
f

g

x
x’

h(x)

h=f*g
*

Figure 6.8: Illustration of the convolution of two functions, viewed as the area of the overlap
resulting from a relative shift of x.
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6 Convolution

Convolution combines two (or more) functions in a way that is useful for describing physical systems
(as we shall see). Convolutions describe, for example, how optical systems respond to an image,
and we will also see how our Fourier solutions to ODEs can often be expressed as a convolution. In
fact the FT of the convolution is easy to calculate, so it is worth looking out for when an integral
is in the form of a convolution, for in that case it may well be that FTs can be used to solve it.

First, the definition. The convolution of two functions f(x) and g(x) is defined to be

f(x) ⇤ g(x) =
Z 1

�1
dx0 f(x0)g(x� x0) , (6.99)

The result is also a function of x, meaning that we get a di↵erent number for the convolution for
each possible x value. Note the positions of the dummy variable x0, especially that the argument
of g is x� x0 and not x0 � x (a common mistake in exams).

There are a number of ways of viewing the process of convolution. Most directly, the definition here
is a measure of overlap: the functions f and g are shifted relative to one another by a distance x,
and we integrate to find the product. This viewpoint is illustrated in Fig. 6.8.

But this is not the best way of thinking about convolution. The real significance of the operation is
that it represents a blurring of a function. Here, it may be helpful to think of f(x) as a signal, and
g(x) as a blurring function. As written, the integral definition of convolution instructs us to take
the signal at x0, f(x0), and replace it by something proportional to f(x0)g(x � x0): i.e. spread out
over a range of x around x0. This turns a sharp feature in the signal into something fuzzy centred
at the same location. This is exactly what is achieved e.g. by an out-of-focus camera.

Alternatively, we can think about convolution as a form of averaging. Take the above definition of
convolution and put y = x � x0. Inside the integral, x is constant, so dy = �dx0. But now we are
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Figure 6.9: Convolution of two top hat functions.

integrating from y = 1 to �1, so we can lose the minus sign by re-inverting the limits:

f(x) ⇤ g(x) =
Z 1

�1
dy f(x� y)g(y) . (6.100)

This says that we replace the value of the signal at x, f(x) by an average of all the values around
x, displaced from x by an amount y and weighted by the function g(y). This is an equivalent view
of the process of blurring. Since it doesn’t matter what we call the dummy integration variable,
this rewriting of the integral showns that convolution is commutative: you can think of g blurring
f or f blurring g:

f(x) ⇤ g(x) =
Z 1

�1
dz f(z)g(x� z) =

Z 1

�1
dz f(x� z)g(z) = g(x) ⇤ f(x). (6.101)

6.1 Examples of convolution

1. Let ⇧(x) be the top-hat function of width a.

• ⇧(x) ⇤ ⇧(x) is the triangular function of base width 2a.

• This is much easier to do by sketching than by working it out formally: see Figure 6.9.

2. Convolution of a general function g(x) with a delta function �(x� a).

�(x� a) ⇤ g(x) =
Z 1

�1
dx0 �(x0 � a)g(x� x0) = g(x� a). (6.102)

using the sifting property of the delta function. This is a clear example of the blurring e↵ect of
convolution: starting with a spike at x = a, we end up with a copy of the whole function g(x),
but now shifted to be centred around x = a. So here the ‘sifting’ property of a delta-function
has become a ‘shifting’ property. Alternatively, we may speak of the delta-function becoming
‘dressed’ by a copy of the function g.

The response of the system to a delta function input (i.e. the function g(x) here) is sometimes
called the Impulse Response Function or, in an optical system, the Point Spread Function.

3. Making double slits: to form double slits of width a separated by distance 2d between centres:

[�(x+ d) + �(x� d)] ⇤ ⇧(x) . (6.103)

We can form di↵raction gratings with more slits by adding in more delta functions.
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6.2 The convolution theorem

States that the Fourier transform of a convolution is a product of the individual Fourier transforms:

FT [f(x) ⇤ g(x)] = f̃(k) g̃(k) (6.104)

FT [f(x) g(x)] =
1

2⇡
f̃(k) ⇤ g̃(k) (6.105)

where f̃(k), g̃(k) are the FTs of f(x), g(x) respectively.

