
Fourier Analysis: December 2013

Section A: Answer all Questions

A.1 We wish to use a Fourier cosine series to calculate the function f(x) = exp(x) over
the range 0 < x < 1. Draw a sketch of the result of the Fourier series over the range
−2 < x < 2; what is the fundamental period of this extended function? [5]

A.2 Prove that the Fourier transform, f̃(k), of a real function, f(x), obeys the symmetry
f̃(−k) = f̃ ∗(k). What is the corresponding relation for a purely imaginary function? [5]

A.3 Explain what is meant by the ‘sifting property’ of the Dirac delta-function, δ(x − a),
where a is a constant. What is the Fourier transform of (a) δ(x)? (b) x2δ(x2)? [5]

A.4 A dynamical system has a response, y(t), to a driving force, f(t), that satisfies the
differential equation d2y/dt2 = f(t). Derive the causal Green’s function for this system,
G(t, τ), and explain how it can be used to solve the equation. [5]
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Section B: Answer two Questions

B.1 A function f(x) is given in the interval −L < x < L and is to be expressed as a complex
Fourier series:

f(x) =
∞∑

n=−∞
cn exp(iknx).

(a) Discuss how the function can be extended into a periodic form, and give the corre-
sponding allowed values of the wavenumber, kn. [2]

(b) Explain what is meant by the orthogonality of the Fourier modes exp(iknx). Assuming
this property, derive an expression for the cn coefficients in the form of an integral. [4]

(c) Hence show that a real function can also be written as a real series:

f(x) = a0/2 +
∞∑
n=1

an cos(knx) +
∞∑
n=1

bn sin(knx),

defining the coefficients an and bn, and explaining carefully why there is a factor 1/2
multiplying the a0 term. [4]

(d) Consider the function f(x) = x, defined over the range 0 < x < π. Show that it can
be written in both of the following ways:

f(x) =
π

2
+

2

π

∞∑
n=1

[(−1)n − 1]
cos(nx)

n2
or f(x) = −2

∞∑
n=1

(−1)n

n
sinnx.

[8]

(e) Hence show that
∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

[2]

B.2 (a) Define the Fourier transform, f̃(k), of a function f(x), and give the inverse formula
by which f(x) can be obtained from its Fourier transform. [3]

(b) Compute the Fourier transform of a function that satisfies f(x) = 1 for 0 < x < a
and is zero elsewhere. Discuss carefully the value of f̃(0). [4]

(c) Prove that the Fourier transform of df/dx is ikf̃(k). [3]

(d) Define the convolution, f ∗ g, of two functions f(x) and g(x), and write down the
relation that exists between the Fourier transforms of these functions, f̃(k) and g̃(k), and
the transform of the convolution. What is the Fourier transform of f(x)g(x)? [3]

(e) Use Fourier methods to solve the following equation for u(x, t), subject to the boundary
condition u(x, 0) = exp(−x2/2). The Fourier transform of a Gaussian may be assumed
without proof. [5]

∂2u

∂x2
=
∂u

∂t
; −∞ < x <∞; 0 < t <∞.

(f) Interpret your result as a convolution, and hence give the solution for the case u(x, 0) =
δ(x− a). [2]
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B.3 The equation of motion of a driven, damped harmonic oscillator is

ÿ + 2γẏ + ω2
0y = f(t).

(a) Consider the case where the driving term is an impulse at t = 0: f(t) = δ(t). Explain
why the solution for this case, y(t), must solve the homogeneous equation everywhere
except at t = 0. If the oscillator is at rest with y = 0 prior to the impulse, describe how
the solution changes in crossing from t < 0 to t > 0. [3]

(b) Hence show that, provided γ < ω0, the solution can be written as

y(t) = A exp(−Bt) sin(Ωt) (t > 0),

and give the values of the constants A, B and Ω. [5]

(c) How does the solution change when γ > ω0? [2]

(d) Hence write down the Green’s function for this problem, where the driving force is
f(t) = δ(t− T ). [3]

