
FOURIER ANALYSIS: LECTURE 6

2.11.1 Convergence of Fourier series

Fourier series (real or complex) are very good ways of approximating functions in a finite range, by
which we mean that we can get a good approximation to the function by using only the first few
modes (i.e. truncating the sum over n after some low value n = N).

This is how music compression works in MP3 players, or how digital images are compressed in
JPEG form: we can get a good approximation to the true waveform by using only a limited number
of modes, and so all the modes below a certain amplitude are simply ignored.

We saw a related example of this in our approximation to ⇡ using Eqn. (2.79) and Table 1.

Not examinable:
Mathematically, this translates as the Fourier components converging to zero i.e. a

n

, b
n

! 0 as
n ! 1, provided f(x) is bounded (i.e. has no divergences). But how quickly do the high order
coe�cients vanish? There are two common cases:

1. The function and its first p� 1 derivatives (f(x), f 0(x), . . . f (p�1)(x)) are continuous, but the
pth derivative f (p)(x) has discontinuities:

a
n

, b
n

⇠ 1/np+1 for large n. (2.82)

An example of this was our expansion of f(x) = x2. When we periodically extend the function,
there is a discontinuity in the gradient (p = 1 derivative) at the boundaries x = ±L. We have
already seen a

n

⇠ 1/n2 as expected (with b
n

= 0).

2. f(x) is periodic and piecewise continuous (i.e. it has jump discontinuities, but only a finite
number within one period):

) a
n

, b
n

⇠ 1/n for large n. (2.83)

An example of this is the expansion of the odd function f(x) = x, which jumps at the
boundary. The Fourier components turn out to be b

n

⇠ 1/n (with a
n

= 0).

End of non-examinable section.

2.11.2 How close does it get? Convergence of Fourier expansions

We have seen that the Fourier components generally get smaller as the mode number n increases.
If we truncate the Fourier series after N terms, we can define an error D

N

that measures how much
the truncated Fourier series di↵ers from the original function: i.e. if

f
N

(x) =
a
0

2
+

N

X

n=1

h

a
n

cos
⇣n⇡x

L

⌘

+ b
n

sin
⇣n⇡x

L

⌘i

. (2.84)

we define the error as

D
N

=

Z

L

�L

dx |f(x)� f
N

(x)|2 � 0. (2.85)
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Figure 2.6: The Gibbs phenomenon for truncated Fourier approximations to the signum function
Eqn. 2.86. Note the di↵erent x-range in the lower two panels.

That is, we square the di↵erence between the original function and the truncated Fourier series at
each point x, then integrate across the full range of validity of the Fourier series. Technically, this
is what is known as an L2 norm.

Some things you should know, but which we will not prove: if f is reasonably well-behaved (no non-
integrable singularities, and only a finite number of discontinuities), the Fourier series is optimal in
the least-squares sense – i.e. if we ask what Fourier coe�cients will minimise D

N

for some given
N , they are exactly the coe�cients that we obtain by solving the full Fourier problem.

Furthermore, as N ! 1, D
N

! 0. This sounds like we are guaranteed that the Fourier series will
represent the function exactly in the limit of infinitely many terms. But looking at the equation for
D

N

, it can be seen that this is not so: it’s always possible to have (say) f
N

= 2f over some range
�x, and the best we can say is that �x must tend to zero as N increases.

EXAMPLE: As an example of how Fourier series converge (or not), consider the signum function
which picks out the sign of a variable:

f(x) = signum x =

(

�1 if x < 0 ,

+1 if x � 0 ,
(2.86)
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N D
N

10 0.0808
50 0.0162
100 0.0061
250 0.0032

Table 2: Error D
N

on the N -term truncated Fourier series approximation to the signum function
Eqn. 2.86.

which we will expand in the range �1  x  1 (i.e. we set L = 1). The function is odd, so a
n

= 0
and we find

b
n

= 2

Z

1

0

dx sin(n⇡x) =
2

n⇡
[1� (�1)n] . (2.87)

f(x) has discontinuities at x = 0 and x = ±L = ±1 (due to the periodic extension), so from
Sec. 2.11.1 we expected a

n

⇠ 1/n.

In Table 2 we show the error D
N

for the signum function for increasing values of D
N

. As expected
the error decreases as N gets larger, but relatively slowly. We’ll see why this is in the next section.

2.11.3 Ringing artefacts and the Gibbs phenomenon

We saw above that we can define an error associated with the use of a truncated Fourier series of N
terms to describe a function. Note that D

N

measures the total error by integrating the deviation
at each value of x over the full range. It does not tell us whether the deviations between f

N

(x)
and f(x) were large and concentrated at certain values of x, or smaller and more evenly distributed
over all the full range.

An interesting case is when we try to describe a function with a finite discontinuity (i.e. a jump)
using a truncated Fourier series, such as our discussion of the signum function above.

In Fig. 2.6 we plot the original function f(x) and the truncated Fourier series for various N . We
find that the truncated sum works well, except near the discontinuity. Here the function overshoots
the true value and then has a ‘damped oscillation’. As we increase N the oscillating region gets
smaller, but the overshoot remains roughly the same size (about 18%).

This overshoot is known as the Gibbs phenomenon. Looking at the plot, we can see that it tends to
be associated with extended oscillations either side of the step, known as ‘ringing artefacts’. Such
artefacts will tend to exist whenever we try to describe sharp transitions with Fourier methods, and
are one of the reasons that MP3s can sound bad when the compression uses too few modes. We can
reduce the e↵ect by using a smoother method of Fourier series summation, but this is well beyond
this course. For the interested, there are some more details at http://en.wikipedia.org/wiki/
Gibbs_phenomenon.