Note that:

f̃(k) ⇤ g̃(k) ⌘
Z 1

�1
dq f̃(q) g̃(k � q) . (6.106)

We’ll do one of these, and we will use the Dirac delta function.

The convolution h = f ⇤ g is

h(x) =

Z 1

�1
f(x0)g(x� x0) dx0. (6.107)

We substitute for f(x0) and g(x� x0) their FTs, noting the argument of g is not x0:

f(x0) =
1

2⇡

Z 1

�1
f̃(k)eikx

0
dk

g(x� x0) =
1

2⇡

Z 1

�1
g̃(k)eik(x�x

0
) dk

Hence (relabelling the k to k0 in g, so we don’t have two k integrals)

h(x) =
1

(2⇡)2

Z 1

�1

✓

Z 1

�1
f̃(k)eikx

0
dk

Z 1

�1
g̃(k0)eik

0
(x�x

0
) dk0

◆

dx0. (6.108)

Now, as is very common with these multiple integrals, we do the integrations in a di↵erent order.
Notice that the only terms which depend on x0 are the two exponentials, indeed only part of the
second one. We do this one first, using the fact that the integral gives 2⇡ times a Dirac delta
function:

h(x) =
1

(2⇡)2

Z 1

�1
f̃(k)

Z 1

�1
g̃(k0)eik

0
x

✓

Z 1

�1
ei(k�k

0
)x

0
dx0

◆

dk0dk

=
1

(2⇡)2

Z 1

�1
f̃(k)

Z 1

�1
g̃(k0)eik

0
x [2⇡�(k � k0)] dk0dk

Having a delta function simplifies the integration enormously. We can do either the k or the k0

integration immediately (it doesn’t matter which you do – let us do k0):

h(x) =
1

2⇡

Z 1

�1
f̃(k)



Z 1

�1
g̃(k0)eik

0
x�(k � k0) dk0

�

dk

=
1

2⇡

Z 1

�1
f̃(k)g̃(k) eikx dk

Since

h(x) =
1

2⇡

Z 1

�1
h̃(k) eikx dk (6.109)
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we see that
h̃(k) = f̃(k)g̃(k). (6.110)

Note that we can apply the convolution theorem in reverse, going from Fourier space to real space,
so we get the most important key result to remember about the convolution theorem:

Convolution in real space , Multiplication in Fourier space (6.111)

Multiplication in real space , Convolution in Fourier space

This is an important result. Note that if one has a convolution to do, it is often most e�cient to
do it with Fourier Transforms, not least because a very e�cient way of doing them on computers
exists – the Fast Fourier Transform, or FFT.

CONVENTION ALERT! Note that if we had chosen a di↵erent convention for the 2⇡ factors
in the original definitions of the FTs, the convolution theorem would look di↵erently. Make sure
you use the right one for the conventions you are using!

Note that convolution commutes, f(x) ⇤ g(x) = g(x) ⇤ f(x), which is easily seen (e.g. since the FT
is f̃(k)g̃(k) = g̃(k)f̃(k).)

Example application: Fourier transform of the triangular function of base width 2a. We know
that a triangle is a convolution of top hats:

�(x) = ⇧(x) ⇤ ⇧(x) . (6.112)

Hence by the convolution theorem:

FT [�] = (FT [⇧(x)])2 =

✓

sinc
ka

2

◆

2

(6.113)
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6.3 Application of FTs and convolution

6.3.1 Fraunhofer Di↵raction

Imagine a single-slit optics experiment (see Fig. 6.10). Light enters from the left, and interferes,
forming a pattern on a screen on the right. We apply Huygens’ Principle, which states that each
point on the aperture acts as a source. Let the vertical position on the source be x, and the
transmission of the aperture is T (x). We will take this to be a top-hat for a simple slit,

T (x) =

⇢

1 �a

2

< x < a

2

0 |x| > a

2

, (6.114)

but we will start by letting T (x) be an arbitrary function (reflecting partial transmission, or multiple
slits, for example).
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Figure 6.10: A slit of width a permitting light to enter. We want to compute the intensity on a
screen a distance D away. Credit: Wikipedia

From a small element dx, the electric field at distance r (on the screen) is

dE = E
0

T (x)dx

r
ei(kr�!t), (6.115)

for some source strength E
0

. To get the full electric field, we integrate over the aperture:

E(y) = E
0

Z 1

�1

T (x)dx

r
ei(kr�!t). (6.116)

If the screen is far away, and the angle ✓ is small, then sin ✓ = y/D ' ✓, and r ' D in the
denominator. In the exponent, we need to be more careful.