(e) If f(t) = exp(−at) for t > 0, where a > 0, and is zero for t < 0, use the Green’s function
to find the resulting y(t) for the case of γ < ω0. The indefinite integral

∫
exp(αx) sinx =

exp(αx)(α sinx− cosx)/(1 + α2) may be assumed. [5]

(f) If a < γ, show that the solution is dominated by a non-oscillatory term as t → ∞.
Prove that this limiting form is in fact an exact solution of the equation of motion. [2]
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Section A: Solutions

A.1 For a cosine series, the function must be even. Therefore it is exp(−x) for −1 < x < 0.
[BW] [3]

The simplest approach is to adopt a fundamental period of 2 and repeat the basic cell of
exp(−|x|) over −1 < x < 1. But one could also repeat with a gap, so the fundamental
period could be larger if we chose. [TQ] [2]

A.2 f̃ =
∫
f(x) exp(−ikx) dx so f̃ ∗ =

∫
f(x) exp(+ikx) dx, which is f̃(−k). [BW] [3]

If f was imaginary, we would have f̃ ∗(k) = −f̃(−k). [US] [2]

A.3 Sifting means
∫
f(x)δ(x− a) dx = f(a). [BW] [2]

FT of δ(x) is 1. [BW] [1]

FT of δ(f(x)) is δ(x−r)/|df/dx|x=r, summed over roots of the function, f(r) = 0. In this
case, r = 0 only and |df/dx|x=r = 2|x|. Hence x2δ(x2) = x2δ(x)/2|x| = |x|δ(x)/2. This
means the FT integral is zero, since it sifts out |x|/2 at x = 0. [TQ] [3]

A.4 The Green’s function must satisfy the homogeneous equation. Integrating directly, we get
G = a+ b(t− τ). Causality means G = 0 for t < τ , so we need a unit step in G′ at t = τ ,
so G must vanish there. Thus a = 0 and b = 1. So G(t, τ) = (t− τ). [TQ] [3]

G satisfies d2G/dt2 = δ(t − τ). Multiply each side by f(τ) and integrate dτ . The RHS
becomes f(t), so the solution to y′′ = f(t) is

∫ t
−∞ f(τ)G(t, τ) dτ (upper limit in integral

because G = 0 for t < τ . [BW] [2]

Section B: Solutions

B.1 (a) We need to extend the function to a periodic form by replication. The simplest
approach is to copy the ‘cell’ −L < x < L into L < x < 2L etc., with a fundamental
period of 2L. But the period could be larger: f is unknown outside the given range, so
we could e.g. set f = 0 for L < x < 2L, and then copy that cell into 2L < x < 5L, for a
period of ` = 3L. In any case, the wavenumber is n(2π/`). [TQ] [2]

(b) (1/`)
∫

exp(iknx) exp(−ikmx) dx = δmn. [BW] [2]

Multiply the definition of f by exp(−ikmx) and integrate, to obtain

cm = (1/`)
∫
f(x) exp(−ikmx) dx.

[BW] [2]
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(c) Split cm into real and imaginary parts and allow for a factor 2 in usual definition of
an and bn. [TQ] [2]

For n 6= 0, we recover the factor 2 by combining the complex-series result for positive and
negative n. [TQ] [2]

(d) Need to extend into −π < x < 0. Can choose f(x) = x here (odd: sine series) or
f(x) = −x here (even: cosine series). [BW] [3]

The integrals needed are

am =
2

π

∫ π

0
x cos(nx) dx and bm =

2

π

∫ π

0
x sin(nx) dx.

