Fourier Analysis: December 2013

Section A: Answer all Questions

A.1 We wish to use a Fourier cosine series to calculate the function $f(x) = \exp(x)$ over the range 0 < x < 1. Draw a sketch of the result of the Fourier series over the range -2 < x < 2; what is the fundamental period of this extended function?

[5]

[5]

[5]

- **A.2** Prove that the Fourier transform, $\tilde{f}(k)$, of a real function, f(x), obeys the symmetry $\tilde{f}(-k) = \tilde{f}^*(k)$. What is the corresponding relation for a purely imaginary function?
- **A.3** Explain what is meant by the 'sifting property' of the Dirac delta-function, $\delta(x a)$, where a is a constant. What is the Fourier transform of (a) $\delta(x)$? (b) $x^2\delta(x^2)$? [5]
- **A.4** A dynamical system has a response, y(t), to a driving force, f(t), that satisfies the differential equation $d^2y/dt^2 = f(t)$. Derive the causal Green's function for this system, $G(t, \tau)$, and explain how it can be used to solve the equation.

Section B: Answer two Questions

B.1 A function f(x) is given in the interval -L < x < L and is to be expressed as a complex Fourier series:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n \exp(ik_n x).$$

(a) Discuss how the function can be extended into a periodic form, and give the corresponding allowed values of the wavenumber, k_n .

(b) Explain what is meant by the orthogonality of the Fourier modes $\exp(ik_n x)$. Assuming this property, derive an expression for the c_n coefficients in the form of an integral.

(c) Hence show that a real function can also be written as a real series:

$$f(x) = a_0/2 + \sum_{n=1}^{\infty} a_n \cos(k_n x) + \sum_{n=1}^{\infty} b_n \sin(k_n x),$$

defining the coefficients a_n and b_n , and explaining carefully why there is a factor 1/2 multiplying the a_0 term.

(d) Consider the function f(x) = x, defined over the range $0 < x < \pi$. Show that it can be written in both of the following ways:

$$f(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} [(-1)^n - 1] \frac{\cos(nx)}{n^2} \quad \text{or} \quad f(x) = -2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin nx.$$
[8]

(e) Hence show that

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$
[2]

B.2 (a) Define the Fourier transform, f(k), of a function f(x), and give the inverse formula by which f(x) can be obtained from its Fourier transform.

(b) Compute the Fourier transform of a function that satisfies f(x) = 1 for 0 < x < aand is zero elsewhere. Discuss carefully the value of $\tilde{f}(0)$.

(c) Prove that the Fourier transform of df/dx is $ik\tilde{f}(k)$.

(d) Define the convolution, f * g, of two functions f(x) and g(x), and write down the relation that exists between the Fourier transforms of these functions, $\tilde{f}(k)$ and $\tilde{g}(k)$, and the transform of the convolution. What is the Fourier transform of f(x)g(x)?

(e) Use Fourier methods to solve the following equation for u(x, t), subject to the boundary condition $u(x, 0) = \exp(-x^2/2)$. The Fourier transform of a Gaussian may be assumed without proof.

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}; \quad -\infty < x < \infty; \quad 0 < t < \infty$$

(f) Interpret your result as a convolution, and hence give the solution for the case $u(x, 0) = \delta(x-a)$.

[4]

[3]

[4]

[3]

[3]

[5]

[2]

[2]

[4]

B.3 The equation of motion of a driven, damped harmonic oscillator is

$$\ddot{y} + 2\gamma \dot{y} + \omega_0^2 y = f(t).$$

(a) Consider the case where the driving term is an impulse at t = 0: $f(t) = \delta(t)$. Explain why the solution for this case, y(t), must solve the homogeneous equation everywhere except at t = 0. If the oscillator is at rest with y = 0 prior to the impulse, describe how the solution changes in crossing from t < 0 to t > 0.

(b) Hence show that, provided $\gamma < \omega_0$, the solution can be written as

$$y(t) = A \exp(-Bt) \sin(\Omega t) \quad (t > 0),$$

and give the values of the constants A, B and Ω .

(c) How does the solution change when $\gamma > \omega_0$?

(d) Hence write down the Green's function for this problem, where the driving force is $f(t) = \delta(t - T)$.

(e) If $f(t) = \exp(-at)$ for t > 0, where a > 0, and is zero for t < 0, use the Green's function to find the resulting y(t) for the case of $\gamma < \omega_0$. The indefinite integral $\int \exp(\alpha x) \sin x = \exp(\alpha x)(\alpha \sin x - \cos x)/(1 + \alpha^2)$ may be assumed.