If D is the distance of the screen from the origin of x (e.g. the middle of the slit), then Pythagoras
says that

r =
�

D2 + (y � x)2
�

1/2

= D
�

1 + (y � x)2/D2

�

1/2 ' D + (y � x)2/2D (6.117)

(where we assume a distant screen and small angles, so that both x & y are ⌧ D). The terms in r
that depend on x are �(y/D)x+x2/2D = �✓x+(x/2D)x; if we are interested in di↵raction at fixed
✓, we can always take the screen far enough away that the second term is negligible (x/D ⌧ ✓). To
first order in ✓, we then have the simple approximation that governs Fraunhofer di↵raction:

r ' D � x✓. (6.118)
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As a result,

E(y) ' E
0

ei(kD�!t)

D

Z 1

�1
T (x)eixk✓ dx. (6.119)

So we see that the electric field is proportional to the FT of the aperture T (x), evaluated at k✓:

E(y) / T̃ (k✓) . (6.120)

Note the argument is not k!

The intensity I(y) (or I(✓)) is proportional to |E(y)|2, so the phase factor cancels out, and

I(✓) /
�

�

�

T̃ (k✓)
�

�

�

2

. (6.121)

For a single slit of width a, we find as before that

I(✓) / sinc2
✓

ka✓

2

◆

/ sinc2
✓

⇡a✓

�

◆

, (6.122)

where � = 2⇡/k is the wavelength of the light. Note that the first zero of the di↵raction pattern is
when the argument is ⇡, so ⇡a✓ = ⇡, or ✓ = �/a.

If the wavelength is much less than the size of the object (the slit here), then the di↵raction pattern is
e↵ectively confined to a very small angle, and e↵ectively the optics is ‘geometric’ – i.e. straight-line
ray-tracing with shadows etc).

Di↵raction using the convolution theorem

Double-slit interference: two slits of width a and spacing 2d. In terms of k0 ⌘ ⇡✓/�,

FT [{�(x+ d) + �(x� d)} ⇤ ⇧(x)] = FT [{�(x+ d) + �(x� d)}] FT [⇧(x)] (6.123)

= {FT [�(x+ d)] + FT [�(x� d)]} FT [⇧(x)] (6.124)

= (eik
0
d + e�ik

0
d) sinc

✓

k0a

2

◆

(6.125)

= 2 cos(k0d) sinc

✓

k0a

2

◆

. (6.126)

Hence the intensity is a sinc2 function, modulated by a shorter-wavelength cos2 function. See Fig.
6.11.

6.3.2 Solving ODEs, revisited

Recall our problem
d2z

dt2
� !2

0

z = f(t). (6.127)

Using FTs, we found that a solution was

z(t) = � 1

2⇡

Z 1

�1

f̃(!)

!2

0

+ !2

ei!t d!. (6.128)

Now we can go a bit further, because we see that the FT of z(t) is a product (in Fourier space), of
f̃(!) and

g̃(!) ⌘ �1

!2

0

+ !2

(6.129)
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Figure 6.11: Intensity pattern from a double slit, each of width b and separated by 2d (Credit:
Yonsei University) .

hence the solution is a convolution in real (i.e. time) space:

z(t) =

Z 1

�1
f(t0)g(t� t0) dt0. (6.130)

An exercise for you is to show that the FT of

g(t) = �e�!0|t|

2!
0

(6.131)

is g̃(!) = �1/(!2

0

+ !2), so we finally arrive at the general solution for a driving force f(t):

z(t) = � 1

2!
0

Z 1

�1
f(t0)e�!0|t�t

0| dt0. (6.132)

Note how we have put in g(t�t0) = e�!0|t�t

0|/2!
0

here, not g(t) or g(t0), as required for a convolution.
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7 Parseval’s theorem for FTs (Plancherel’s theorem)