2.12 Parseval’s theorem

There is a useful relationship between the mean square value of the function f(x) and the Fourier
coe�cients. Parseval’s formula is

1

2L

Z

L

�L

|f(x)|2 dx = |a
0

/2|2 + 1

2

1
X

n=1

�

|a
n

|2 + |b
n

|2
�

, (2.88)
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or, for complex Fourier Series,

1

2L

Z

L

�L

|f(x)|2 dx =
1
X

n=�1
|c

n

|2. (2.89)

The simplicity of the expression in the complex case is an example of the advantage of doing things
this way.

The quantity |c
n

|2 is known as the power spectrum. This is by analogy with electrical circuits, where
power is I2R. So the mean of f 2 is like the average power, and |c

n

|2 shows how this is contributed
by the di↵erent Fourier modes.

Proving Parseval is easier in the complex case, so we will stick to this. The equivalent for the
sin+cos series is included for interest, but is not examinable. First, note that |f(x)|2 = f(x)f ⇤(x)
and expand f and f ⇤ as complex Fourier Series:

|f(x)|2 = f(x)f ⇤(x) =
1
X

n=�1
c
n

�
n

(x)
X

m

c⇤
m

�⇤
m

(x) (2.90)

(recall that �
n

(x) = eiknx). Then we integrate over �L  x  L, noting the orthogonality of �
n

and �⇤
m

:

Z

L

�L

|f(x)|2 dx =
1
X

m,n=�1
c
n

c⇤
m

Z

L

�L

�
n

(x)�⇤
m

(x) dx (2.91)

=
1
X

m,n=�1
c
n

c⇤
m

(2L�
mn

) = 2L
1
X

n=�1
c
n

c⇤
n

= 2L
1
X

n=�1
|c

n

|2

where we have used the orthogonality relation
R

L

�L

�
n

(x)�⇤
m

(x) dx = 2L ifm = n, and zero otherwise.

2.12.1 Summing series via Parseval

Consider once again the case of f = x2. The lhs of Parseval’s theorem is (1/2L)
R

L

�L

x4 dx = (1/5)L4.
The complex coe�cients were derived earlier, so the sum on the rhs of Parseval’s theorem is

1
X

n=�1
|c

n

|2 = |c
0

|2 +
X

n 6=0

|c
n

|2 =
✓

L2

3

◆

2

+ 2
1
X

n=1

✓

2L2(�1)n

n2⇡2

◆

2

=
L4

9
+

1
X

n=1

8L4

n4⇡4

. (2.92)

Equating the two sides of the theorem, we therefore get

1
X

n=1

1

m4

= (⇡4/8)(1/5� 1/9) = ⇡4/90. (2.93)

This is a series that converges faster than the ones we obtained directly from the series at special
values of x
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FOURIER ANALYSIS: LECTURE 7

3 Fourier Transforms

Learning outcomes

In this section you will learn about Fourier transforms: their definition and relation to Fourier
series; examples for simple functions; physical examples of their use including the di↵raction and
the solution of di↵erential equations.

You will learn about the Dirac delta function and the convolution of functions.

3.1 Fourier transforms as a limit of Fourier series

We have seen that a Fourier series uses a complete set of modes to describe functions on a finite
interval e.g. the shape of a string of length `. In the notation we have used so far, ` = 2L. In some
ways, it is easier to work with `, which we do below; but most textbooks traditionally cover Fourier
series over the range 2L, and these notes follow this trend.

Fourier transforms (FTs) are an extension of Fourier series that can be used to describe nonperiodic
functions on an infinite interval. The key idea is to see that a non-periodic function can be viewed
as a periodic one, but taking the limit of `! 1. This is related to our earlier idea of being able to
construct a number of di↵erent periodic extensions of a given function. This is illustrated in Fig.
3.1 for the case of a square pulse that is only non-zero between �a < x < +a. When ` becomes
large compared to a, the periodic replicas of the pulse are widely separated, and in the limit of
`! 1 we have a single isolated pulse.

−a  a

Figure 3.1: Di↵erent periodic extensions of a square pulse that is only non-zero between �a <
x < +a. As the period of the extension, `, increases, the copies of the pulse become more widely
separated. In the limit of ` ! 1, we have a single isolated pulse and the Fourier series goes over
to the Fourier transform.
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Fourier series only include modes with wavenumbers k
n

= 2n⇡

`

with adjacent modes separated by
�k = 2⇡

`

. What happens to our Fourier series if we let ` ! 1? Consider again the complex series
for f(x):

f(x) =
1
X

n=�1
C

n

eiknx, (3.1)

where the coe�cients are given by

C
n

=
1

`

Z

`/2

�`/2

dx f(x) e�ik

n

x . (3.2)

and the allowed wavenumbers are k
n

= 2n⇡/`. The separation of adjacent wavenumbers (i.e. for
n ! n+ 1) is �k = 2⇡/`; so as `! 1, the modes become more and more finely separated in k. In
the limit, we are then interested in the variation of C as a function of the continuous variable k.
The factor 1/` outside the integral looks problematic for talking the limit ` ! 1, but this can be
evaded by defining a new quantity:

f̃(k) ⌘ `⇥ C(k) =

Z 1

�1
dx f(x) e�ikx . (3.3)

The function f̃(k) (o�cially called ‘f tilde’, but more commonly ‘f twiddle’; f
k

is another common
notation) is the Fourier transform of the non-periodic function f .

To complete the story, we need the inverse Fourier transform: this gives us back the function f(x)
if we know f̃ . Here, we just need to rewrite the Fourier series, remembering the mode spacing
�k = 2⇡/`:

f(x) =
X

k

n

C(k)eikx =
X

k

n

(`/2⇡)C(k)eikx �k =
1

2⇡

X

k

n

f̃(k) eikx �k. (3.4)

In this limit, the final form of the sum becomes an integral over k:

X

g(k) �k !
Z

g(k) dk as �k ! 0; (3.5)

this is how integration gets defined in the first place. We can now write an equation for f(x) in
which ` does not appear:

f(x) =
1

2⇡

Z 1

�1
dk f̃(k) eikx . (3.6)

Note the infinite range of integration in k: this was already present in the Fourier series, where the
mode number n had no limit.