(f) If $a < \gamma$, show that the solution is dominated by a non-oscillatory term as $t \to \infty$. Prove that this limiting form is in fact an exact solution of the equation of motion. [5]

[2]

[3]

[5]

[2]

[3]

Section A: Solutions

A.1 For a cosine series, the function must be even. Therefore it is $\exp(-x)$ for -1 < x < 0. [BW]

The simplest approach is to adopt a fundamental period of 2 and repeat the basic cell of $\exp(-|x|)$ over -1 < x < 1. But one could also repeat with a gap, so the fundamental period could be larger if we chose. [TQ]

A.2
$$\tilde{f} = \int f(x) \exp(-ikx) dx$$
 so $\tilde{f}^* = \int f(x) \exp(+ikx) dx$, which is $\tilde{f}(-k)$. [BW] [3]

If f was imaginary, we would have $\tilde{f}^*(k) = -\tilde{f}(-k)$. [US]

A.3 Sifting means $\int f(x)\delta(x-a) dx = f(a)$. [BW]

FT of $\delta(x)$ is 1. [BW]

FT of $\delta(f(x))$ is $\delta(x-r)/|df/dx|_{x=r}$, summed over roots of the function, f(r) = 0. In this case, r = 0 only and $|df/dx|_{x=r} = 2|x|$. Hence $x^2\delta(x^2) = x^2\delta(x)/2|x| = |x|\delta(x)/2$. This means the FT integral is zero, since it sifts out |x|/2 at x = 0. [TQ] [3]

A.4 The Green's function must satisfy the homogeneous equation. Integrating directly, we get $G = a + b(t - \tau)$. Causality means G = 0 for $t < \tau$, so we need a unit step in G' at $t = \tau$, so G must vanish there. Thus a = 0 and b = 1. So $G(t, \tau) = (t - \tau)$. [TQ]

G satisfies $d^2G/dt^2 = \delta(t - \tau)$. Multiply each side by $f(\tau)$ and integrate $d\tau$. The RHS becomes f(t), so the solution to y'' = f(t) is $\int_{-\infty}^t f(\tau)G(t,\tau) d\tau$ (upper limit in integral because G = 0 for $t < \tau$. [BW]

Section B: Solutions

B.1 (a) We need to extend the function to a periodic form by replication. The simplest approach is to copy the 'cell' -L < x < L into L < x < 2L etc., with a fundamental period of 2L. But the period could be larger: f is unknown outside the given range, so we could e.g. set f = 0 for L < x < 2L, and then copy that cell into 2L < x < 5L, for a period of $\ell = 3L$. In any case, the wavenumber is $n(2\pi/\ell)$. [TQ]

(b) $(1/\ell) \int \exp(ik_n x) \exp(-ik_m x) dx = \delta_{mn}$. [BW]

Multiply the definition of f by $\exp(-ik_m x)$ and integrate, to obtain

$$c_m = (1/\ell) \int f(x) \exp(-ik_m x) \, dx.$$

[BW]

[2]

[2]

[2]

[3]

[2]

[3]

[2]

[2]

[2]

[1]

(c) Split c_m into real and imaginary parts and allow for a factor 2 in usual definition of a_n and b_n . [TQ]

For $n \neq 0$, we recover the factor 2 by combining the complex-series result for positive and negative n. [TQ]

(d) Need to extend into $-\pi < x < 0$. Can choose f(x) = x here (odd: sine series) or f(x) = -x here (even: cosine series). [BW] [3]

The integrals needed are

$$a_m = \frac{2}{\pi} \int_0^{\pi} x \cos(nx) \, dx$$
 and $b_m = \frac{2}{\pi} \int_0^{\pi} x \sin(nx) \, dx$.

Doing these by parts gives $a_n = (2/\pi)(1/n^2)[\cos n\pi - 1]$ and $b_n = (2/\pi)(1/n)[0 - \pi \cos n\pi]$. And $\cos n\pi = (-1)^n$. a_0 can be derived directly or by expanding $\cos \epsilon \simeq 1 - \epsilon^2/2$. [TQ] [5] (e) Set x = 0 in the cosine series. Hence $\pi^2/4 = \sum (2/n^2)$, where the sum is over odd n

(e) Set x = 0 in the cosine series. Hence $\pi^2/4 = \sum (2/n^2)$, where the sum is over odd n only. [TQ] [2]

B.2 (a)
$$\tilde{f}(k) = \int f(x) \exp(-ikx) dx$$
. $f(x) = (1/2\pi) \int \tilde{f}(k) \exp(ikx) dx$. [BW] [3]

(b)
$$\int_0^a \exp(-ikx) \, dx = (1/ik)[1 - \exp(-ika)].$$
 [US]

This is 0/0 for k = 0. Either Taylor expand for small k to get ika/ik = a or do the integral with k = 0. [US]