For FTs, there is a similar relationship between the average of the square of the function and the
FT coe�cients as there is with Fourier Series. For FTs it is strictly called Plancherel’s theorem, but
is often called the same as FS, i.e. Parseval’s theorem; we will stick with Parseval. The theorem
says

Z 1

�1
|f(x)|2 dx =

1

2⇡

Z 1

�1
|f̃(k)|2 dk. (7.133)
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It is useful to compare di↵erent ways of proving this:

(1) The first is to go back to Fourier series for a periodic f(x): f(x) =
P

n

c
n

exp(ik
n

x), and |f |2
requires us to multiply the series by itself, which gives lots of cross terms. But when we integrate
over one fundamental period, all oscillating terms average to zero. Therefore the only terms that
survive are ones where c

n

exp(ik
n

x) pairs with c⇤
n

exp(�ik
n

x). This gives us Parseval’s theorem for
Fourier series:

1

`

Z

`/2

�`/2

|f(x)|2 dx =
X

n

|c
n

|2 )
Z

`/2

�`/2

|f(x)|2 dx = `
X

n

|c
n

|2 = 1

`

X

n

|f̃ |2, (7.134)

using the definition f̃ = `c
n

. But the mode spacing is dk = 2⇡/`, so 1/` is dk/2⇡. Now we take the
continuum limit of ` ! 1 and dk

P

becomes
R

dk.

(2) Alternatively, we can give a direct proof using delta-functions:

|f(x)|2 = f(x)f ⇤(x) =

✓

1

2⇡

Z

f̃(k) exp(ikx) dk

◆

⇥
✓

1

2⇡

Z

f̃ ⇤(k0) exp(�ik0x) dk0
◆

, (7.135)

which is
1

(2⇡)2

ZZ

f̃(k)f̃ ⇤(k0) exp[ix(k � k0)] dk dk0. (7.136)

If we new integrate over x, we generate a delta-function:
Z

exp[ix(k � k0)] dx = (2⇡)�(k � k0). (7.137)

So
Z

|f(x)|2 dx =
1

2⇡

ZZ

f̃(k)f̃ ⇤(k0) �(k � k0) dk dk0 =
1

2⇡

Z

|f̃(k)|2 dk. (7.138)

7.1 Energy spectrum

As in the case of Fourier series, |f̃(k)|2 is often called the Power Spectrum of the signal. If we have
a field (such as an electric field) where the energy density is proportional to the square of the field,
then we can interpret the square of the Fourier Transform coe�cients as the energy associated with
each frequency. i.e. Total energy radiated is

Z 1

�1
|f(t)|2 dt. (7.139)

By Parseval’s theorem, this is equal to

1

2⇡

Z 1

�1
|f̃(!)|2 d!. (7.140)

and we interpret |f̃(!)|2/(2⇡) as the energy radiated per unit (angular) frequency, at frequency !.

7.1.1 Exponential decay

If we have a quantum transition from an upper state to a lower state, which happens spontaneously,
then the intensity of emission will decay exponentially, with a timescale ⌧ = 1/a, as well as having
a sinusoidal dependence with frequency !

0

:

f(t) = e�at cos(!
0

t) (t > 0). (7.141)

50



0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000

10000

Figure 7.12: Frequency spectrum of two separate exponentially decaying systems with 2 di↵erent
time constants ⌧ . (x axis is frequency, y axis / |f̃(!)|2 in arbitrary units).

Algebraically it is easier to write this as the real part of a complex exponential, do the FT with the
exponential, and take the real part at the end. So consider

f(t) =
1

2
e�at(ei!0t + e�i!0t) (t > 0). (7.142)

The Fourier transform is 2

f̃(!) =
1

2

Z 1

0

(e�at�i!t+i!0t + e�at�i!t�i!0t) dt (7.143)

) 2f̃(!) =



e�at�i!t+i!0t

�a� i! + i!
0

� e�at�i!t�i!0t

�a� i! � i!
0

�1

0

=
1

(a+ i! � i!
0

)
+

1

(a+ i! + i!
0

)

(7.144)

This is sharply peaked near ! = !
0

; near this frequency, we therefore ignore the second term, and
the frequency spectrum is

|f̃(!)|2 ' 1

4 [a+ i(! � !
0

)]

1

[a� i(! � !
0

)]
=

1

4 [a2 + (! � !
0

)2]
. (7.145)

This is a Lorentzian curve with width a = 1/⌧ . Note that the width of the line in frequency is
inversely proportional to the decay timescale ⌧ . This is an example of the Uncertainty Principle,
and relates the natural width of a spectral line to the decay rate. See Fig. 7.12.

