ in this coordinate system. Regions I &
II correspond to the exterior and interior of the black hole, and light cannot escape from the latter
region. But now we add the white-hole region IV, which also contains a singularity at r = 0, from
which light can escape into region I. But there is also region III, which is apparently a distinct
universe that is asymptotically Minkowski. [taken from Ohanian & Ruffini].

15.2 Kruskal-Szekeres coordinates

We have clarified that r = rs is just a coordinate singularity for a distant observer in the
Schwarzschild metric, but the discussion of ingoing and outgoing geodesics has revealed some
paradoxical features depending on the time coordinate we use. To try to clarify this, we can in-
troduce Kruskal-Szekeres coordinates, in which light cones have a behaviour that closely
parallels that of Minkowski spacetime.

The new time and space coordinates are

v =

∣

∣

∣

∣

r

rs
− 1

∣

∣

∣

∣

1/2

er/2rs sinh

(

ct

2rs

)

, (358)

u =

∣

∣

∣

∣

r

rs
− 1

∣

∣

∣

∣

1/2

er/2rs cosh

(

ct

2rs

)

, (359)

for r > rs, and sinh ↔ cosh for r < rs, in terms of which the metric becomes

c2dτ2 = 4r2s
rs
r
e−r/rs

(

dv2 − du2
)

− r2
(

dθ2 + sin2 θdφ2
)

, (360)

where the time-like and space-like nature of v and u is apparent. The coordinate definitions give

u2 − v2 = (r/rs − 1) er/rs , (361)

where lines of constant r lie on hyperbolae, and

v

u
= tanh

(

ct

2rs

)

, (362)
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where different time slices lie on straight lines in the v-u plane with different slopes. For a photon
travelling along a radial null geodesic (dθ = dφ = 0 and dτ = 0), the metric reduces to dv2 = du2

and
u = ±(v + const), (363)

showing that light cones are at 45◦ in these coordinates.

Inspection of the definition of the u − v coordinates shows that the whole of the region
0 < r < ∞, −∞ < t < ∞ is covered by the region above the diagonal line v = −u (for r > rs, u
is positive and v ranges from +u to −u; for r < rs, v is positive and u ranges from +v to −v).
But there seems no reason not to consider the reflection of this region: r depends on u2−v2 and t
on v/u, so a double sign change would leave r and t unaltered. If we extend the spacetime to the
full u − v plane in this way, it splits into 4 parts separated by r = rs and t = ±∞, where v and
u are well-behaved (see Figure 12). Region I, where r > rs and −∞ < t < ∞, is asymptotically
Minkowski space, while Region II is inside the Schwarzschild radius, r < rs. An observer in Region
I would see the t = −∞ Schwarzschild surface, but if they fell into the black hole they would cross
the t = ∞ event horizon, which they would only see after passing through it. Region IV is the
interior to a White Hole, which appears to occupy the same space as the black hole, but is
time-reversed and bounded by t = −∞. Region III is a second asymptotic Minkowski space where
time appears reversed, which can be seen upon passing through the black hole event horizon, but
cannot be entered from region II. Finally, the geometry of lines of constant v form an Einstein-

Rosen Bridge, a non-traversable wormhole, between the two Minkowski spacetimes. This
solution has received much exposure in popular literature, but it must be emphasised that the
extension of the geometry is not required, and we have no reason to think that the region-III
‘universe’ exists, much less that it might represent a different part of our own external spacetime.

To journey further into Black Holes, see Andrew Hamilton’s excellent animations and expla-
nations at https://jila.colorado.edu/∼ajsh/insidebh
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16 Final remarks

In this introduction to General Relativity, we have developed the physical principles on which the
theory is based – the Equivalence Principle, and the Principle of General Covariance. We have
looked at applications to orbits, the precessing of perihelion, the bending of light in a gravitational
field, and time delay, all based on the idea that spacetime has a metric structure. We have intro-
duced Riemann’s description of intrinsic spacetime curvature, and shown that the Riemann tensor
provides a natural relativistic counterpart to Newtonian tidal forces, leading to the formulation
of Einstein’s gravitational field equations in terms of the Riemann tensor. The generation of this
theory, based on a marriage of intuitive simplicity and general mathematical principles, must rank
as one of the supreme achievements of human creativity.

GR has practical applications in the Global Positioning System (GPS), and satellite naviga-
tion. It has major applications in cosmology where it is needed not only for cosmological models,
but also in understanding structure formation and evolution, the Early Universe, and the vacuum
density as the explanation of the accelerating Universe. With the detection of gravitational waves,
a new window on the Universe has now opened – which will allow us to see into the most extreme
of objects and back to the earliest times. This revolution must be considered one of the most
impressive achievements of experimental physics, overshadowing even the detection of the Higgs
boson.

GR is not the last word in gravity, however. Alternative field equations have been proposed
and generally fail to match observations any better than the simplest theory. But Einstein’s
theory only describes the classical gravitational field, and the final challenge will be to attain a
quantum theory of gravity. Some progress in this direction has been made: for example, Feynman
took the linearised theory of gravitational waves and showed that gravitational forces in this limit
corresponded to the exchange of spin-2 gravitons – the spin reflecting the tensor nature of
the field, just as vector fields are spin 1 and scalar fields are spin 0. But it is known that this
linearised quantum theory is divergent at higher orders of perturbation theory, to an extent that
cannot be made finite by renormalization in the same way that is successful in quantum
electrodynamics. The reaction of most physicists is therefore that Einstein gravity can only be
an effective theory, which is valid for large scales and low energies. An analogy would be the
Fermi theory of the weak interaction; this is also not renormalizable, but becomes so because the
nature of the theory changes at high energies where the existence of the W and Z bosons becomes
apparent. Most probably something analogous will happen with gravitation, but after a century
of effort we are still far from having definite ideas about the next step beyond Einstein’s wonderful
legacy.
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