(c) Differentiate the integral:
$$f'(x) = (1/2\pi) \int \tilde{f}(k)ik \exp(ikx) dx$$
. [BW] [1]

Either by inspection, or by doing the FT directly and spotting a delta-function, the FT of f' is $ik\tilde{f}(k)$. [BW]

(d)
$$f * g = \int f(x')g(x - x') dx'$$
. The FT of this is $\tilde{f}(k)\tilde{g}(k)$. [BW] [2]

The FT of
$$f(x)g(x)$$
 is $(1/2\pi)\tilde{f}(k) * \tilde{g}(k) = (1/2\pi)\int \tilde{f}(k') * \tilde{g}(k-k')'; dk'$. This can be quoted, or derived via a delta-function. [TQ] [1]

(e) Take the FT in space: $-k^2 \tilde{u} = \frac{\partial}{\partial t} \tilde{u}$. This can be integrated directly to get $\tilde{u} = \tilde{u}(t = 0) \exp(-k^2 t)$. [TQ]

Now FT u(x,0). This should be recognised as $\sqrt{2\pi}$ times a Gaussian with $\sigma = 1$, so $\tilde{u}(k,0) = \sqrt{2\pi} \exp(-k^2/2)$. [BW]

Hence $u(k,t) = \sqrt{2\pi} \exp(-k^2 \sigma^2/2)$, where $\sigma^2 = 1 + 2t$, leading to

$$u(x,t) = (1/\sigma) \exp(-x^2/2\sigma^2).$$

 $[\mathrm{US}]$

Because \tilde{u} is a product, this represents convolving the initial u(x, 0) with a Gaussian of width $\sqrt{2t}$. Therefore convolving with a delta-function at a would give

$$u(x,t) = (\sqrt{4\pi t})^{-1} \exp(-(x-a)^2/4t.$$

[US]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[2]

[1]

B.3 (a) A delta-function is zero everywhere except at t = 0, so the equation is the homogeneous equation. Via causality, we need y = 0 for t < 0, and there must be a unit discontinuity in \dot{y} at t = 0 to yield the delta-function. [BW]

(b) Try $y = \exp(at)$, so $a^2 + 2\gamma a + \omega_0^2 = 0$, implying $a = -\gamma \pm i\Omega$, where $\Omega = \sqrt{\omega_0^2 - \gamma^2}$. So for $\gamma < \omega_0$, we have

$$y = \exp(-\gamma t)[A\sin\Omega t + B\cos\Omega t].$$

We need y(0) = 0, so B = 0. Then

$$\dot{y} = A \exp(-\gamma t) [-\gamma \sin \Omega t + \Omega \cos \Omega t],$$

which is $A\Omega$ at t = 0. Thus a unit jump in \dot{y} requires

$$y = \frac{1}{\Omega} \exp(-\gamma t) \sin \Omega t.$$

[TQ]

(c) For $\gamma > \omega_0$, we have the same expression with sin \rightarrow sinh. [US]

(d) Hence

$$G(t,T) = \frac{1}{\Omega} \exp[-\gamma(t-T)] \sin \Omega(t-T)$$

(obvious via a change of variables). [US]

(e) $y(t) = \int_{-\infty}^{t} f(q)G(t,q) dq$. But f(q) = 0 for q < 0, so this is

$$y(t) = \frac{1}{\Omega} \int_0^t \exp(-aq) \exp[-\gamma(t-q)] \sin \Omega(t-q) \, dq.$$

Put t - q = z, giving

$$y(t) = \frac{1}{\Omega} \int_{t}^{0} \exp(-at + az) \exp(-\gamma z) \sin \Omega z \ (-dz).$$

Now put $w = \Omega z$:

[US]

$$y(t) = \frac{\exp(-at)}{\Omega^2} \int_0^{\Omega t} \exp(aw/\Omega - \gamma w/\Omega) \sin w \, dw.$$

Using the supplied integral, this is

$$y(t) = \left[\Omega^2 + (a - \gamma)^2\right]^{-1} \left[\exp(-at) + \exp(-\gamma t)\left(\frac{a - \gamma}{\Omega}\sin\Omega t - \cos\Omega t\right)\right].$$
[5]

(f) If $\gamma > a$ then the greater exponential damping of the second term means that it becomes negligible relative to the first at large t. In this limit,

$$y(t) = [\Omega^2 + (a - \gamma)^2]^{-1} \exp(-at)$$

Substituting this into the equation of motion gives a LHS of

$$(a^2 - 2\gamma a + \Omega^2 + \gamma^2)y = \exp(-at)$$

(using $\omega_0^2 = \Omega^2 + \gamma^2$). [US]

[5]

[2]

[3]

[3]

[5]

[2]