7.2 Correlations and cross-correlations

Correlations are defined in a similar way to convolutions, but look carefully, as they are slightly
di↵erent. With correlations, we are concerned with how similar functions are when one is displaced

2
Note that this integral is similar to one which leads to Delta functions, but it isn’t, because of the e�at

term. For

this reason, you can integrate it by normal methods. If a = 0, then the integral does indeed lead to Delta functions.
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by a certain amount. If the functions are di↵erent, the quantity is called the cross-correlation; if it
is the same function, it is called the auto-correlation, or simply correlation.

The cross-correlation of two functions is defined by

c(X) ⌘ hf ⇤(x)g(x+X)i ⌘
Z 1

�1
f ⇤(x)g(x+X) dx. (7.146)

Compare this with convolution (equation 6.99). X is sometimes called the lag. Note that cross-
correlation does not commute, unlike convolution. The most interesting special case is when f and
g are the same function: then we have the auto-correlation function.

The meaning of these functions is easy to visualise if the functions are real: at zero lag, the auto-
correlation function is then proportional to the variance in the function (it would be equal if we
divided the integral by a length `, where the functions are zero outside that range). So then the
correlation coe�cient of the function is

r(X) =
hf(x)f(x+X)i

hf 2i . (7.147)

If r is small, then the values of f at widely separated points are unrelated to each other: the point
at which r falls to 1/2 defines a characteristic width of a function. This concept is used particularly
in random processes.

The FT of a cross-correlation is
c̃(k) = f̃ ⇤(k) g̃(k). (7.148)

This looks rather similar to the convolution theorem, which is is hardly surprising given the smilarity
of the definitions of cross-correlation and convolution. Indeed, the result can be proved directly from
the convolution theorem, by writing the cross-correlation as a convolution.

A final consequence of this is that the FT of an auto-correlation is just the power spectrum; or, to
give the inverse relation:

hf ⇤(x)f(x+X)i = 1

2⇡

Z

|f̃ |2 exp(ikX) dk. (7.149)

This is known as the Wiener-Khinchin theorem, and it generalises Parseval’s theorem (to which it
reduces when X = 0).

7.3 Fourier analysis in multiple dimensions

We have now completed all the major tools of Fourier analysis, in one spatial dimension. In many
cases, we want to consider more than one dimension, and the extension is relatively straightforward.
Start with the fundamental Fourier series, f(x) =

P

n

c
n

exp(i2⇡nx/`
x

). f(x) can be thought of
as F (x, y) at constant y; if we change y, the e↵ective f(x) changes, so the c

n

must depend on y.
Hence we can Fourier expand these as a series in y:

c
n

(y) =
X

m

d
nm

exp(i2⇡my/`
y

), (7.150)

where we assume that the function is periodic in x, with period `
x

, and y, with period `
y

. The
overall series is than

F (x, y) =
X

n,m

d
nm

exp[2⇡i(nx/`
x

+my/`
y

)] =
X

n,m

d
nm

exp[i(k
x

x+ k
y

y)] =
X

n,m

d
nm

exp[i(k · x)].

(7.151)
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Figure 7.13: Illustrating the origin of the density of states in 2D. The allowed modes are shown as
points, with a separation in k

x

and k
y

of 2⇡/`, where ` is the periodicity. The number of modes
between |k| and |k| + d|k| (i.e. inside the shaded annulus) is well approximated by (`/2⇡)2 times
the area of the annulus, as ` ! 1, and the mode spacing tends to zero. Clearly, in D dimensions,
the mode density is just (`/2⇡)D.

This is really just the same as the 1D form, and the extension to D dimensions should be obvious.
In the end, we just replace the usual kx term with the dot product between the position vector and
the wave vector.

