
FOURIER ANALYSIS: LECTURE 15

9 Green’s functions

9.1 Response to an impulse

We have spent some time so far in applying Fourier methods to solution of di↵erential equations
such as the damped oscillator. These equations are all in the form of

Ly(t) = f(t), (9.169)

where L is a linear di↵erential operator. For the damped harmonic oscillator, L = (d2/dt2 +
�d/dt + !2

0

). As we know, linearity is an important property because it allows superposition:
L(y

1

+ y
2

) = Ly
1

+Ly
2

. It is this property that lets us solve equations in general by the method of
particular integral plus complementary function: guess a solution that works for the given driving
term on the RHS, and then add any solution of the homogeneous equation Ly = 0; this is just
adding zero to each side, so the sum of the old and new y functions still solves the original equation.

In this part of the course, we focus on a very powerful technique for finding the solution to such
problems by considering a very simple form for the RHS: an impulse, where the force is concentrated
at a particular instant. A good example would be striking a bell with a hammer: the subsequent
ringing is the solution to the equation of motion. This impulse response function is also called a
Green’s function after George Green, who invented it in 1828 (note the apostrophe: this is not a
Green function). We have to specify the time at which we apply the impulse, T , so the applied
force is a delta-function centred at that time, and the Green’s function solves

LG(t, T ) = �(t� T ). (9.170)

Notice that the Green’s function is a function of t and of T separately, although in simple cases it
is also just a function of t� T .

This may sound like a peculiar thing to do, but the Green’s function is everywhere in physics. An
example where we can use it without realising is in electrostatics, where the electrostatic potential
satisfies Poisson’s equation:

r2� = �⇢/✏
0

, (9.171)

where ⇢ is the charge density. What is the Green’s function of this equation? It is the potential
due to a unit charge at position vector q (leaving aside the factor ✏

0

):

G(r, q) =
1

4⇡|r � q| . (9.172)

9.2 Superimposing impulses

The reason it is so useful to know the Green’s function is that a general RHS can be thought of
as a superposition of impulses, just as a general charge density arises from summing individual
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point charges. We have seen this viewpoint before in interpreting the sifting property of the delta-
function. To use this approach here, take LG(t, T ) = �(t � T ) and multiply both sides by f(T )
(which is a constant). But now integrate both sides over T , noting that L can be taken outside the
integral because it doesn’t depend on T :

L

Z

G(t, T )f(T ) dT =

Z

�(t� T )f(T ) dT = f(t). (9.173)

The last step uses sifting to show that indeed adding up a set of impulses on the RHS, centred at
di↵ering values of T , has given us f(t). Therefore, the general solution is a superposition of the
di↵erent Green’s functions:

y(t) =

Z

G(t, T )f(T ) dT. (9.174)

This says that we apply a force f(T ) at time T , and the Green’s function tells us how to propagate
its e↵ect to some other time t (so the Green’s function is also known as a propagator).

9.2.1 Importance of boundary conditions

When solving di↵erential equations, the solution is not unique until we have applied some boundary
conditions. This means that the Green’s function that solves LG(t, T ) = �(t � T ) also depends
on the boundary conditions. This shows the importance of having boundary conditions that are
homogeneous: in the form of some linear constraint(s) being zero, such as y(a) = y(b) = 0, or y(a) =
ẏ(b) = 0. If such conditions apply to G(t, T ), then a solution that superimposes G(t, T ) for di↵erent
values of T will still satisfy the boundary condition. This would not be so for y(a) = y(b) = 1,
and the problem would have to be manipulated into one for which the boundary conditions were
homogeneous – by writing a di↵erential equation for z ⌘ y � 1 in that case.

9.3 Finding the Green’s function

The above method is general, but to find the Green’s function it is easier to restrict the form of the
di↵erential equation. To emphasise that the method is not restricted to dependence on time, now
consider a spatial second-order di↵erential equation of the general form

d2y

dx2

+ a
1

(x)
dy

dx
+ a

0

(x)y(x) = f(x). (9.175)

Now, if we can solve for the complementary function (i.e. solve the equation for zero RHS), the
Green’s function can be obtained immediately. This is because a delta function vanishes almost
everywhere. So if we now put f(x) ! �(x � z), then the solution we seek is a solution of the
homogeneous equation everywhere except at x = z.

