

Fourier Analysis

Workshop 1: Fourier Series

Professor John A. Peacock School of Physics and Astronomy jap@roe.ac.uk

Session: 2014/15

23rd & 26th September 2014

1. By writing $\sin A$ and $\cos B$ in terms of exponentials, prove that

$$2\sin A\cos B = \sin(A+B) + \sin(A-B).$$

2. If f(x) and g(x) are periodic with fundamental period X, show that the following are also periodic with the same period:

(a)
$$h(x) = a f(x) + b g(x)$$

(b)
$$j(x) = c f(x) g(x)$$

where a, b, c are constants.

3. Find the fundamental periods for the following functions:

(a)
$$\cos 2x$$

$$(b) 3\cos 3x + 2\cos 2x$$

(c)
$$\cos^2 x$$

(d)
$$|\cos x|$$

(e)
$$\sin^3 x$$
.

4. Show that

$$\int_{-L}^{L} dx \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) = \begin{cases} 0 & m \neq n \\ L & m = n \end{cases}$$

- **5.** (a) Sketch $f(x) = (1 + \sin x)^2$ and determine its fundamental period.
 - (b) Using a trigonometric identity for $\sin^2 x$ in terms of $\cos 2x$, write down the Fourier Series for f(x) (don't do any integrals to obtain the coefficients).
- **6.** Show that the Fourier Series expansion of the periodic function

$$f(x) = \begin{cases} -1 & -\pi < x < 0 \\ +1 & 0 < x < \pi \end{cases}$$

is

$$f(x) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin[(2k+1)x]}{2k+1}.$$

- **7.** Consider the function $f(x) = |\cos x|$.
 - (a) What is its fundamental period?
 - (b) Sketch the function for $-2\pi < x < 2\pi$
 - (c) Show that the Fourier Series expansion for f(x) is

$$f(x) = \frac{2}{\pi} + \frac{4}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{4m^2 - 1} \cos(2mx).$$