EXAM TIP: You may be asked to explain how the FT is the limit of a Fourier Series (for perhaps
6 or 7 marks), so make sure you can reproduce the stu↵ in this section.

The density of states In the above, our sum was over individual Fourier modes. But if C(k) is
a continuous function of k, we may as well add modes in bunches over some bin in k, of size �k:

f(x) =
X

k bin

C(k)eikxN
bin

, (3.7)
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where N
bin

is the number of modes in the bin. What is this? It is just �k divided by the mode
spacing, 2⇡/`, so we have

f(x) =
`

2⇡

X

k bin

C(k)eikx�k (3.8)

The term `/2⇡ is the density of states: it tells us how many modes exist in unit range of k. This is
a widely used concept in many areas of physics, especially in thermodynamics. Once again, we can
take the limit of �k ! 0 and obtain the integral for the inverse Fourier transform.

Summary A function f(x) and its Fourier transform f̃(k) are therefore related by:

f(x) =
1

2⇡

Z 1

�1
dk f̃(k) eikx ; (3.9)

f̃(k) =

Z 1

�1
dx f(x) e�ikx . (3.10)

We say that f̃(k) is the FT of f(x), and that f(x) is the inverse FT of f̃(k).

EXAM TIP: If you are asked to state the relation between a function and its Fourier transform
(for maybe 3 or 4 marks), it is su�cient to quote these two equations. If the full derivation is
required, the question will ask explicitly for it.

Note that, since the Fourier Transform is a linear operation,

FT [f(x) + g(x)] = f̃(k) + g̃(k). (3.11)

For a real function f(x), its FT satisfies the same Hermitian relation that we saw in the case of
Fourier series:

f̃(�k) = f̃ ⇤(k) (3.12)

Exercise: prove this.

FT conventions Eqns. (3.10) and (3.9) are the definitions we will use for FTs throughout this
course. Unfortunately, there are many di↵erent conventions in active use for FTs. Aside from using
di↵erent symbols, these can di↵er in:

• The sign in the exponent

• The placing of the 2⇡ prefactor(s) (and sometimes it is
p
2⇡)

• Whether there is a factor of 2⇡ in the exponent

The bad news is that you will probably come across all of these di↵erent conventions. The good
news is that that it is relatively easy to convert between them if you need to. The best news is that
you will almost never need to do this conversion.
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k space and momentum space The Fourier convention presented here is the natural one that
emerges as the limit of the Fourier series. But it has the disadvantage that it treats the Fourier
transform and the inverse Fourier transform di↵erently by a factor of 2⇡, whereas in physics we need
to learn to treat the functions f(x) and f̃(k) as equally valid forms of the same thing: the ‘real-space’
and ‘k-space’ forms. This is most obvious in quantum mechanics, where a wave function exp(ikx)
represents a particle with a well-defined momentum, p = h̄k according to de Broglie’s hypothesis.
Thus the description of a function in terms of f̃(k) is often called the ‘momentum-space’ version.

The result that illustrates this even-handed approach most clearly is to realise that the Fourier
transform of f(x) can itself be transformed:

gf̃(k)(K) =

Z 1

�1
dk f̃(k) e�iKk. (3.13)

We will show below that
gf̃(k)(K) = 2⇡f(�K) : (3.14)

so in essence, repeating the Fourier transform gets you back the function you started with. f and
f̃ are really just two sides of the same coin.

FOURIER ANALYSIS: LECTURE 8

3.2 Some simple examples of FTs

In this section we’ll find the FTs of some simple functions.

EXAM TIP: You may be asked to define and sketch f(x) in each case, and also to calculate and
sketch f̃(k).

3.2.1 The top-hat

A top-hat function ⇧(x) of height h and width 2a (a assumed positive), centred at x = d is defined
by:

⇧(x) =

(

h, if d� a < x < d+ a ,

0, otherwise .
(3.15)

The function is sketched in Fig. 3.2.

Its FT is:

f̃(k) =

Z 1

�1
dx ⇧(x) e�ikx = h

Z

d+a

d�a

dx e�ikx = 2ah e�ikd sinc(ka) (3.16)

The derivation is given below. The function sincx ⌘ sinx

x

is sketched in Fig. 3.3 (with notes on

how to do this also given below). f̃(k) will look the same (for d = 0), but the nodes will now be at
k = ±n⇡

a

and the intercept will be 2ah rather than 1. You are very unlikely to have to sketch f̃(k)
for d 6= 0.
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EXAM TIPS: If the question sets d = 0, clearly there is no need to do a variable change from
x to y.

Sometimes the question specifies that the top-hat should have unit area i.e. h ⇥ (2a) = 1, so you
can replace h.

The width of the top-hat won’t necessarily be 2a. . .

Deriving the FT:

f̃(k) =

Z 1

�1
dx ⇧(x) e�ikx = h

Z

d+a

d�a

dx eikx (3.17)

Now we make a substitution u = x � d (which now centres the top-hat at u = 0). The integrand
e�ikx becomes e�ik(u+d) = e�iku ⇥ e�ikd. We can pull the factor e�ikd outside the integral because
it does not depend on u. The integration limits become u = ±a. There is no scale factor, i.e.
du = dx.

This gives

f̃(k) = he�ikd

Z

a

�a

du eiku = he�ikd



e�iku

�ik

�

a

�a

= he�ikd

✓

e�ika � eika

�ik

◆

= he�ikd ⇥ 2a

ka
⇥ eika � e�ika

2i
= 2ahe�ikd ⇥ sin(ka)

ka
= 2ah e�ikd sinc(ka) (3.18)

Note that we conveniently multiplied top and bottom by 2a midway through.