The Fourier transform in D dimensions just involves taking the limit of `
x

! 1, `
y

! 1 etc. The
Fourier coe�cients become a continuous function of k, in which case we can sum over bins in k
space, each containing N

modes

(k) modes:

F (x) =
X

bin

d(k) exp[i(k · x)]N
modes

. (7.152)

The number of modes in a given k-space bin is set by the period in each direction: allowed modes
lie on a grid of points in the space of k

x

, k
y

etc. as shown in Figure 7.13. If for simplicity the period
is the same in all directions, the density of states is `D/(2⇡)D:

N
modes

=
`D

(2⇡)D
dDk. (7.153)
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This is an important concept which is used in many areas of physics.

The Fourier expression of a function is therefore

F (x) =
1

(2⇡)D

Z

F̃ (k) exp[i(k · x) dDk], (7.154)

Where we have defined F (k) ⌘ `Dd(k). The inverse relation would be obtained as in 1D, by
appealing to orthogonality of the modes:

F̃ (k) =

Z

F (x) exp[�i(k · x)] dDx. (7.155)
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8 Digital analysis and sampling

Imagine we have a continuous signal (e.g. pressure of air during music) which we sample by making
measurements at a few particular times. Any practical storage of information must involve this
step of analogue-to-digital conversion. This means we are converting a continuous function into
one that is only known at discrete points – i.e. we are throwing away information. We would feel
a lot more comfortable doing this if we knew that the missing information can be recovered, by
some from of interpolation between the sampled points. Intuitively, this seems reasonable if the
sampling interval is very fine: by the definition of continuity, the function between two sampled
points should be arbitrarily close to the average of the sample values as the locations of the samples
gets closer together. But the sampling interval has to be finite, so this raises the question of how
coarse it can be; clearly we would prefer to use as few samples as possible consistent with not losing
any information. This question does have a well-posed answer, which we can derive using Fourier
methods.

The first issue is how to represent the process of converting a function f(x) into a set of values
{f(x

i

)}. We can do this by using some delta functions:

f(x) ! f
s

(x) ⌘ f(x)
X

i

�(x� x
i

). (8.156)

This replaces our function by a sum of spikes at the locations x
i

, each with a weight f(x
i

). This
representation of the sampled function holds the information of the sample values and locations.
So, for example, if we try to average the sampled function over some range, we automatically get
something proportional to just adding up the sample values that lie in the range:

Z

x2

x1

f
s

(x) dx =
X

in range

f(x
i

). (8.157)
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Figure 8.14: Top: An infinite comb in real space. This represents the sampling pattern of a function
which is sampled regularly every �x. Bottom: The FT of the infinite comb, which is also an infinite
comb. Note that u here is k/(2⇡).

8.1 The infinite comb

If we sample regularly with a spacing �x, then we have an ‘infinite comb’ – an infinite series of
delta functions. The comb is (see Fig. 8.14):

g(x) =
1
X

j=�1

�(x� j�x) (8.158)

This is also known as the Shah function.

To compute the FT of the Shah function, we will write it in another way. This is derived from
the fact that the function is periodic, and therefore suitable to be written as a Fourier series with
` = �x:

g(x) =
X

n

c
n

exp(2⇡nix/�x). (8.159)

The coe�cients c
n

are just

c
n

=
1

�x

Z

�x/2

��x/2

�(x) dx =
1

�x
, (8.160)

so that

g(x) =
1

�x

X

n

exp(2⇡nix/�x) =
1

2⇡

Z

g̃(k) exp(ikx) dx. (8.161)
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Figure 8.15: If the sampling is fine enough, then the original spectrum can be recovered from the
sampled spectrum.

Figure 8.16: If the sampling is not fine enough, then the power at di↵erent frequencies gets mixed
up, and the original spectrum cannot be recovered.

From this, the Fourier transform is obvious (or it could be extracted formally by integrating our
new expression for g(x) and obtaining a delta-function):

g̃(k) =
2⇡

�x

1
X

n=�1
�(k � 2⇡n/�x). (8.162)

which is an infinite comb in Fourier space, with spacing 2⇡/�x.

The FT of a function sampled with an infinite comb is therefore (1/2⇡ times) the convolution of
this and the FT of the function:

f̃
s

(k) =
1

2⇡
f̃(k) ⇤ g̃(k) = 1

�x

1
X

n=�1
f̃(k � 2⇡n/�x). (8.163)

In other words, each delta-function in the k-space comb becomes ‘dressed’ with a copy of the
transform of the original function.
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Figure 8.17: If sin t is sampled at unit values of t, then sin(t + 2⇡t) is indistinguishable at the
sampling points. The sampling theorem says we can only reconstruct the function between the
samples if we know that high-frequency components are absent.