We split the range into two, x < z, and x > z. In each part, the r.h.s. is zero, so we need to solve
the homogeneous equation, subject to the boundary conditions at the edges. At x = z, we have to
be careful to match the solutions together. The � function is infinite here, which tells us that the
first derivative must be discontinuous, so when we take the second derivative, it diverges. The first
derivative must change discontinuously by 1. To see this, integrate the equation between z � ✏ and
z + ✏, and let ✏ ! 0:

Z

z+✏

z�✏

d2y

dx2

dx+

Z

z+✏

z�✏

a
1

(x)
dy

dx
dx+

Z

z+✏

z�✏

a
0

(x)dx =

Z

z+✏

z�✏

�(x� z)dx. (9.176)
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The second and third terms vanish as ✏ ! 0, as the integrands are finite, and the r.h.s. integrates
to 1, so

dy

dx

�

�

�

�

z+✏

� dy

dx

�

�

�

�

z�✏

= 1. (9.177)

Note that the boundary conditions are important. If y = 0 on the boundaries, then we can add up
the Green’s function solutions with the appropriate weight. If the Green’s function is zero on the
boundary, then any integral of G will also be zero on the boundary and satisfy the conditions.

9.3.1 Example

Consider the di↵erential equation
d2y

dx2

+ y = x (9.178)

with boundary conditions y(0) = y(⇡/2) = 0.

The Green’s function is continuous at x = z, has a discontinuous derivative there, and satisfies the
same boundary conditions as y. From the properties of the Dirac delta function, except at x = z,
the Green’s function satisfies

d2G(x, z)

dx2

+G(x, z) = 0. (9.179)

(Strictly, we might want to make this a partial derivative, at fixed z. It is written this way so it
looks like the equation for y). This is a harmonic equation, with solution

G(x, z) =

⇢

A(z) sin x+B(z) cosx x < z
C(z) sin x+D(z) cosx x > z.

(9.180)

We now have to adjust the four unknowns A,B,C,D to match the boundary conditions.

The boundary condition y = 0 at x = 0 means that B(z) = 0, and y = 0 at x = ⇡/2 implies that
C(z) = 0. Hence

G(x, z) =

⇢

A(z) sin x x < z
D(z) cosx x > z.

(9.181)

Continuity of G implies that A(z) sin z = D(z) cos z and a discontinuity of 1 in the derivative implies
that �D(z) sin z�A(z) cos z = 1. We have 2 equations in two unknowns, so we can eliminate A or
D:

� A(z)
sin2 z

cos z
� A(z) cos z = 1 ) A(z) =

� cos z

sin2 z + cos2 z
= � cos z (9.182)

and consequently D(z) = � sin z. Hence the Green’s function is

G(x, z) =

⇢

� cos z sin x x < z
� sin z cos x x > z

(9.183)

The solution for a driving term x on the r.h.s. is therefore (be careful here with which solution for
G to use: the first integral on the r.h.s. has x > z)

y(x) =

Z

⇡/2

0

z G(x, z) dz = � cos x

Z

x

0

z sin z dz � sin x

Z

⇡/2

x

z cos z dz. (9.184)

Integrating by parts,

y(x) = (x cos x� sin x) cosx� 1

2
(⇡ � 2 cosx� 2x sin x) sin x = x� ⇡

2
sin x. (9.185)
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9.4 Summary

So to recap, the procedure is to find the Green’s function by

• replacing the driving term by a Dirac delta function

• solving the homogeneous equation either side of the impulse, with the same boundary condi-
tions e.g. G = 0 at two boundaries, or G = @G/@x = 0 at one boundary.

• Note the form of the solution will be the same for (e.g.) x < z and x > z, but the coe�cients
(strictly, they are not constant coe�cients, but rather functions of z) will di↵er either side of
x = z).

• matching the solutions at x = z (so G(x, z) is continuous).

• introducing a discontinuity of 1 in the first derivative @G(x, z)/@x at x = z

• integrating the Green’s function with the actual driving term to get the full solution.

FOURIER ANALYSIS: LECTURE 16

9.5 Example with boundary conditions at the same place/time

A mouse wishes to steal a piece of cheese from an ice-rink at the winter olympics. The cheese,
which has a mass of 1 kg, is conveniently sitting on a frictionless luge of negligible mass. The mouse
attaches a massless string and pulls, starting at t = 0. Unfortunately the mouse gets tired very
quickly, so the force exerted declines rapidly f(t) = e�t (SI units). Find, using Green’s functions,
the resulting motion of the cheese, z(t) and its terminal speed.

The equation to be solved is
d2z

dt2
= e�t. (9.186)

Since the cheese is ‘sitting’ on the luge, we take the boundary conditions to be

z = 0;
dz

dt
= 0 at t = 0. (9.187)

We can, of course, solve this equation very easily simply by integrating twice, and applying the
boundary conditions. As an exercise, we are going to solve it with Green’s functions. This also
makes the point that there is often more than one way to solve a problem.

For an impulse at T , the Green’s function satisfies

@G(t, T )

@t2
= �(t� T ) (9.188)

so for t < T and t > T the equation to be solved is @2G/@t2 = 0, which has solution

G(t, T ) =

⇢

A(T )t+B(T ) t < T
C(T )t+D(T ) t > T

(9.189)
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Now, we apply the same boundary conditions. G(t = 0) = 0 ) B = 0. The derivative G0(t = 0) =
0 ) A = 0, so G(t, T ) = 0 for t < T . This makes sense when one thinks about it. We are applying
an impulse at time T , so until the impulse is delivered, the cheese remains at rest.