Sketching sincx: You should think of sincx ⌘ sinx

x

as a sin x oscillation (with nodes at x = ±n⇡
for integer n), but with the amplitude of the oscillations dying o↵ as 1/x. Note that sincx is an
even function, so it is symmetric when we reflect about the y-axis.

The only complication is at x = 0, when sinc 0 = 0

0

which appears undefined. To deal with this,
expand sin x = x� x3/3! + x5/5! + . . . , so it is obvious that sinx/x ! 1 as x ! 0.

EXAM TIP: Make sure you can sketch this, and that you label all the zeros (‘nodes’) and
intercepts.

Figure 3.2: Sketch of top-hat function defined in Eqn. (3.15)
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3.2.2 The Gaussian

The Gaussian curve is also known as the bell-shaped or normal curve. A Gaussian of width �
centred at x = d is defined by:

f(x) = N exp

✓

�(x� d)2

2�2

◆

(3.19)

where N is a normalization constant, which is often set to 1. We can instead define the normalized
Gaussian, where we choose N so that the area under the curve to be unity i.e. N = 1/

p
2⇡�2.

This normalization can be proved by a neat trick, which is to extend to a two-dimensional Gaussian
for two independent (zero-mean) variables x and y, by multiplying the two independent Gaussian
functions:

p(x, y) =
1

2⇡�2

e�(x

2
+y

2
)/2�

2
. (3.20)

The integral over both variables can now be rewritten using polar coordinates:
ZZ

p(x, y) dx dy =

Z

p(x, y) 2⇡ r dr =
1

2⇡�2

Z

2⇡ r e�r

2
/2�

2
dr (3.21)

and the final expression clearly integrates to

P (r > R) = exp
�

�R2/2�2

�

, (3.22)

so the distribution is indeed correctly normalized.

The Gaussian is sketched for d = 0 and two di↵erent values of the width parameter �. Fig. 3.4 has
N = 1 in each case, whereas Fig. 3.5 shows normalized curves. Note the di↵erence, particularly in
the intercepts.

For d = 0, the FT of the Gaussian is

f̃(k) =

Z 1

�1
dx N exp

✓

� x2

2�2

◆

e�ikx =
p
2⇡N� exp

✓

�k2�2

2

◆

, (3.23)

i.e. the FT of a Gaussian is another Gaussian (this time as a function of k).

Figure 3.3: Sketch of sincx ⌘ sinx

x
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Deriving the FT For notational convenience, let’s write a = 1

2�

2 , so

f̃(k) = N

Z 1

�1
dx exp

�

�
⇥

ax2 + ikx
⇤�

(3.24)

Now we can complete the square inside [. . .]:

� ax2 � ikx = �a

✓

x+
ik

2a

◆

2

� k2

4a
(3.25)

giving

f̃(k) = Ne�k

2
/4a

Z 1

�1
dx exp

 

�a



x+
ik

2a

�

2

!

. (3.26)

We then make a change of variables:

u =
p
a

✓

x+
ik

2a

◆

. (3.27)

This does not change the limits on the integral, and the scale factor is dx = du/
p
a, giving

f̃(k) =
Np
a
e�k

2
/4a

Z 1

�1
du e�u

2
= N

r

⇡

a
⇥ e�k

2
/4a = e�k

2
/4a . (3.28)

where we changed back from a to �. To get this result, we have used the standard result
Z 1

�1
du e�u

2
=

p
⇡ . (3.29)

3.3 Reciprocal relations between a function and its FT

These examples illustrate a general and very important property of FTs: there is a reciprocal (i.e.
inverse) relationship between the width of a function and the width of its Fourier transform. That
is, narrow functions have wide FTs and wide functions have narrow FTs.

This important property goes by various names in various physical contexts, e.g.:

Figure 3.4: Sketch of Gaussians with N = 1
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• Heisenberg Uncertainty Principle: the rms uncertainty in position space (�x) and the rms
uncertainty in momentum space (�p) are inversely related: (�x)(�p) � h̄/2. The equality
holds for the Gaussian case (see below).

• Bandwidth theorem: to create a very short-lived pulse (small �t), you need to include a very
wide range of frequencies (large �!).

• In optics, this means that big objects (big relative to wavelength of light) cast sharp shadows
(narrow FT implies closely spaced maxima and minima in the interference fringes).

We discuss two explicit examples in the following subsections:

3.3.1 The top-hat

The width of the top-hat as defined in Eqn. (3.15) is obviously 2a.

For the FT, whilst the sinc ka function extends across all k, it dies away in amplitude, so it does
have a width. Exactly how we define the width does not matter; let’s say it is the distance between
the first nodes k = ±⇡/a in each direction, giving a width of 2⇡/a.

Thus the width of the function is proportional to a, and the width of the FT is proportional to 1/a.
Note that this will be true for any reasonable definition of the width of the FT.

3.3.2 The Gaussian

Again, the Gaussian extends infinitely but dies away, so we can define a width. For a Gaussian,
it is easy to do this rigorously in terms of the standard deviation (square root of the average of
(x� d)2), which is just � (check you can prove this).

Comparing the form of FT in Eqn. (3.23) to the original definition of the Gaussian in Eqn. (3.19), if
the width of f(x) is �, the width of f̃(k) is 1/� by the same definition. Again, we have a reciprocal
relationship between the width of the function and that of its FT. Since p = h̄k, the width in
momentum space is h̄ times that in k space.

Figure 3.5: Sketch of normalized Gaussians. The intercepts are f(0) = 1p
2⇡�

2
.
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Figure 3.6: The Fourier expansion of the function f(x) = 1/(4|x|1/2), |x| < 1 is shown in the LH
panel (a cosine series, up to n = 15). The RH panel compares df/dx with the sum of the derivative
of the Fourier series. The mild divergence in f means that the expansion converges; but for df/dx
it does not.

The only subtlety in relating this to the uncertainty principle is that the probability distributions
use | |2, not | |. If the width of  (x) is �, then the width of | |2 is �/

p
2. Similarly, the uncertainty

in momentum is (1/�)/
p
2, which gives the extra factor 1/2 in (�x)(�p) = h̄/2.