8.2 Shannon sampling, aliasing and the Nyquist frequency

We can now go back to the original question: do the sampled values allow us to reconstruct the
original function exactly? An equivalent question is whether the transform of the sampled function
allows us to reconstruct the transform of the original function.

The answer is that this is possible (a) if the original spectrum is bandlimited, which means that
the power is confined to a finite range of wavenumber (i.e. there is a maximum wavenumber k

max

which has non-zero Fourier coe�cients); and (b) if the sampling is fine enough. This is illustrated
in Figs 8.15 and 8.16. If the sampling is not frequent enough, the power at di↵erent wavenumbers
gets mixed up. This is called aliasing. The condition to be able to measure the spectrum accurately
is to have a sample at least as often as the Shannon Rate

�x =
1

⇡k
max

. (8.164)

The Nyquist wavenumber is defined as

k
Nyquist

=
⇡

�x
(8.165)

which needs to exceed the maximum wavenumber in order to avoid aliasing:

k
Nyquist

� k
max

. (8.166)

For time-sampled data (such as sound), the same applies, with wavenumber k replaced by frequency
!.

There is a simple way of seeing that this makes sense, as illustrated in Figure 8.17. Given samples
of a Fourier mode at a certain interval, �, a mode with a frequency increased by any multiple of
2⇡/� clearly has the same result at the sample points.
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8.3 CDs and compression

Most human beings can hear frequencies in the range 20 Hz – 20 kHz. The sampling theorem means
that the sampling frequency needs to be at least 40 kHz to capture the 20 kHz frequencies. The
CD standard samples at 44.1 kHz. The data consist of stereo: two channels each encoded as 16-bit
integers. Allowing one bit for sign, the largest number encoded is thus 215� 1 = 32767. This allows
signals of typical volume to be encoded with a fractional precision of around 0.01% – an undetectable
level of distortion. This means that an hour of music uses about 700MB of information. But in
practice, this requirement can be reduced by about a factor 10 without noticeable degradation in
quality. The simplest approach would be to reduce the sampling rate, or to encode the signal
with fewer bits. The former would require a reduction in the maximum frequency, making the
music sound dull; but fewer bits would introduce distortion from the quantization of the signal.
The solution implemented in the MP3 and similar algorithms is more sophisticated than this: the
time series is split into ‘frames’ of 1152 samples (0.026 seconds at CD rates) and each is Fourier
transformed. Compression is achieved by storing simply the amplitudes and phases of the strongest
modes, as well as using fewer bits to encode the amplitudes of the weaker modes, according to a
‘perceptual encoding’ where the operation of the human ear is exploited – knowing how easily faint
tones of a given frequency are masked by a loud one at a di↵erent frequency.

8.4 Prefiltering

If a signal does not obey the sampling theorem, it must be modified to do so before digitization.
Analogue electronics can suppress high frequencies – although they are not completely removed.
The sampling process itself almost inevitably performs this task to an extent, since it is unrealistic
to imagine that one could make an instantaneous sample of a waveform. Rather, the sampled signal
is probably an average of the true signal over some period.

This is easily analysed using the convolution theorem. Suppose each sample, taken at an interval ⌧ ,
is the average of the signal over a time interval T , centred at the sample time. This is a convolution:

f
c

(t) =

Z

f(t0)g(t� t0) dt0, (8.167)

where g(t� t0) is a top hat of width T centred on t0 = t. We therefore know that

f̃
c

(!) = f̃(!) sin(!T/2)/(!T/2). (8.168)

At the Nyquist frequency, ⇡/⌧ , the Fourier signal in f is suppressed by a factor sin(⇡T/2⌧)/(⇡T/2⌧).
The natural choice of T would be the same as ⌧ (accumulate an average signal, store it, and start
again). This gives sin(⇡/2)/(⇡/2) = 0.64 at the Nyquist frequency, so aliasing is not strongly
eliminated purely by ‘binning’ the data, and further prefiltering is required before the data can be
sampled.
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