Continuity of G at t = T implies
C(T )T +D(T ) = 0, (9.190)

and a discontinuity of 1 in the derivative at T implies that

C(T )� A(T ) = 1. (9.191)

Hence C = 1 and D = �T and the Green’s function is

G(t, T ) =

⇢

0 t < T
t� T t > T

(9.192)

The full solution is then

z(t) =

Z 1

0

G(t, T )f(T )dT (9.193)

where f(T ) = e�T . Hence

z(t) =

Z

t

0

G(t, T )f(T )dT +

Z 1

t

G(t, T )f(T )dT. (9.194)

The second integral vanishes, because G = 0 for t < T , so

z(t) =

Z

t

0

(t� T )e�TdT = t
⇥

�e�T

⇤

t

0

�
⇢

⇥

�Te�T

⇤

t

0

+

Z

t

0

e�TdT

�

(9.195)

which gives the motion as
z(t) = t� 1 + e�t. (9.196)

We can check that z(0) = 0, that z0(0) = 0, and that z00(t) = e�t. The final speed is z0(t ! 1) = 1,
so the cheese moves at 1 m s�1 at late times. Note that this technique can solve for an arbitrary
driving term, obtaining the solution as an integral. This can be very useful, even if the integral
cannot be done analytically, as a numerical solution may still be useful.

9.6 Causality

The above examples showed how the boundary conditions influence the Green’s function. If we are
thinking about di↵erential equations in time, there will often be a di↵erent boundary condition,
which is set by causality. For example, write the first equation we considered in a form that
emphasises that it is a harmonic oscillator:

G̈(t, T ) + !2

0

G(t, T ) = �(t� T ). (9.197)

Since the system clearly cannot respond before it is hit, the boundary condition for such applications
would be expected on physical grounds to be

G(t, T ) = 0 (t < T ). (9.198)

Whether or not such behaviour is achieved depends on the boundary conditions. Our first example
did not satisfy this criterion, because the boundary conditions were of the form y(a) = y(b) = 0.
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This clearly presents a problem if T is between the points a and b: it’s as if the system knows
when we will strike the bell, or how hard, in order that the response as some future time t = b
will vanish. In contrast, our second example with boundary conditions at a single point ended up
yielding causal behaviour automatically, without having to put it in by hand.

The causal Green’s function is particularly easy to find, because we only need to think about the
behaviour at t > T . Here, the solution of the homogeneous equation is A sin!

0

t+B cos!
0

t, which
must vanish at t = T . Therefore it can be written as G(t, T ) = A sin[!

0

(t � T )]. The derivative
must be unity at t = T , so the causal Green’s function for the undamped harmonic oscillator is

G(t, T ) =
1

!
0

sin[!
0

(t� T )]. (9.199)

9.6.1 Comparison with direct Fourier solution

As a further example, we can revisit again the di↵erential equation with the opposite sign from the
oscillator:

d2z

dt2
� !2

0

z = f(t). (9.200)

We solved this above by taking the Fourier transform of each side, to obtain

z(t) = � 1

2⇡

Z 1

�1

f̃(!)

!2

0

+ !2

ei!t d!. (9.201)

We then showed that this is in the form of a convolution:

z(t) = � 1

2!
0

Z 1

�1
f(T )e�!0|t�T | dT. (9.202)

This looks rather similar to the solution in terms of the Green’s function, so can we say that
G(t, T ) = � exp(�!

0

|t�T |)/2!
0

? Direct di↵erentiation gives Ġ = ± exp(�!
0

|t�T |)/2, with the +
sign for t > T and the � sign for t < T , so it has the correct jump in derivative and hence satisfies
the equation for the Green’s function.

But this is a rather strange expression, since it is symmetric in time: a response at t can precede
T . The problem is that we have imposed no boundary conditions. If we insist on causality, then
G = 0 for t < T and G = A exp[!

0

(t � T )] + B exp[�!
0

(t � T )] for t > T . Clearly A = �B, so
G = 2A sinh[!

0

(t� T )]. This now looks similar to the harmonic oscillator, and a unit step in Ġ at
t = T requires

G(t, T ) =
1

!
0

sinh[!
0

(t� T )]. (9.203)

So the correct solution for this problem will be

z(t) =
1

!
0

Z

t

�1
f(T ) sinh[�!

0

(t� T )] dT. (9.204)

Note the changed upper limit in the integral: forces applied in the future cannot a↵ect the solution
at time t. We see that the response, z(t), will diverge as to increases, which is physically reasonable:
the system has homogeneous modes that either grow or decline exponentially with time. Special
care with boundary conditions would be needed if we wanted to excite only the decaying solution
– in other words, this system is unstable.
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