3.4 Di↵erentiating and integrating Fourier series

Once we have a function expressed as a Fourier series, this can be a useful alternative way of
carrying out calculus-related operations. This is because di↵erentiation and integration are linear
operations that are distributive over addition: this means that we can carry out di↵erentiation or
integration term-by-term in the series:

f(x) =
1
X

n=�1
C

n

eiknx (3.30)

) df

dx
=

1
X

n=�1
C

n

(ik
n

) eiknx (3.31)

)
Z

f dx =
1
X

n=�1
C

n

(ik
n

)�1 eiknx + const . (3.32)

The only complication arises in the case of integration, if C
0

6= 0: then the constant term integrates
to be / x, and this needs to be handled separately.

From these relations, we can see immediately that the Fourier coe�cients of a function and its
derivative are very simply related by powers of k: if the nth Fourier coe�cient of f(x) is C

n

, the
nth Fourier coe�cient of df(x)/dx is (ik

n

)C
n

. Taking the limit of a non-periodic function, the same
relation clearly applies to Fourier Transforms. Thus, in general, multiple derivatives transform as:

FT
⇥

f (p)(x)
⇤

= FT



dpf

dxp

�

= (ik)pf̃(k) (3.33)
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The main caveat with all this is that we still require that all the quantities being considered must
be suitable for a Fourier representation, and this may not be so. For example, f(x) = 1/

p
x for

0 < x < 1 is an acceptable function: it has a singularity at x = 0, but this is integrable, so all the
Fourier coe�cients converge. But f 0(x) = �x�3/2/2, which has a divergent integral over 0 < x < 1.
Attempts to use a Fourier representation for f 0(x) would come adrift in this case, as is illustrated
in Fig. 3.6.

FOURIER ANALYSIS: LECTURE 9

4 The Dirac delta function

The Dirac delta function is a very useful tool in physics, as it can be used to represent a very
localised or instantaneous impulse whose e↵ect then propagates. Informally, it is to be thought of
as an infinitely narrow (and infinitely tall) spike. Mathematicians think it’s not a proper function,
since a function is a machine, f(x), that takes any number x and replaces it with a well-defined
number f(x). Dirac didn’t care, and used it anyway. Eventually, the ‘theory of distributions’ was
invented to say he was right to follow his intuition.

4.1 Definition and basic properties

The Dirac delta function �(x� d) is defined by two expressions. First, it is zero everywhere except
at the point x = d where it is infinite:

�(x� d) =

(

0 for x 6= d ,

! 1 for x = d .
(4.34)

Secondly, it tends to infinity at x = d in such a way that the area under the Dirac delta function is
unity:

Z 1

�1
dx �(x� d) = 1 . (4.35)

4.1.1 The delta function as a limiting case

To see how a spike of zero width can have a well-defined area, it is helpful (although not strictly
necessary) to think of the delta function as the limit of a more familiar function. The exact shape
of this function doesn’t matter, except that it should look more and more like a (normalized) spike
as we make it narrower.

Two possibilities are the top-hat as the width a ! 0 (normalized so that h = 1/(2a)), or the
normalized Gaussian as � ! 0. We’ll use the top-hat here, just because the integrals are easier.

Let ⇧
a

(x) be a normalized top-hat of width 2a centred at x = 0 as in Eqn. (3.15) — we’ve made
the width parameter obvious by putting it as a subscript here. The Dirac delta function can then
be defined as

�(x) = lim
a!0

⇧
a

(x) . (4.36)
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EXAM TIP: When asked to define the Dirac delta function, make sure you write both Eqns. (4.34)
and (4.35).

4.1.2 Sifting property

The sifting property of the Dirac delta function is that, given some function f(x):
Z 1

�1
dx �(x� d) f(x) = f(d) (4.37)

i.e. the delta function picks out the value of the function at the position of the spike (so long as it
is within the integration range). This is just like the sifting property of the Kronecker delta inside
a discrete sum.

EXAM TIP: If you are asked to state the sifting property, it is su�cient to write Eqn. (4.37).
You do not need to prove the result as in Sec. 4.1.5 unless specifically asked to.

Technical aside: The integration limits don’t technically need to be infinite in the above formulæ.
If we integrate over a finite range a < x < b the expressions become:

Z

b

a

dx �(x� d) =

(

1 for a < d < b ,

0 otherwise.
(4.38)

Z

b

a

dx �(x� d) f(x) =

(

f(d) for a < d < b ,

0 otherwise.
(4.39)

That is, we get the above results if the position of the spike is inside the integration range, and zero
otherwise.

4.1.3 Compare with the Kronecker delta

The Kronecker delta

�
mn

=

⇢

1 m = n
0 m 6= n

(4.40)

plays a similar sifting role for discrete modes, as the Dirac delta does for continuous modes. For
example:

1
X

n=1

A
n

�
mn

= A
m

(4.41)

which is obvious when you look at it. Be prepared to do this whenever you see a sum with a
Kronecker delta in it.

4.1.4 Delta function of a more complicated argument

Sometimes you may come across the Dirac delta function of a more complicated argument, �[f(x)],
e.g. �(x2� 4). How do we deal with these? Essentially we use the definition that the delta function
integrates to unity when it is integrated with respect to its argument. i.e.

