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Fourier Analysis

Workshop 1: Fourier Series
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1. By writing sinA and cosB in terms of exponentials, prove that

2 sinA cosB = sin(A+B) + sin(A� B).

2. If f(x) and g(x) are periodic with fundamental period X, show that the following are also
periodic with the same period:
(a) h(x) = a f(x) + b g(x)
(b) j(x) = c f(x) g(x)
where a, b, c are constants.

3. Find the fundamental periods for the following functions:
(a) cos 2x
(b) 3 cos 3x+ 2 cos 2x
(c) cos2 x
(d) | cos x|
(e) sin3 x.

4. Show that
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5. (a) Sketch f(x) = (1 + sin x)2 and determine its fundamental period.
(b) Using a trigonometric identity for sin2 x in terms of cos 2x, write down the Fourier Series
for f(x) (don’t do any integrals to obtain the coe�cients).

6. Show that the Fourier Series expansion of the periodic function

f(x) =

⇢
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is
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2k + 1
.

7. Consider the function f(x) = | cos x|.
(a) What is its fundamental period?
(b) Sketch the function for �2⇡ < x < 2⇡
(c) Show that the Fourier Series expansion for f(x) is
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4m2 � 1
cos(2mx).
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