Doing these by parts gives an = (2/π)(1/n2)[cosnπ−1] and bn = (2/π)(1/n)[0−π cosnπ].
And cosnπ = (−1)n. a0 can be derived directly or by expanding cos ε ' 1− ε2/2. [TQ] [5]

(e) Set x = 0 in the cosine series. Hence π2/4 =
∑

(2/n2), where the sum is over odd n
only. [TQ] [2]

B.2 (a) f̃(k) =
∫
f(x) exp(−ikx) dx. f(x) = (1/2π)

∫
f̃(k) exp(ikx) dx. [BW] [3]

(b)
∫ a

0 exp(−ikx) dx = (1/ik)[1− exp(−ika)]. [US] [2]

This is 0/0 for k = 0. Either Taylor expand for small k to get ika/ik = a or do the
integral with k = 0. [US] [2]

(c) Differentiate the integral: f ′(x) = (1/2π)
∫
f̃(k)ik exp(ikx) dx. [BW] [1]

Either by inspection, or by doing the FT directly and spotting a delta-function, the FT
of f ′ is ikf̃(k). [BW] [2]

(d) f ∗ g =
∫
f(x′)g(x− x′) dx′. The FT of this is f̃(k)g̃(k). [BW] [2]

The FT of f(x)g(x) is (1/2π)f̃(k) ∗ g̃(k) = (1/2π)
∫
f̃(k′) ∗ g̃(k − k′)′; dk′. This can be

quoted, or derived via a delta-function. [TQ] [1]

(e) Take the FT in space: −k2ũ = ∂
∂t
ũ. This can be integrated directly to get ũ = ũ(t =

0) exp(−k2t). [TQ] [2]

Now FT u(x, 0). This should be recognised as
√

2π times a Gaussian with σ = 1, so
ũ(k, 0) =

√
2π exp(−k2/2). [BW] [2]

Hence u(k, t) =
√

2π exp(−k2σ2/2), where σ2 = 1 + 2t, leading to

u(x, t) = (1/σ) exp(−x2/2σ2).

[US] [1]

Because ũ is a product, this represents convolving the initial u(x, 0 with a Gaussian of
width

√
2t. Therefore convolving with a delta-function at a would give

u(x, t) = (
√

4πt)−1 exp(−(x− a)2/4t.

[US] [2]
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B.3 (a) A delta-function is zero everywhere except at t = 0, so the equation is the homogeneous
equation. Via causality, we need y = 0 for t < 0, and there must be a unit discontinuity
in ẏ at t = 0 to yield the delta-function. [BW] [3]

(b) Try y = exp(at), so a2 + 2γa+ ω2
0 = 0, implying a = −γ ± iΩ, where Ω =

√
ω2

0 − γ2.
So for γ < ω0, we have

y = exp(−γt)[A sin Ωt+B cos Ωt].

We need y(0) = 0, so B = 0. Then

ẏ = A exp(−γt)[−γ sin Ωt+ Ω cos Ωt],

which is AΩ at t = 0. Thus a unit jump in ẏ requires

y =
1

Ω
exp(−γt) sin Ωt.

[TQ] [5]

(c) For γ > ω0, we have the same expression with sin → sinh. [US] [2]

(d) Hence

G(t, T ) =
1

Ω
exp[−γ(t− T )] sin Ω(t− T ).

(obvious via a change of variables). [US] [3]

(e) y(t) =
∫ t
−∞ f(q)G(t, q) dq. But f(q) = 0 for q < 0, so this is

y(t) =
1

Ω

∫ t

0
exp(−aq) exp[−γ(t− q)] sin Ω(t− q) dq.

Put t− q = z, giving

y(t) =
1

Ω

∫ 0

t
exp(−at+ az) exp(−γz) sin Ωz (−dz).

Now put w = Ωz:

y(t) =
exp(−at)

Ω2

∫ Ωt

0
exp(aw/Ω− γw/Ω) sinw dw.

Using the supplied integral, this is

y(t) = [Ω2 + (a− γ)2]−1
[
exp(−at) + exp(−γt)

(
a− γ

Ω
sin Ωt− cos Ωt

)]
.

[US] [5]

(f) If γ > a then the greater exponential damping of the second term means that it
becomes negligible relative to the first at large t. In this limit,

y(t) = [Ω2 + (a− γ)2]−1 exp(−at).

Substituting this into the equation of motion gives a LHS of

(a2 − 2γa+ Ω2 + γ2)y = exp(−at)

(using ω2
0 = Ω2 + γ2). [US] [2]
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