Z 1

�1
�[f(x)]df = 1 (4.42)
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Changing variables from f to x,
Z

�[f(x)]
df

dx
dx = 1 (4.43)

where we have not put the limits on x, as they depend on f(x). Comparing with one of the
properties of �(x), we find that

�[f(x)] =
�(x� x

0

)

|df/dx|
x=x0

(4.44)

where the derivative is evaluated at the point x = x
0

where f(x
0

) = 0. Note that if there is more
than one solution (x

i

; i = 1, . . .) to f = 0, then �(f) is a sum

�[f(x)] =
X

i

�(x� x
i

)

|df/dx|
x=x

i

(4.45)

4.1.5 Proving the sifting property

We can use the limit definition of the Dirac delta function [Eqn. (4.36)] to prove the sifting property
given in Eqn. (4.37):

Z 1

�1
dx f(x) �(x) =

Z 1

�1
dx f(x) lim

a!0

⇧
a

(x) = lim
a!0

Z 1

�1
dx f(x) ⇧

a

(x) . (4.46)

We are free to pull the limit outside the integral because nothing else depends on a. Substituting
for ⇧

a

(x), the integral is only non-zero between �a and a. Similarly, we can pull the normalization
factor out to the front:

Z 1

�1
dx f(x) �(x) = lim

a!0

1

2a

Z

a

�a

dx f(x) . (4.47)

What this is doing is averaging f over a narrow range of width 2a around x = 0. Provided the
function is continuous, this will converge to a well-defined value f(0) as a ! 0 (this is pretty well
the definition of continuity).

Alternatively, suppose the function was di↵erentiable at x = 0 (which not all continuous functions
will be: e.g. f(x) = |x|). Then we can Taylor expand the function around x = 0 (i.e. the position
of the centre of the spike):

Z 1

�1
dx f(x) �(x) = lim

a!0

1

2a

Z

a

�a

dx



f(0) + xf 0(0) +
x2

2!
f 00(0) + . . .

�

. (4.48)

The advantage of this is that all the f (n)(0) are constants, which makes the integral easy:
Z 1

�1
dx f(x) �(x) = lim

a!0

1

2a

✓

f(0) [x]a�a

+ f 0(0)



x2

2

�

a

�a

+
f 00(0)

2!



x3

3

�

a

�a

+ . . .

◆

(4.49)

= lim
a!0

✓

f(0) +
a2

6
f 00(0) + . . .

◆

(4.50)

= f(0) . (4.51)

which gives the sifting result.

EXAM TIP: An exam question may ask you to derive the sifting property in this way. Make
sure you can do it.

Note that the odd terms vanished after integration. This is special to the case of the spike being
centred at x = 0. It is a useful exercise to see what happens if the spike is centred at x = d instead.

34



4.1.6 Some other properties of the delta function

These include:

�(�x) = �(x)

x�(x) = 0

�(ax) =
�(x)

|a|

�(x2 � a2) =
�(x� a) + �(x+ a)

2|a| (4.52)

The proofs are left as exercises.

4.1.7 Calculus with the delta function

The �-function is easily integrated:
Z

x

�1
dy �(y � d) = ⇥(x� d), (4.53)

where

⇥(x� d) =

(

0 x < d

1 x � d
(4.54)

which is called the Heaviside function, or just the ‘step function’.

The derivative is also easy to write down, just by applying the product rule to x�(x) = 0:

�(x) + x
d

dx
�(x) = 0 ) d

dx
�(x) = ��(x)/x. (4.55)

In the workshops, we will look at how the derivative of the �-function can be used.

4.1.8 More than one dimension

Finally, in some situations (e.g. a point charge at r = r

0

), we might need a 3D Dirac delta function,
which we can write as a product of three 1D delta functions:

�(r � r

0

) = �(x� x
0

)�(y � y
0

)�(z � z
0

) (4.56)

where r

0

= (x
0

, y
0

, z
0

). Note that �(r � a) is not the same as �(r � a): the former picks out a
point at position a, but the latter picks out an annulus of radius a. Suppose we had a spherically
symmetric function f(r). The sifting property of the 3D function is

Z

f(r) �(r � a) d3x = f(a) = f(a), (4.57)

whereas
Z

f(r) �(r � a) d3x =

Z

f(r) �(r � a) 4⇡r2 dr = 4⇡a2f(a). (4.58)
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4.1.9 Physical importance of the delta function

The �-function is a tool that arises a great deal in physics. There are a number of reasons for this.
One is that the classical world is made up out of discrete particles, even though we often treat
matter as having continuously varying properties such as density. Individual particles of zero size
have infinite density, and so are perfectly suited to be described by �-functions. We can therefore
write the density field produced by a set of particles at positions x

i

as

⇢(x) =
X

i

M
i

�(x� x

i

). (4.59)

This expression means we can treat all matter in terms of just the density as a function of position,
whether the matter is continuous or made of particles.

This decomposition makes us look in a new way at the sifting theorem:

f(x) =

Z

f(q) �(x� q) dq. (4.60)

The integral is the limit of a sum, so this actually says that the function f(x) can be thought of as
made up by adding together infinitely many �-function spikes. This turns out to be an incredibly
useful viewpoint when solving linear di↵erential equations: the response of a given system to an
applied force f can be calculated if we know how the system responds to a single spike. This
response is called a Green’s function, and will be a major topic later in the course.

4.2 FT and integral representation of �(x)

The Dirac delta function is very useful when we are doing FTs. The FT of the delta function follows
easily from the sifting property:

f̃(k) =

Z 1

�1
dx �(x� d) e�ikx = e�ikd . (4.61)

In the special case d = 0, we get simply f̃(k) = 1.

The inverse FT gives us the integral representation of the delta function:

�(x� d) =
1

2⇡

Z 1

�1
dk f̃(k)eikx =

1

2⇡

Z 1

�1
dk e�ikdeikx (4.62)

=
1

2⇡

Z 1

�1
dk eik(x�d) . (4.63)

You ought to worry that it’s entirely unobvious whether this integral converges, since the integrand
doesn’t die o↵ at 1. A safer approach is to define the �-function (say) in terms of a Gaussian of
width �, where we know that the FT and inverse FT are well defined. Then we can take the limit
of � ! 0.

