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1. If we have a function u(x, t), we may do a partial Fourier Transform, changing x to k but
leaving t in the equations. Ths approach is useful because of the following result:

FT

[

∂u(x, t)

∂t

]

=
∂ũ(k, t)

∂t
.

Show this (you can probably fit it on one line).

2. Consider the 1D wave equation
∂2u

∂x2
=

1

c2
∂2u

∂t2
,

with boundary conditions at t = 0 that u(x, t) = e−a|x| for some a > 0, and ∂u(x, t)/∂t = 0.
(a) By applying a Fourier Transform with respect to x, show that the FT of the general
solution is of the form

ũ(k, t) = A(k)e−ikct + B(k)eikct.

(b) Show that at t = 0,

ũ(k, 0) =
2a

a2 + k2
.

(c) Hence, applying the boundary conditions, show that

ũ(k, t) =
a

a2 + k2

(

e−ickt + eickt
)

.

Note that you will need to argue that the boundary condition on ∂u/∂t also applies to each
Fourier component individually.

(d) Finally deduce that

u(x, t) =
1

2

(

e−a|x−ct| + e−a|x+ct|
)

.
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3. Consider the 1D diffusion equation for the temperature u(x, t),

∂2u

∂x2
= κ

∂u

∂t
,

where the initial condition is that u(x, t = 0) = φ(x).

(a) Take the Fourier Transform with respect to x, i.e.

ũ(k, t) =

∫ ∞

−∞

u(x, t)e−ikx dx.

Note that the transform is still a function of t. Show that it obeys

∂ũ(k, t)

∂t
= −

k2

κ
ũ(k, t).

(b) Treating k as a constant so far as the time coordinate is concerned, use an integrating
factor to find

ũ(k, t) = f̃(k)e−k2t/κ,

for some (arbitrary) function f̃(k).

(c) From the initial condition u(x, 0) = φ(x) show that

f̃(k) = φ̃(k) ⇒ ũ(k, t) = φ̃(k)e−k2t/κ.

(d) Using the result that the FT of e−κx2/(4t) is
√

4πt/κe−k2t/κ, show using the convolution
theorem that the general solution for u(x, t) in terms of φ(x) is

u(x, t) =

√
κ√
4πt

∫ ∞

−∞

e−κ(x−x′)2/(4t)φ(x′) dx′.

(e) If φ(x) = δ(x− 1), what is u(x, t)?

4. The charge density ρ and the electrostatic potential Φ are related by Poisson’s equation

∇2Φ(x) = −
ρ(x)

ε0
,

where we assume that there is no time dependence. Treating this as a one-dimension problem
(so ∇2 → d2/dx2), show using a Fourier Transform that a Gaussian potential

Φ(x) = e−x2/(2σ2)

is sourced by a charge density field

ρ(x) =
ε0
σ2

e−x2/(2σ2)

(

1−
x2

σ2

)

.

In doing this, you will demonstrate that
∫ ∞

−∞

dk

2π
k2e−k2σ2/2eikx =

1√
2πσ3

e−x2/(2σ2)

(

1−
x2

σ2

)

.

Verify the solution by direct differentiation of Φ(x).

You may assume that the Fourier Transform of e−x2/(2σ2) is
√
2πσ e−k2σ2/2, and that

∫∞

−∞ e−u2/2du =√
2π. (This method is more often used in reverse, where ρ is known and you want Φ).
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5. [Hint: do all of this in Cartesian coordinates – do not be tempted to use spherical polars,
despite the symmetry of the problem].

The charge density ρ and the electrostatic potential Φ are related by Poisson’s equation

∇2Φ(r) = −
ρ(r)

ε0
,

where we assume that there is no time dependence. Treating this now as a 3D problem (so
∇2 → ∂2/∂x2+∂2/∂y2+∂2/∂z2), show using a Fourier Transform that a Gaussian potential

Φ(r) = e−r2/(2σ2)

(where r2 = x2 + y2 + z2) has a charge density FT given by

ρ̃(k) = (2π)3/2σ3ε0 k
2e−k2σ2/2,

where k2 = k2
x + k2

y + k2
z .

and so the potential is sourced by a charge density field

ρ(r) =
ε0
σ2

(

3−
r2

σ2

)

e−r2/(2σ2).

You may assume that the Fourier Transform (w.r.t. x, → kx ) of e−x2/(2σ2) is
√
2πσ e−k2

x
σ2/2,

and that
∫∞

−∞ e−u2/2du =
√
2π. You can also assume the inverse FT of k2e−k2σ2/2 which you

proved in the above question. [Hint: you will be faced with an integral with 3 terms in it
(involving k2

x + k2
y + k2

z). Do one of them only, and engage brain to write down the answer
for the other two without doing more algebra].
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