In the same way that we have defined a delta function in x, we can also define a delta function
in k. This would, for instance, represent a signal composed of oscillations of a single frequency or
wavenumber K. Again, we can write it in integral form if we wish:

�(k �K) =
1

2⇡

Z 1

�1
ei(k�K)x dx. (4.64)
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This k-space delta function has exactly the same sifting properties when we integrate over k as the
original version did when integrating over x.

Note that the sign of the exponent is irrelevant:

�(x) =
1

2⇡

Z 1

�1
e±ikx dk (4.65)

which is easy to show by changing variable from k to �k (the limits swap, which cancels the sign
change dk ! �dk).
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5 Ordinary Di↵erential Equations

We saw earlier that if we have a linear di↵erential equation with a driving term on the right-hand
side which is a periodic function, then Fourier Series may be a useful method to solve it. If the
problem is not periodic, then Fourier Transforms may be able to solve it.

5.1 Solving Ordinary Di↵erential Equations with Fourier transforms

The advantage of applying a FT to a di↵erential equation is that we replace the di↵erential equation
with an algebraic equation, which may be easier to solve. Let us illustrate the method with a couple
of examples.

5.1.1 Simple example

The equation to be solved is
d2z

dt2
� !2

0

z = f(t). (5.66)

Take the FT, which for z is:

z̃(!) =

Z 1

�1
z(t)e�i!t dt (5.67)

and noting that d/dt ! i!, so d2/dt2 ! �!2, the equation becomes

� !2z̃(!)� !2

0

z̃(!) = f̃(!). (5.68)

Rearranging,

z̃(!) =
�f̃(!)

!2

0

+ !2

(5.69)

with a solution

z(t) = � 1

2⇡

Z 1

�1

f̃(!)

!2

0

+ !2

ei!t d!. (5.70)
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What this says is that a single oscillating f(t), with amplitude a, will generate a response in phase
with the applied oscillation, but of amplitude a/(!2

0

+ !2). For the general case, we superimpose
oscillations of di↵erent frequency, which is what the inverse Fourier transform does for us.

Note that this gives a particular solution of the equation. Normally, we would argue that we can
also add a solution of the homogeneous equation (where the rhs is set to zero), which in this case
is Ae!0t +Be�!0t. Boundary conditions would determine what values the constants A and B take.
But when dealing with Fourier transforms, this step may not be appropriate. This is because the
Fourier transform describes non-periodic functions that stretch over an infinite range of time –
so the manipulations needed to impose a particular boundary condition amount to a particular
imposed force. If we believe that we have an expression for f(t) that is valid for all times, then
boundary conditions can only be set at t = �1. Physically, we would normally lack any reason for
a displacement in this limit, so the homogeneous solution would tend to be ignored – even though
it should be included as a matter of mathematical principle.

We will come back to this problem later, when we can go further with the calculation (see Convo-
lution, section 6).

5.2 LCR circuits

Let us look at a more complicated problem with an electrical circuit. LCR circuits consist of an
inductor of inductance L, a capacitor of capacitance C and a resistor of resistance R. If they are
in series, then in the simplest case of one of each in the circuit, the voltage across all three is the
sum of the voltages across each component. The voltage across R is IR, where I is the current;
across the inductor it is LdI/dt, and across the capacitor it is Q/C, where Q is the charge on the
capacitor:

V (t) = L
dI

dt
+RI +

Q

C
. (5.71)

Now, since the rate of change of charge on the capacitor is simply the current, dQ/dt = I, we can
di↵erentiate this equation, to get a second-order ODE for I:

L
d2I

dt2
+R

dI

dt
+

I

C
=

dV

dt
. (5.72)

If we know how the applied voltage V (t) varies with time, we can use Fourier methods to determine
I(t). With Ĩ(!) =

R1
�1 I(t)e�i!t dt, and noting that the FT of dI/dt is i!Ĩ(!), and of d2I/dt2 it is

�!2Ĩ(!). Hence

� !2LĨ(!) + i!RĨ(!) +
1

C
Ĩ(!) = i!Ṽ (!), (5.73)

where Ṽ (!) is the FT of V (t). Solving for Ĩ(!):

Ĩ(!) =
i!Ṽ (!)

C�1 + i!R� !2L
, (5.74)

and hence

I(t) =
1

2⇡

Z 1

�1

i!Ṽ (!)

C�1 + i!R� !2L
ei!t d!. (5.75)

So we see that the individual Fourier components obey a form of Ohm’s law, but involving a complex
impedance, Z:

Ṽ (!) = Z(!)Ĩ(!); Z = R + i!L� i

!C
. (5.76)
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Figure 5.7: A simple series LCR circuit.

This is a very useful concept, as it immediately allows more complex circuits to be analysed, using
the standard rules for adding resistances in series or in parallel.

The frequency dependence of the impedance means that di↵erent kinds of LCR circuit have functions
as filters of the time-dependent current passing through them: di↵erent Fourier components (i.e.
di↵erent frequencies) can be enhanced or suppressed. For example, consider a resistor and inductor
in series:

Ĩ(!) =
Ṽ (!)

R + i!L
. (5.77)

For high frequencies, the current tends to zero; for ! ⌧ R/L, the output of the circuit (current
over voltage) tends to the constant value Ĩ(!)/Ṽ (!) = R. So this would be called a low-pass filter:
it only transmits low-frequency vibrations. Similarly, a resistor and capacitor in series gives

Ĩ(!) =
Ṽ (!)

R + (i!C)�1

. (5.78)

This acts as a high-pass filter, removing frequencies below about (RC)�1. Note that the LR circuit
can also act in this way if we measure the voltage across the inductor, V

L

, rather than the current
passing through it:

Ṽ
L

(!) = i!LĨ(!) = i!L
Ṽ (!)

R + i!L
=

Ṽ (!)

1 +R(i!L)�1

. (5.79)

Finally, a full series LCR circuit is a band-pass filter, which removes frequencies below (RC)�1 and
above R/L from the current.

5.3 The forced damped Simple Harmonic Oscillator

The same mathematics arises in a completely di↵erent physical context: imagine we have a mass
m attached to a spring with a spring constant k, and which is also immersed in a viscous fluid that
exerts a resistive force proportional to the speed of the mass, with a constant of proportionality D.
Imagine further that the mass is driven by an external force f(t). The equation of motion for the
displacement z(t) is

mz̈ = �kz �Dż + f(t). (5.80)
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This is the same equation as the LCR case, with

(z, f,m, k,D) ! (I, V̇ , L, C�1, R). (5.81)

To solve the equation for z(t), first define a characteristic frequency by !2

0

= k/m, and let � = D/m.
Then

z̈ + �ż + !2

0

z = a(t) (5.82)

where a(t) = f(t)/m. Now take the FT of the equation with respect to time, and note that the FT
of ż(t) is i!z̃(w), and the FT of z̈(t) is �!2z̃(!). Thus

� !2z̃(!) + i!�z̃(!) + !2

0

z̃(!) = ã(!), (5.83)

where ã(!) is the FT of a(t). Hence

z̃(!) =
ã(!)

�!2 + i�! + !2

0

. (5.84)

5.3.1 Explicit solution via inverse FT

This solution in Fourier space is general and works for any time-dependent force. Once we have
a specific form for the force, we can in principle use the Fourier expression to obtain the exact
solution for z(t). How useful this is in practice depends on how easy it is to do the integrals, first to
transform a(t) into ã(!), and then the inverse transform to turn z̃(!) into z(t). For now, we shall
just illustrate the approach with a simple case.

Consider therefore a driving force that can be written as a single complex exponential:

a(t) = A exp(⌦t). (5.85)

Fourier transforming, we get

ã(!) =

Z 1

�1
Aei⌦t e�i!t dt = 2⇡A�(⌦� !) = 2⇡A�(! � ⌦). (5.86)

Unsurprisingly, the result is a �-function spike at the driving frequency. Since we know that z̃(!) =
ã(!)/(�!2 + i�! + !2

0

), we can now use the inverse FT to compute z(t):

z(t) =
1

2⇡

Z 1

�1

ã(!)

�!2 + i� + !2

0

ei!t d! (5.87)

= A

Z 1

�1

�(! � ⌦)

�!2 + i�! + !2

0

ei!t d!

= A
ei⌦t

�⌦2 + i�⌦+ !2

0

This is just the answer we would have obtained if we had taken the usual route of trying a solution
proportional to exp(i⌦t) – but the nice thing is that the inverse FT has produced this for us
automatically, without needing to guess.
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5.3.2 Resonance

The result can be made a bit more intuitive by splitting the various factors into amplitudes and
phases. Let A = |A| exp(i�) and (�⌦2 + i�⌦+ !2

0

) = a exp(i↵), where

a =
q

(!2

0

� ⌦2)2 + �2⌦2 (5.88)

and
tan↵ = �⌦/(!2

0

� ⌦2). (5.89)

Then we have simply

z(t) =
|A|
a

exp[i(⌦t+ �� ↵)], (5.90)

so the dynamical system returns the input oscillation, modified in amplitude by the factor 1/a and
lagging in phase by ↵. For small frequencies, this phase lag is very small; it becomes ⇡/2 when
⌦ = !

0

; for larger ⌦, the phase lag tends to ⇡.

The amplitude of the oscillation is maximized when a is a minimum. Di↵erentiating, this is when
we reach the resonant frequency:

⌦ = ⌦
res

=
q

!2

0

� �2/2, (5.91)

i.e. close to the natural frequency of the oscillator when � is small. At this point, a = (�2!2

0

�
�4/4)1/2, which is �!

0

to leading order. From the structure of a, we can see that it changes by a large
factor when the frequency moves from resonance by an amount of order � (i.e. if � is small then
the width of the response is very narrow). To show this, argue that we want the term (!2

0

� ⌦2)2,
which is negligible at resonance, to be equal to �2!2

0

. Solving this gives

⌦ = (!2

0

� �!
0

)1/2 = !
0

(1� �/!
0

)1/2 ' !
0

� �/2. (5.92)

Thus we are mostly interested in frequencies that are close to !
0

, and we can approximate a by

a ' [(⌦2 � !2

0

)2 + �2!2

0

]1/2 ' [4!2

0

(⌦� !
0

)2 + �2!2

0

]1/2. (5.93)

Thus, if we set ⌦ = ⌦
res

+ ✏, then
1

a
' (�!

0

)�1

(1 + 4✏2/�2)1/2
, (5.94)

which is a Lorentzian dependence of the square of the amplitude on frequency deviation from
resonance.

5.3.3 Taking the real part?

The introduction of a complex acceleration may cause some concern. A common trick at an ele-
mentary level is to use complex exponentials to represent real oscillations; the argument being that
(as long as we deal with linear equations) the real and imaginary parts process separately and so
we can just take the real part at the end. Here, we have escaped the need to do this by saying that
real functions require the Hermitian symmetry c�m

= c⇤
n

. If a(t) is to be real, we must therefore
also have the negative-frequency part:

ã(!) = 2⇡A�(! � ⌦) + 2⇡A⇤�(! + ⌦). (5.95)
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The Fourier transform of this is

a(t) = A exp(i⌦t) + A⇤ exp(�i⌦t) = 2|A| cos(⌦t+ �), (5.96)

where A = |A| exp(i�). Apart from a factor 2, this is indeed what we would have obtained via the
traditional approach of just taking the real part of the complex oscillation.

Similarly, therefore, the time-dependent solution when we insist on this real driving force of given
frequency comes simply from adding the previous solution to its complex conjugate:

z(t) =
|A|
a

exp[i(⌦t+ �� ↵)] +
|A|
a

exp[�i(⌦t+ �� ↵)] = 2
|A|
a

cos(⌦t+ �� ↵). (5.97)
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